
SCHEDULING PARTIALLY ORDERED TASKS
WITH PROBABILISTIC EXECUTION TIMES

K. M. Chandy and P. F. Reynolds
The University of Texas at Austin

The objective of this paper is to relate models of multi-tasking in which task times are
known or known to be equal to models in which task times are unknown. We study bounds on
completion times and the applicability of optimal deterministic schedules to probabilistic
models. Level algorithms are shown to be optimal for forest precedence graphs in which task
times are independent and identically distributed exponential or Erlang random variables.
A time sharing system simulation shows that multi-tasking could reduce response times and
that response time is insensitive to multi-tasking scheduling disciplines.

Key Words and Phrases: deterministic models, probabilistic models, multi-tasking, multi-
processing

CR Categories: 4.3, 4.32, 4.34, 4.35, 5.3, 5.32, 5.4, 5.42, 8.1

A substantial amount of literature exists on
the scheduling of partially ordered tasks with
fixed execution times given two or more proces-
sors [I]. Results for models in which task times
are fixed, henceforth called deterministic
models, include (i) the definition of optimal
polynomial algorithms for models satisfying
certain assumptions regardlngboth the number and
type of processors and the nature of task
precedence constraints [2, 3, 4, 7, i0]; (2) the
establishment of bounds for comparing optimal and
worst case scheduling algorithms [6, i0]; and (3)
the identification of models for which optimal
algorithms are necessarily N~-complete [ii].

A major drawback of deterministic models rests
in the assumption that task execution times are
fixed. Programs written to recognize potential
parallelism in other programs are generally
unable to determine exact execution times for the
tasks they generate. Thus, models in which task
times are not known are clearly needed.

We define multi-tasking to be both the
partitioning of single processes into smaller tasks
and the subsequent parallel execution of those
tasks. As multi-processor systems become common,
multi-tasklng will find an increasing domain of
applicability. For example, multi-tasking in a
real-tlme monitoring system could allow an
unacceptably slow process to be executed in a
reasonable amount of time. Also, systems charac-
terized by frequently run, lengthy, high priority
jobs would benefit from multl-tasklng. In this
case the ratio of the costs of partitioning a
process and the net reduction in total processing
time becomes more favorable. If a process has a
high priority and is lengthy then a reduction in
its total execution time is favorable not only for

that process but also for processes that may have
been blocked due to their lower priority.

There is a need to identify cases in which
multl-tasklng will be useful. Browne, et al., [8]
have concluded that multi-tasklng in a multi-
programmed system would not produce significant
improvement in thoughput. A simulation described
at the end of this paper supports that conclusion.
Systems designers need to know these and other
results so that they might determine whether the
incorporation of multl-tasking into an operating
system would be beneficial.

In this paper we consider a partially ordered
set of tasks T={Ti,...,Tn} and its related pre-
cedence graph G. We also use T to refer to the
set of vertices in G, and we define the value of
T i to be the mean execution time for Ti. The level
of a vertex in G is defined the same way it is
defined in [i]. At any given time, an initial task
is one all of whose predecessors have been com-
pleted. A Highest Levels First (HLF) Schedule is
defined as: Whenever a processor becomes free,
assign that'inltial task (if any) which is at the
highest level of those initial tasks not yet
assigned. A B-schedule [i] is an HLF schedule in
which ties among initial highest level tasks are
broken arbitrarily. An A-schedule is an HLP
schedule in which ties between highest level tasks
are broken by a labeling scheme [i]. Hu [2] has
shown that B-schedules are optimal for forest
precedence graphs (in which every task has at most
one successor) if all task executlon times are
known to be equal. Coffman and Graham [3] have
shown that the A-schedule is an optimal nonpre-
emptlve schedule for arbitrary task graphs given
two processors and provided all task execution
times are known to be equal. Muntz and Coffman

169

have shown that processor-sharing all highest level
tasks is an optimal preemptive schedule if the
precedence graph is a forest or if there are only
two processors [4, 7]. Adam, Chandy and Dickson
[5] have shown empirically that the B-schedule is
near-optimal for arbitrary precedence graphs and
stochastic task times.

In the sections that follow we describe
first known results for models in which task times
are unknown. Our objective is to extend the
results for deterministic models to models in
which task times are not known. We begin in
section i by pointing out that a bound derived in
[6] for worst case total execution time can be
applied as well to processes with unknown task
times. In section 2 we summarize the simulations
described in [5], in which it was found that HLF
algorithms could be expected to perform near-
optimally for all precedence graphs with unknown
task times. Section 3 contains our results for
systems having two or mere processors. For
systems with two identical processors we show that
forest precedence graphs with independent identi-
cal exponentially distributed task times can be
scheduled optimally only, by HLF algorithms. We
next extend this result to tasks having identical
n-order Erlang distributions. Results for both
preemptive and non-preemptive cases are derived.
We then give cases in which we know that HLF is
not necessarily optimal, and for which we know no
optimal polynomial scheduling algorithm. We
complete the section by giving our results for
models with two or more non-identical processors.
We finish with the results of a simulation of
multi-tasklng in a time-sharing system which
indicate that multi-tasking in a multi-program-
ming environment does not improve response time
substantially. The parameters for the time-
sharing simulation were obtained from a software
monitor on a CDC-6400 at the University of Texas
at Austin.

i. Bounds for Scheduling When Task Times
Are Unknown. Graham [6] has shown that given a
set of partially ordered tasks and assuming (i)
m identical processors, (2) known task times, and
(3) non-preemptive scheduling algorithms that
always schedule a ready task if possible, the
upper hound for the ratio of finishing times for
an arbitrary schedule ~a, and an optimal schedule

~O, is:

~a/~o! (2 - l/m) (i)

This ratio can be applied as well to the
case in which task times are unknown. Consider
a process Consisting of component tasks with
execution times that vary across separate execu-
tions of the process. Let ~F be the random
variable which is the optimum finishing time for
a particular execution of the process given task
execution times in advance. Let mh, also a random
variable, be the finishing time of an arbitrary
schedule when applied to the same set of given
task times. Then, from (i)

~a ~ (2 - l/m) *~F (2)

Taking expectations, it follows that

~n ~ (2 - l/m) *~F (3)

Hence, given any two scheduling algorithms,
"a" and "b" with finishing tlmes ~ a and ~b, the
average finishing times, ~a and ~b for algorithms
"a" and "b" are related by

~a ! (2 - l/m) *gb (4)

In particular, equation (4) holds if ~b is the
optimum finishing time given distributions for task
execution times.

2. Simulation Results for Precedence Graphs
with Unknown Task Times. In general, we have
found that HLF schedules for task graphs with
unknown task execution times produce results
significantly better than the bound derlved in the
preceding section might suggest. Simulations
performed by Adam, et al., [5] on arbitrary graphs
with unknown task times clearly indicate that
B-schedules are near-optimal.

Algorithms simulated by Adam et al. include
(i) HLFET (Highest Levels First with Estimated
Times) and (2) SCFET (Smallest Co-levels First
with Estimated Times). Table I compares the
preemptive list schedules derived from these
algorithms to an optimal preemptive schedule
derived using dynamic prograTmning. Table II
compares the performance of the non-preemptive list
schedules derived from SCFET and HLFET to each
other. Optimal bounds were not available in this
c a s e .

The conclusions that we draw from these
simulations are, that on the average: (i)
preemptive B-schedules can be expected to perform
near-optimally (within 5% of oDtlmal) for task
graphs in which task times are unknown, and (2)
non-preemptive B-schedules can be expected to be at
least superior to other scheduling algorithms
derivable in polynomial time.

Proc-
essors # Nodes # Edges

Percentage deviation
from Optimal

HLFET SCFET

5 20 66 0.03 1.01
5 23 236 0.00 0.01
5 20* 66 0.02 0.59
5 19 56 0.00 0.00
5 15" 55 0.00 0.00
5 18 68 0.00 0.28
5 20 43 0.19 1.47
5 15 55 0.00 0.00
5 18 69 0.00 0.05
5 19 107 0.01 0.01
5 12 43 0.00 0.00
5 8 13 0.00 0.00
5 20 48 0.02 0.52

*These graphs were processed assuming all
have equal mean duration time.

tasks

TABLE I

170

TABLE II

Graphs Range Average Average
run # nodes # nodes # edges SCFET

22 1-50 36 76 13.37
38 51-100 63 119 13.63
4 101-150 130 214 10.94
3 200+ 234 398 8.79

3. Scheduling Two or More Processors When
Task Times Are Unknown. Consider a forest
precedence graph (in which every vertex has at
most one successor) where all task times are
independent and are derived from identical expo-
nential distributions (lid exponential). Assume
without loss of generality that the mean execu-
tion time for all such tasks is unity. We refer
to such precedence graphs as Exponential Forests
(ExFs). Similarly, consider a forest precedence
graph where all task times are independent and
are derived from identical nth order Erland
distributions (lid Erlang). We assume without
loss of generality that the mean execution time
for all such tasks is n, and we refer to these
precedence graphs as Erlang Forests (ErFs).

Our results in this section are the following:
(i) For ExFs and two identical processors,
HLF algorithms are optimal. (2) For ErFs and
two identical processors, HLF is optimal in the
non-preemptlve case and HLF with processor sharing
is optimal in the preemptive case. (3) For
models with more than two identical processors
HLF algorithms are not necessarily optimal for
ExFs. (4) For arbitrary precedence graphs with
task times which are ild exponential random
variables HLF scheduling algorithms are not
necessarily optimal for two or more identical
processors. (5) For models with two or more
identical processors and forests in which task
times are derived from non-identical independent
exponential distributions, HLF algorithms are
not necessarily optimal. (6) For ExFs and two
non-ldentical processors HLF with preemption is
optimal. (7) For both ExFs and ErFs and with
two or more non-ldentical processors, keeping a
processor idle even when there is a ready task
can produce smaller finishing times if non-
preemptive scheduling is assumed.

3.1. Results for Two or More Identical
Processors

171

3.1.1. Optimality of HLF Algorithms for
ExFs. Due to the detailed nature of our theorems
and proofs for the optimality of HLF algorithms,
we have chosen to present a more intuitive
description of our approach in this section.
Theorems and proof outlines for this section
appear in the appendix.

In order to prove the optimality of HLF
algorithms for ExFs we develop the concept of
flatness of an ExF by defining a set of partial
relations for relating the flatness of one ExF
to another. Given two ExFs, G and H, we define G
to be as flat as H (G~H) if and only if the number
of tasks at every level in G is equal to the
number of tasks at every level in H. G is as flat

(c)

Fig. i. Flatness examples.

(a)

(b)

% deviation
from HLFET

a__sor flatter than H (G=H) if and only if the
number of tasks above (away from the root) a given
level in G is less than or equal to the number of
tasks above the same level in H. G is flatter
than H (G=H) if and only if the number of tasks
above a particular level in G is strictly less
than the number of tasks above the same level in
H, and G=H. Note that the removal of a task from
a given ExF always produces an ExF that is flatter
than the original. The ExF in Fig. la is as flat
as the ExF in Fig. ic and flatter than the one in
Fig. lb.

If G and H each have at least two initial
tasks, then we define x. and x^ to be the tasks

1 z
that are selected by an arbitrary algorithm
applied to G, and we assume without loss of
generality that the level of x I is greater or
equal to the level of x^. Similar assumptions are

z
made for Yl and y2, the tasks selected by an
arbitrary algorithm for H. We denote G with x i
removed as (G - xi), and H with Yi removed as

(H - yi) .

Consider two ExFs, G and H, that satisfy a
flatness relationship, (i) G~H or (2) CG~H.
Assuming that G and H each have at least two
initial tasks, then when (G - x i) is compared with
(H -yi) we say that the original flatness
relation between G and H is preserved if condition
(2) is met, that it is maintained if (G - x i) and
(H - y~) have the same relation as G and H, and
that iT is enhanced if relation (2) originally
applied to G and H and relation (i) applies to

(G - xi) and (H - yi).

We now establish (theorems i - B) that if
i) G and H each have at least two initial tasks,
2) either G=H or G~H, and 3) an HLF algorithm is
applied to G and an arbitrary algorithm is
applied to H, then when we compare (G - x 1) to
(H - yl) and (G Z x2) to (H - y2), flatne§s will
be preserved, at least, in one of these compari-
sons, and it will be maintained or enhanced in
the other. Also, if G~H and HLF algorithms are
applied to both G and H then (G - x I) % (H - yl)

and (G - x 2) ~ (H - y2).

We leave the preceding result for a moment
in order to discuss an important characteristic
of our original assumptions. Since we have
assumed task execution times to be iid exponential
it follows from the "memoryless" property of
exponential distributions that the expected execu-
tion time of a partially processed task is inde-
pendent of the amount of processing the task has
received and is equal to the original expected
value. Furthermore, when two tasks having
exponential distributions with unit means are con-
sidered in parallel, the expected time until
one of the tasks completes is 1/2 (units of
time). With these results we can express a
recursive cost function for the expected
finishing time of G using scheduling algorithm X
(denoted T(G, X)) as

T(G,X) = 1/2 + i/2 * T(G-xi,X) + i/2*T(G--x2,X)

assuming there are at least two initial tasks in
G. If G is a chain, then the function becomes

T(G,X) = i + T(G - Xl,X).

In theorems 4 - 7 we derive the exclusive
optimality of HLF algorithms primarily by induc-
tively applying the cost functions and flatness
results given above. We conclude that preemption
is of no benefit for the following reasons: Due
to the memoryless property of exponential random
variables, the state of a partially processed ExF
is itself an ExF. It follows that any schedule
that is optimal for a given ExF will continue to
be optimal until a task completes. If preemption
is allowed, then it follows that a processor
should never be idle when an executable task is
available. Since a task only needs to be preemp-
ted when another task completes it also follows
that there would never be more than N - I preemp-
tions for an N task ExF. If a task is selected
by an HLF algorithm, it could continue to be
selected by an HLF algorithm independent of the
number of other tasks that are completed. From
this it follows that if we have identical pro-
cessors, preemption is not necessary in an HLF
algorithm for ExFs.

Results of this section are unique in the
following respects: (i) Task times are assumed to
be unknown. (2) All optimal schedules must be of
a certain type (i.e., HLF). Thus, we have a
necessary and sufficient condition for optimality
whereas other problems [2, 3, 4, 7] have yielded
only sufficient conditions. (3) Given two iden-
tical processors, there is no benefit in preemp-
tion.

3.1.2. Optimality of HLF Algorithms for ErF~
We present a brief outline of our results. A
discussion of the theorems used to prove our
results appears in the appendix.

HLF is an optimal scheduling algorithm if
non-preemption is assumed. Theorems used to
prove this result incorporate the flatness con-
cept defined in the preceding section. Given
task time distributions that are n-order Erlang,
a task is assumed to consist of n exponential
stages. We show that an ExF can be constructed
such that tasks in the ExF represent stages of
tasks in an ErF. It is assumed that the sched-
uling policy cannot know how many stages a par-
tially processed task has left. (To allow this
would reduce ErFs to ExFs.) Using the constructed
ExF we can then demonstrate the optimality of HLF
algorithms using the techniques of the previous
section.

In the non-preemptive case HLF with processor
sharing is an optimal scheduling algorithm. If
two or more tasks exist at the highest level,
then they should be processor shared. If only
one task exists at the highest level, then it
should be assiRned to one processor and initial

tasks at the next highest lev~ouldbeprocessor
shared on the remaining processor. We derive our
results by constructing a corresponding ExF as
described above and by using the techniques of
the previous section.

Details of our results appear in a forth-
coming paper.

172

3.1.3. Schedules for ExFs and More Than Two
Identical Processors.

Fig. 2. ExF for which 3 processor
HLF algorithm is not optimal.

The optimal three processor schedule for the
ExF shown in Fig. 2 is not an HLF schedule;
tasks i, 2 and 4 are processed initially in the
optimal schedule whereas tasks i, 2 and 3 are
processed initially in the HLF schedule.

The reason that the results of Section 3.1.1
break down with three or more processors is
interesting. If H has 3 executable tasks and
G=H, and G and H have the same number of tasks,
it is possible that G has only two executable
tasks (Figs. la, lb). Hence, given three processors,
H offers more opportunity for exploiting parallel-
ism and hence has a smaller mean completion time.
It is obvious that if G=H, and G and H have the
same number of tasks, then G must have at least
two executable tasks; thus, G can always exploit
two processors.

3.1.4. Precedence Graphs Which Are Not
Forests.

Fig. 3. lid exponential precedence
graph for which HLF is not optimal.

The optimal two-processor schedule for the
graph in Fig. 3 in which task times are iid

exponential is not HLF; the optimal solution is
to process tasks i (or 2) and 3 initially whereas
the HLF schedule processes tasks 1 and 2 initially.
Therefore, the A-schedule is not optimal in this
case. A polynomial algorithm for this problem has
not been obtained.

The reason that the HLF algorithm is not
optimal in this case is that task 3 has more
successors than 2. If we start with 1 and 2,
there is a greater probability that we will
finish tasks i, 2, 4 and 5 before 3 than if we
start with i and 3 (or 2 and 3).

3.1.5. Forests with Unequal ExPonentially
Distributed Task Times. ~i.0 ~ 1.0

1.0 1.0 Q 2.1
Fig. 4. Forest with unequal exponentially

distributed task times (mean times
appear beside tasks).

The optimal two processor schedule for the
forest precedence graph shown in Fig. 4 is not
an HLF schedule. An optimal solution in this
case is to first schedule tasks i and 2 and
then to schedule the remaining task with task 3.
An HLF schedule would have selected task 3 and
either task i or task 2 initially. A polynomial
algorithm for this problem has not been obtained.

HLFNET is an algorithm that has been proposed
[5] for unknown mean task times. This algorithm
is essentially an HLF algorithm assuming that all
tasks have equal mean times. Note that HLFNET
would be optimal in this example and that HLF is
not. This supports findings in [5] that HLFNET is
a reasonable algorithm when means are unknown.

3.2. Results for Unequal Processors.

3.2.1. ExFs with Two Non-identical Proces-
sors. The results of section 3.1.1 can be
extended to the case where the two processors have
different rates. Let the mean time for all tasks
on the fast processor be unity and on the slow
processor be 1/a. If the fast processor is
assigned a task x I of ExF G and the slow proces-
sor is assigned x 2 in a schedule X, we have

i i a T(G_x2,X) T(G,X) = l+a + l~a T(G - Xl,X) + l~a

A schedule is defined to be HLF if and only if,
at all times, the fast processor is assigned an
executable task at a higher level than all other
executable tasks and the slow processor is then
assigned an executable task at the highest level
among all remmining executable tasks. Thus a
task may be initially assigned to the slow
processor and later switched to the fast processor.
As discussed before, the maximum number of pre-
emptions of tasks (on the slow processor) is N-I.
The theorems for this case are identical to those ~
in section 3.1.1.

173

3.2.2. ExFs and ErFs with Non-Preemptive

Scheduling.

(a) Task 2 completes.

(b) Task i completes and S kept idle.

S idle

(c) F assigned to task 4.

F: fast processor
S: slow processor

F~ -. 5 Keeping a slow processor idle.

It has been shown for non-preemptive
scheduling of some deterministic models that
keeping a processor idle even when there is a
ready task can produce smaller finishing times [6].
The same result applies to ExFs and ErFs when
there are two or more non-identical processors.
A two processor example is given in Figure 5
where, initially, the slow processor is assigned
to task i and the fast processor is assigned to
task 2 (Fig. 5a). If the fast processor completes

its task first then it is assigned next to task 3
(Fig. 5b). Assuming that the slow processor
completes task 1 next, it now becomes possible,
given widely differing processor speeds, that
it would be advantageous to not assign the slow
processor to task 4 but rather to wait for the
fast processor to complete task 3 so that it could
then be assigned to task 4, and subsequently the
remainder of the chain (Fig. 5c).

4. A Simulation of Multi-tasking in a Time-
sharing System. Browne et. al [8] predicted that
multi-tasking in a multi-programming environment
would not result in a significant reduction in
user response time. In Table III we give the
results of our simulation of multi-tasking in a
time-sharing system that concur with that predic-
tion. The parameters for this simulation were
obtained from a software monitor on a CDC-6400 at
the University of Texas at Austin. A description
of the system can be found in [9].

A simulation of the University of Texas
single processor time-sharing system was written
and validated and tnen modified so that two
processing units were simulated in the place of
the one original processor. The service rates for
the two processors were equal to the service rate
of the original processor. The degree of multi-
tasking was varied from none to extremely
optimistic.

We now discuss five cases that were simulated.

Case (a). The maximum response time is
obtained when we assume that

(1) All tasks can always be processed in
parallel by both processors.

(2) All task execution times are known.

(3) Both CPUs always work in parallel on
that job in the CPU queue with the
Shortest Remaining Time (SRT).

Case (b). Consider another model where
the two processors always process different jobs
if there are 2 or more jobs in the CPU queue. The
two processors cooperate on a single job only if
there is one job in the CPU queue. In this case
too we assume that all jobs can be processed in
parallel by both CPUs at all times. We assume
that the CPU discipline is processing-sharing.

Case (d). In this case we assume that an
optimal multi-tasking scheduling algorithm is one
that results in a single job processing rate of
2N where N is the processing rate of one CPU. We
then construct a worst case multi-tasking sched-
uling algorithm (in comparison to the assumed
optimal algorithm) in accordance with the bound
discussed in section i. In this case the single
job processing rate by both CPUs would be 1.33~.

Case (c). In general it is unrealistic to
assume that the multi-tasklng of a single process
could utilize two processors throughout the
duration of the execution of the process. The
assumption of a single job processing rate of 1.5N
with an optimal multi-tasking scheduling algorithm

174

is not pessimistic.

Case (e). Here we assume that no multl-task-
ing is done. It should be noted that this is the
worst case for all cases in which the effective
single process multl-tasklng rate is less than or
equal to 1.5~.

Optimal vs. Non-Optlmal Multi-tasking
Scheduling Algorithms.

~f case (b) is considered the optimum multi-
tasking algorithm, then case (d) is the corres-
ponding worst-multi-tasklng algorithm. Similarly
case (e) is the worst case if case (c) corresponds
to the optimum multl-tasklng schedule. The
difference in response time between case (b) and
(d) is 10% and between (c) and (e) is 8%. Since
HLF is a near-optlmal algorithm, the difference in
response times between the HLF case and the opti-
mum multl-tasklng case would be very small.

Multi-taskin 8 vs. No Multi-tasking.

Excluding all multl-tasklng overhead costs,
there is approximately a 12% reduction in user
response time between cases (e) and (a). From
this we conclude that response time is relatively
insensitive to the scheduling algorithm chosen
for multl-tasklng. We note that the 12% differ-
ence found between cases (e) and (a) would prob-
ably be reduced significantly if multl-tasking
overhead costs were included in the case (a)
simulation.

CPU Service Late
Schsd~,tlluS Stn l l le Job f o r More Desrse o f User Response

Case D:J.sctpline Service Rate 'JL~m One Job Mo l t t - cssk tn S Ttne (8ec.)

• p r o c e s s o r ll* 2~ none 1 . 0 1 6
shar:l.n S

d p r o c e s s o r 1.33~ 21,t modera te 0 . 9 9 8
e b n r l n l

• p r o c e s s o r 1 .$0~ 21J opt:l,m:l.st t o 0 . 9 3 4
s h r : l . n l

b p r o c e s s o r 2~ 2~ very 0.900
l h e r t n K opC:JJLf.8 t i c

• p r o c e s s o r 21A 211 e x t r e m e l y 0 • 894
s h n r t n l opt:l.nte t 1c

• i 8 t h e eel.nil1• proceseor s e r v i c e r a t e .

Table III. Results from the Simulation
of Multi-tasking in a Time-sharing
System.

SUMMARY

We conclude that

(i) Multi-tasking in a typical time sharing
system results in small reduction in response
time.

(2) Response time is not very sensitive to the
multi-tasking scheduling algorithm used. Thus,
without regard to scheduling costs, the response
time resulting from using known near-optimal
polynomial algorithms such as HLF (and HLFNET) can

be expected to differ insignificantly from the
response time resulting from an optimal algorithm.
Since optimal algorithms are NP-complete HLF (and
HLFNET) are preferred algorithms.

(3) Though multi-tasking may not reduce response
significantly in multi-programming systems, it
could be useful in speeding up high priority jobs.

(4) Parallelism recognizers should attempt to
divide programs into tasks with approximately
equal mean times.

APPENDIX

Definitions

An ExF is a forest where all task times are
independent identical exponential random variables.
We define G and H as ExFs and N i and M i as the

number of vertices at level i for G and H respec-

tively, for i = 1,2,3,...,. Clearly N i and M i are

non-negatlve integers. Let S(G,m) be the number

of tasks at level m or higher in G. Then

S(G,m) = ~ N i (i)

i>m

G is defined to be as flat as H, denoted by C~H,

IFF S(G,m) = S(H,m) for m = 1,2,3 (2)

G is defined to be a_sfla____t_o_rflatte______r tha___n_H,
denoted by G=H, if and only if:

S(G,m) ~ S(H,m) for m = 1,2,3,... (3)

G is defined to be flatter than H, denoted by G=H,
if and only if (3) is true, and there exists some
m, such that

S(G,m) < S(H,m) (4)

We define X to be an HLF schedule on G which
initially processes tasks x I and x 2 if there are at

least two initial tasks in G and processes task x I

if there is only one. Similarly, we define Y and
Z to be schedules on H; where Y is HLF and Z is
arbitrary. If H has at least two initial tasks,
then Y will begin with tasks Yl and Y2 and Z will

begin with z I and z 2. If H has only one initial

task, then Y will begin with Yl and Z with z I.

Let G - x i be the subgraph of G obtained by

deleting x i. We define H - Yi and H - z i

similarly.

Theorems for Optimality of HLF for ExFs and Two
Processors

We present the following theorems without
detailed proof in order to establish the opti-
mality of the HLF scheduling algorithm for ExFs
and two processors.

Theorem i

Let H have two or more executable tasks.
Then

175

H - Yi [H - z i i=1,2 (5)

Furthermore, if the level of Y. is greater than
l

the level of z i then

H - Yi ~ H - z i i=1,2 (6)

Proof: A Proof for (5) is shown by establishing
that

S(H - Yl,m)~S(H - zl,m) for all m, i=1,2.

(6) can be proven by showing

S(H - Yi,level of yi)<S(H - zi, level of zi)

and using (5).

Theorem 2

Let G and H have two or more initial tasks.
If G~H, then

G - x i ~ H - Yl (7)

Furthermore, if G=H, then either

G - x I = H - Yl (8)

or G - x 2 = H - Y2

or both (8) and (9) are true.

Proof: (7) can be proved by showing that

S(G - xi,m) ~ S(H - Yi,m) for all m, i=1,2

(8) and (9) are proven by showing that for some m

S(G - xi,m) < S(H - Yi,m)

and by using (7).

Corollary 1

If CwH, then G - x i ~ H - Yi'

Proof: Follows from Theorem 2.

i-1,2

Theorem 3

Let G and H have two or more executable tasks.
If G ~H, then

G - x i ~ H - z i i=1,2 (i0)

Furthermore, if G=H, then either

G - x I = H - z I (ii)

or G - x 2 = H - z 2 (12)

or both (ii) and (12) are true.

Proof: Proof follows from theorems i and 2.

Theorem 4

If G~H, then T(G,X) = T(H,Y) where X and Y
are arbitrary HLF schedules.

Proof: The proof for when G and H are both chains
follows from (2). The proof for when G and H have
at least two initial tasks is an induction on the
number of tasks in G and H.

It is important to realize here that due to
the memoryless property of a random exponential
distribution the costs of executing G and H can be
expressed as

T(G,X) = 1/2 + 1/2 * T(G - x ,X) + 1/2 *T(G-x2X)
1

and

T(H,Y) = 1/2 + i/2 * T(H - yl,Y) + 1/2 *T(H-Y2,Y)

respectively. Corollary i and the induction
hypothesis can be applied directly to these cost
functions.

Theorem 4 implies that the mean finishing
times of all HLF schedules for a given ExF are
equal. Therefore, we henceforth define T(G,HLF)
as the mean finishing time of all HLF schedules
for the ExF G.

Theorem 5

Let G have at least two initial tasks. If G
contains N tasks, then

Level of x i ! T(G,HLF) ! N

Proof: By induction on N.

Theorem 6

If G=H, then T(G,HLF) < T(H,HLF)

Proof: By induction on M, the number of nodes in
H. Theorems 2, 4 and 5 are used to prove four
cases. These cases are i) Both G and H have at
least two initial nodes, 2) Both G and H have less
than two initial nodes, 3) H has less than two
initial tasks while G has at least two, and 4) G
has less than two executable tasks while H has at
least two.

Theorem 7

A two processor schedule on an ExF is optimal
if and only if it is HLF.

Proof: By induction on the number of tasks.
Note that since all HLF schedules have the same
completion time it follows that all HLF schedules
are optimal.

Theorems for Optimality of HLF for ErFs and Two
Processors

An ErF is a forest where all task times are
lid Erlang random variables. If preemption is
not allowed with two processors and ErF precedence
graph, then HLF is an optimal scheduling policy.
The proof is inductive and the 2 induction assump-
tions are outlined below; proofs are found in a
forthcoming paper.

The definitions of flatness have to be some-
what modified when non-preemptive tasks are
considered. Let G be an ErF. Let a task at level
£ in G have received t units of processing; this
task will still have a processor assigned to it.
We shall refer to this state of the system as
(G,£,t). The state (G,£,t) is said to be flatter
than the state (G~,£~,t ~) if for t > t ~,

S(G,m) < S(G',m) all m

S(G-Z,m) < S(G~-~',m) all m

176

The induction assumptions are obviously true
for ErFs with i, 2, and 3 nodes. We show that if
the assumption is true for ErFs with n-i or fewer
nodes, then it is true for ErFs with n nodes.

Induction Assumptions

For all ErFs with n or fewer nodes, in which
a processor may have been assigned to a task.

(i) HLF is an optimal policy for processing all
unprocessed tasks. (If a task is partially
processed, the processor must complete that task
and all succeeding tasks will be assigned in an
HLF manner.)

(2) If G and G ~ are ErFs, the optimal expected
time for G cannot exceed the optimal expected
time for G'.

If preemption is allowed, the optimal policy
is to processor-share all tasks at the highest
level if there are two or more tasks at the high-
est level; if there is only one task at the
highest level, then it should be processed and
all initial tasks at the next highest level
should be processor-shared. We shall refer to
this policy as the preemptive HLF policy. The
theorem that the preemptive HLF policy is optimal
for two processors and ErFs is proved inductively
in a manner similar to that of the non-preemptive
CaSe.

The Erlang random variable may be represented
by a sequence of lid exponential random variables.
Since preemption is allowed we may have several
partially processed tasks. The "state" of a
partially processed task consists of the number
of exponential "stages" left in that task. The
state of the ErF is the forest of unfinished
exponential stages. Note that the scheduling
policy cannot know the state of the system because
it cannot know the number of exponential stages
left in a partially processed task, but it may
attempt to surmise the state from the amount of
processing that each task has had.

Given a state G of an ErF we define an ExF
G ~ with a one-to-one correspondence between stages
in G and tasks in G~; if stage i must precede
stage j in G then task i must precede task j in
G ". If G and H are states of ErFs and G" and H"
are corresponding ExFs, we define G=H if and only
if G ~ ~ H ~.

The inductive proof that the preemptive HLF
policy is optimal for ErFs is similar to that for
ExFs. The induction assumptions are: (i)
Preemptive HLF policy is optimal for ErFs with n
or fewer unfinished tasks (note: not stages).

(2) If G and H are ErFs and if G=H, then the
optimal expected completion time for G cannot
exceed that for H.

REFERENCES

i. Coffman, E.G. and Denning, P.J., Operating
Systems Theory, Prentice-Hall, Englewood Cliffs,
N.J. (1974).

2. Hu, T.C.,"Parallel sequencing and assembly
line problem{', Operations Research, 9, (Nov - Dec
1961), 841-848.

3. Coffman,' E.G. and Graham, R.L.,"Optlmal
scheduling for two-processor systems", Acta
Informatica, 1.3. (1972), 200-213.

4. Muntz, R.R. and Coffman, E.G.,"Optlmal
preemptive scheduling on two-processor systems",
IEEE Trans. C-18, ii (Nov 1969), 1014-1020.

5. Adam, T.T., Chandy, K.M., and Dickson, J.R.,
"A comparison of llst schedules for parallel
processing systems", Comm. ACM, 17, 12, (1974,
685-691.

6. Graham, R.L.,'Bounds on Multiprocesslng Timing
Anomalies", SIAM J. Appl. Math., i~7 2 (1969), 416-
440.

7. Muntz, R.R. and Coffman, E.G., "Preemptive
Scheduling of Real-Time Tasks on Multi-processor
Systems", ~. ACM 17, 2 (Apr. 1972), 324-338.

8. Browne, J.C., Chandy, K.M., Hogarth, J. and
Lee, C.C., "The Effect on Throughput of Multi-
Processing in a Multi-Programming Environment",
IEEE Trans. on Comp., C-22, 8 (Aug 1973), 728-735.

9. Brown, R.M., "An Analytic Model of a Large
Scale Interactive System Including the Effects of
Finite Main Memory", Univ. of Texas, Computer
Science Report TR-31.

i0. Lam, S. and Sethl, R., "Analysis of a Level
Algorithm for Preemptive Scheduling". To appear
in these proceedings.

ii. Ullman, J. D., "Polynomial Completeness of
the Equal Execution Time Scheduling Problem",
Princeton Univ., Dept. of Elec. Engrg., Computer
Science Report TR-ii5 (Dec. 1972).

Acknowledgement

This research was supported by NSF Grant DCR74-
13302.

177

