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The objective of this paper is to relate models of multi-tasking in which task times are 
known or known to be equal to models in which task times are unknown. We study bounds on 
completion times and the applicability of optimal deterministic schedules to probabilistic 
models. Level algorithms are shown to be optimal for forest precedence graphs in which task 
times are independent and identically distributed exponential or Erlang random variables. 
A time sharing system simulation shows that multi-tasking could reduce response times and 
that response time is insensitive to multi-tasking scheduling disciplines. 
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A substantial amount of literature exists on 
the scheduling of partially ordered tasks with 
fixed execution times given two or more proces- 
sors [I]. Results for models in which task times 
are fixed, henceforth called deterministic 
models, include (i) the definition of optimal 
polynomial algorithms for models satisfying 
certain assumptions regardlngboth the number and 
type of processors and the nature of task 
precedence constraints [2, 3, 4, 7, i0]; (2) the 
establishment of bounds for comparing optimal and 
worst case scheduling algorithms [6, i0]; and (3) 
the identification of models for which optimal 
algorithms are necessarily N~-complete [ii]. 

A major drawback of deterministic models rests 
in the assumption that task execution times are 
fixed. Programs written to recognize potential 
parallelism in other programs are generally 
unable to determine exact execution times for the 
tasks they generate. Thus, models in which task 
times are not known are clearly needed. 

We define multi-tasking to be both the 
partitioning of single processes into smaller tasks 
and the subsequent parallel execution of those 
tasks. As multi-processor systems become common, 
multi-tasklng will find an increasing domain of 
applicability. For example, multi-tasking in a 
real-tlme monitoring system could allow an 
unacceptably slow process to be executed in a 
reasonable amount of time. Also, systems charac- 
terized by frequently run, lengthy, high priority 
jobs would benefit from multl-tasklng. In this 
case the ratio of the costs of partitioning a 
process and the net reduction in total processing 
time becomes more favorable. If a process has a 
high priority and is lengthy then a reduction in 
its total execution time is favorable not only for 

that process but also for processes that may have 
been blocked due to their lower priority. 

There is a need to identify cases in which 
multl-tasklng will be useful. Browne, et al., [8] 
have concluded that multi-tasklng in a multi- 
programmed system would not produce significant 
improvement in thoughput. A simulation described 
at the end of this paper supports that conclusion. 
Systems designers need to know these and other 
results so that they might determine whether the 
incorporation of multl-tasking into an operating 
system would be beneficial. 

In this paper we consider a partially ordered 
set of tasks T={Ti,...,Tn} and its related pre- 
cedence graph G. We also use T to refer to the 
set of vertices in G, and we define the value of 
T i to be the mean execution time for Ti. The level 
of a vertex in G is defined the same way it is 
defined in [i]. At any given time, an initial task 
is one all of whose predecessors have been com- 
pleted. A Highest Levels First (HLF) Schedule is 
defined as: Whenever a processor becomes free, 
assign that'inltial task (if any) which is at the 
highest level of those initial tasks not yet 
assigned. A B-schedule [i] is an HLF schedule in 
which ties among initial highest level tasks are 
broken arbitrarily. An A-schedule is an HLP 
schedule in which ties between highest level tasks 
are broken by a labeling scheme [i]. Hu [2] has 
shown that B-schedules are optimal for forest 
precedence graphs (in which every task has at most 
one successor) if all task executlon times are 
known to be equal. Coffman and Graham [3] have 
shown that the A-schedule is an optimal nonpre- 
emptlve schedule for arbitrary task graphs given 
two processors and provided all task execution 
times are known to be equal. Muntz and Coffman 
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have shown that processor-sharing all highest level 
tasks is an optimal preemptive schedule if the 
precedence graph is a forest or if there are only 
two processors [4, 7]. Adam, Chandy and Dickson 
[5] have shown empirically that the B-schedule is 
near-optimal for arbitrary precedence graphs and 
stochastic task times. 

In the sections that follow we describe 
first known results for models in which task times 
are unknown. Our objective is to extend the 
results for deterministic models to models in 
which task times are not known. We begin in 
section i by pointing out that a bound derived in 
[6] for worst case total execution time can be 
applied as well to processes with unknown task 
times. In section 2 we summarize the simulations 
described in [5], in which it was found that HLF 
algorithms could be expected to perform near- 
optimally for all precedence graphs with unknown 
task times. Section 3 contains our results for 
systems having two or mere processors. For 
systems with two identical processors we show that 
forest precedence graphs with independent identi- 
cal exponentially distributed task times can be 
scheduled optimally only, by HLF algorithms. We 
next extend this result to tasks having identical 
n-order Erlang distributions. Results for both 
preemptive and non-preemptive cases are derived. 
We then give cases in which we know that HLF is 
not necessarily optimal, and for which we know no 
optimal polynomial scheduling algorithm. We 
complete the section by giving our results for 
models with two or more non-identical processors. 
We finish with the results of a simulation of 
multi-tasklng in a time-sharing system which 
indicate that multi-tasking in a multi-program- 
ming environment does not improve response time 
substantially. The parameters for the time- 
sharing simulation were obtained from a software 
monitor on a CDC-6400 at the University of Texas 
at Austin. 

i. Bounds for Scheduling When Task Times 
Are Unknown. Graham [6] has shown that given a 
set of partially ordered tasks and assuming (i) 
m identical processors, (2) known task times, and 
(3) non-preemptive scheduling algorithms that 
always schedule a ready task if possible, the 
upper hound for the ratio of finishing times for 
an arbitrary schedule ~a, and an optimal schedule 

~O, is: 

~a/~o! (2 - l/m) (i) 

This ratio can be applied as well to the 
case in which task times are unknown. Consider 
a process Consisting of component tasks with 
execution times that vary across separate execu- 
tions of the process. Let ~F be the random 
variable which is the optimum finishing time for 
a particular execution of the process given task 
execution times in advance. Let mh, also a random 
variable, be the finishing time of an arbitrary 
schedule when applied to the same set of given 
task times. Then, from (i) 

~a ~ (2 - l/m) *~F (2) 

Taking expectations, it follows that 

~n ~ (2 - l/m) *~F (3) 

Hence, given any two scheduling algorithms, 
"a" and "b" with finishing tlmes ~ a and ~b, the 
average finishing times, ~a and ~b for algorithms 
"a" and "b" are related by 

~a ! (2 - l/m) *gb (4) 

In particular, equation (4) holds if ~b is the 
optimum finishing time given distributions for task 
execution times. 

2. Simulation Results for Precedence Graphs 
with Unknown Task Times. In general, we have 
found that HLF schedules for task graphs with 
unknown task execution times produce results 
significantly better than the bound derlved in the 
preceding section might suggest. Simulations 
performed by Adam, et al., [5] on arbitrary graphs 
with unknown task times clearly indicate that 
B-schedules are near-optimal. 

Algorithms simulated by Adam et al. include 
(i) HLFET (Highest Levels First with Estimated 
Times) and (2) SCFET (Smallest Co-levels First 
with Estimated Times). Table I compares the 
preemptive list schedules derived from these 
algorithms to an optimal preemptive schedule 
derived using dynamic prograTmning. Table II 
compares the performance of the non-preemptive list 
schedules derived from SCFET and HLFET to each 
other. Optimal bounds were not available in this 
c a s e .  

The conclusions that we draw from these 
simulations are, that on the average: (i) 
preemptive B-schedules can be expected to perform 
near-optimally (within 5% of oDtlmal) for task 
graphs in which task times are unknown, and (2) 
non-preemptive B-schedules can be expected to be at 
least superior to other scheduling algorithms 
derivable in polynomial time. 

# Proc- 
essors # Nodes # Edges 

Percentage deviation 
from Optimal 

HLFET SCFET 

5 20 66 0.03 1.01 
5 23 236 0.00 0.01 
5 20* 66 0.02 0.59 
5 19 56 0.00 0.00 
5 15" 55 0.00 0.00 
5 18 68 0.00 0.28 
5 20 43 0.19 1.47 
5 15 55 0.00 0.00 
5 18 69 0.00 0.05 
5 19 107 0.01 0.01 
5 12 43 0.00 0.00 
5 8 13 0.00 0.00 
5 20 48 0.02 0.52 

*These graphs were processed assuming all 
have equal mean duration time. 

tasks 

TABLE I 

170 



TABLE II 

# Graphs Range Average Average 
run # nodes # nodes # edges SCFET 

22 1-50 36 76 13.37 
38 51-100 63 119 13.63 
4 101-150 130 214 10.94 
3 200+ 234 398 8.79 

3. Scheduling Two or More Processors When 
Task Times Are Unknown. Consider a forest 
precedence graph (in which every vertex has at 
most one successor) where all task times are 
independent and are derived from identical expo- 
nential distributions (lid exponential). Assume 
without loss of generality that the mean execu- 
tion time for all such tasks is unity. We refer 
to such precedence graphs as Exponential Forests 
(ExFs). Similarly, consider a forest precedence 
graph where all task times are independent and 
are derived from identical nth order Erland 
distributions (lid Erlang). We assume without 
loss of generality that the mean execution time 
for all such tasks is n, and we refer to these 
precedence graphs as Erlang Forests (ErFs). 

Our results in this section are the following: 
(i) For ExFs and two identical processors, 
HLF algorithms are optimal. (2) For ErFs and 
two identical processors, HLF is optimal in the 
non-preemptlve case and HLF with processor sharing 
is optimal in the preemptive case. (3) For 
models with more than two identical processors 
HLF algorithms are not necessarily optimal for 
ExFs. (4) For arbitrary precedence graphs with 
task times which are ild exponential random 
variables HLF scheduling algorithms are not 
necessarily optimal for two or more identical 
processors. (5) For models with two or more 
identical processors and forests in which task 
times are derived from non-identical independent 
exponential distributions, HLF algorithms are 
not necessarily optimal. (6) For ExFs and two 
non-ldentical processors HLF with preemption is 
optimal. (7) For both ExFs and ErFs and with 
two or more non-ldentical processors, keeping a 
processor idle even when there is a ready task 
can produce smaller finishing times if non- 
preemptive scheduling is assumed. 

3.1. Results for Two or More Identical 
Processors 

171 

3.1.1. Optimality of HLF Algorithms for 
ExFs. Due to the detailed nature of our theorems 
and proofs for the optimality of HLF algorithms, 
we have chosen to present a more intuitive 
description of our approach in this section. 
Theorems and proof outlines for this section 
appear in the appendix. 

In order to prove the optimality of HLF 
algorithms for ExFs we develop the concept of 
flatness of an ExF by defining a set of partial 
relations for relating the flatness of one ExF 
to another. Given two ExFs, G and H, we define G 
to be as flat as H (G~H) if and only if the number 
of tasks at every level in G is equal to the 
number of tasks at every level in H. G is as flat 

(c) 

Fig. i. Flatness examples. 

(a) 

(b) 

% deviation 
from HLFET 



a__sor flatter than H (G=H) if and only if the 
number of tasks above (away from the root) a given 
level in G is less than or equal to the number of 
tasks above the same level in H. G is flatter 
than H (G=H) if and only if the number of tasks 
above a particular level in G is strictly less 
than the number of tasks above the same level in 
H, and G=H. Note that the removal of a task from 
a given ExF always produces an ExF that is flatter 
than the original. The ExF in Fig. la is as flat 
as the ExF in Fig. ic and flatter than the one in 
Fig. lb. 

If G and H each have at least two initial 
tasks, then we define x. and x^ to be the tasks 

1 z 
that are selected by an arbitrary algorithm 
applied to G, and we assume without loss of 
generality that the level of x I is greater or 
equal to the level of x^. Similar assumptions are 

z 
made for Yl and y2, the tasks selected by an 
arbitrary algorithm for H. We denote G with x i 
removed as (G - xi), and H with Yi removed as 

(H - yi ) . 

Consider two ExFs, G and H, that satisfy a 
flatness relationship, (i) G~H or (2) CG~H. 
Assuming that G and H each have at least two 
initial tasks, then when (G - x i) is compared with 
(H -yi ) we say that the original flatness 
relation between G and H is preserved if condition 
(2) is met, that it is maintained if (G - x i) and 
(H - y~) have the same relation as G and H, and 
that iT is enhanced if relation (2) originally 
applied to G and H and relation (i) applies to 

(G - xi) and (H - yi ). 

We now establish (theorems i - B) that if 
i) G and H each have at least two initial tasks, 
2) either G=H or G~H, and 3) an HLF algorithm is 
applied to G and an arbitrary algorithm is 
applied to H, then when we compare (G - x 1) to 
(H - yl ) and (G Z x2 ) to (H - y2 ), flatne§s will 
be preserved, at least, in one of these compari- 
sons, and it will be maintained or enhanced in 
the other. Also, if G~H and HLF algorithms are 
applied to both G and H then (G - x I) % (H - yl) 

and (G - x 2) ~ (H - y2 ). 

We leave the preceding result for a moment 
in order to discuss an important characteristic 
of our original assumptions. Since we have 
assumed task execution times to be iid exponential 
it follows from the "memoryless" property of 
exponential distributions that the expected execu- 
tion time of a partially processed task is inde- 
pendent of the amount of processing the task has 
received and is equal to the original expected 
value. Furthermore, when two tasks having 
exponential distributions with unit means are con- 
sidered in parallel, the expected time until 
one of the tasks completes is 1/2 (units of 
time). With these results we can express a 
recursive cost function for the expected 
finishing time of G using scheduling algorithm X 
(denoted T(G, X)) as 

T(G,X) = 1/2 + i/2 * T(G-xi,X) + i/2*T(G--x2,X) 

assuming there are at least two initial tasks in 
G. If G is a chain, then the function becomes 

T(G,X) = i + T(G - Xl,X ). 

In theorems 4 - 7 we derive the exclusive 
optimality of HLF algorithms primarily by induc- 
tively applying the cost functions and flatness 
results given above. We conclude that preemption 
is of no benefit for the following reasons: Due 
to the memoryless property of exponential random 
variables, the state of a partially processed ExF 
is itself an ExF. It follows that any schedule 
that is optimal for a given ExF will continue to 
be optimal until a task completes. If preemption 
is allowed, then it follows that a processor 
should never be idle when an executable task is 
available. Since a task only needs to be preemp- 
ted when another task completes it also follows 
that there would never be more than N - I preemp- 
tions for an N task ExF. If a task is selected 
by an HLF algorithm, it could continue to be 
selected by an HLF algorithm independent of the 
number of other tasks that are completed. From 
this it follows that if we have identical pro- 
cessors, preemption is not necessary in an HLF 
algorithm for ExFs. 

Results of this section are unique in the 
following respects: (i) Task times are assumed to 
be unknown. (2) All optimal schedules must be of 
a certain type (i.e., HLF). Thus, we have a 
necessary and sufficient condition for optimality 
whereas other problems [2, 3, 4, 7] have yielded 
only sufficient conditions. (3) Given two iden- 
tical processors, there is no benefit in preemp- 
tion. 

3.1.2. Optimality of HLF Algorithms for ErF~ 
We present a brief outline of our results. A 
discussion of the theorems used to prove our 
results appears in the appendix. 

HLF is an optimal scheduling algorithm if 
non-preemption is assumed. Theorems used to 
prove this result incorporate the flatness con- 
cept defined in the preceding section. Given 
task time distributions that are n-order Erlang, 
a task is assumed to consist of n exponential 
stages. We show that an ExF can be constructed 
such that tasks in the ExF represent stages of 
tasks in an ErF. It is assumed that the sched- 
uling policy cannot know how many stages a par- 
tially processed task has left. (To allow this 
would reduce ErFs to ExFs.) Using the constructed 
ExF we can then demonstrate the optimality of HLF 
algorithms using the techniques of the previous 
section. 

In the non-preemptive case HLF with processor 
sharing is an optimal scheduling algorithm. If 
two or more tasks exist at the highest level, 
then they should be processor shared. If only 
one task exists at the highest level, then it 
should be assiRned to one processor and initial 

tasks at the next highest lev~ouldbeprocessor 
shared on the remaining processor. We derive our 
results by constructing a corresponding ExF as 
described above and by using the techniques of 
the previous section. 

Details of our results appear in a forth- 
coming paper. 
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3.1.3. Schedules for ExFs and More Than Two 
Identical Processors. 

Fig. 2. ExF for which 3 processor 
HLF algorithm is not optimal. 

The optimal three processor schedule for the 
ExF shown in Fig. 2 is not an HLF schedule; 
tasks i, 2 and 4 are processed initially in the 
optimal schedule whereas tasks i, 2 and 3 are 
processed initially in the HLF schedule. 

The reason that the results of Section 3.1.1 
break down with three or more processors is 
interesting. If H has 3 executable tasks and 
G=H, and G and H have the same number of tasks, 
it is possible that G has only two executable 
tasks (Figs. la, lb). Hence, given three processors, 
H offers more opportunity for exploiting parallel- 
ism and hence has a smaller mean completion time. 
It is obvious that if G=H, and G and H have the 
same number of tasks, then G must have at least 
two executable tasks; thus, G can always exploit 
two processors. 

3.1.4. Precedence Graphs Which Are Not 
Forests. 

Fig. 3. lid exponential precedence 
graph for which HLF is not optimal. 

The optimal two-processor schedule for the 
graph in Fig. 3 in which task times are iid 

exponential is not HLF; the optimal solution is 
to process tasks i (or 2) and 3 initially whereas 
the HLF schedule processes tasks 1 and 2 initially. 
Therefore, the A-schedule is not optimal in this 
case. A polynomial algorithm for this problem has 
not been obtained. 

The reason that the HLF algorithm is not 
optimal in this case is that task 3 has more 
successors than 2. If we start with 1 and 2, 
there is a greater probability that we will 
finish tasks i, 2, 4 and 5 before 3 than if we 
start with i and 3 (or 2 and 3). 

3.1.5. Forests with Unequal ExPonentially 
Distributed Task Times. ~i.0 ~ 1.0 

1.0 1.0 Q 2.1 
Fig. 4. Forest with unequal exponentially 

distributed task times (mean times 
appear beside tasks). 

The optimal two processor schedule for the 
forest precedence graph shown in Fig. 4 is not 
an HLF schedule. An optimal solution in this 
case is to first schedule tasks i and 2 and 
then to schedule the remaining task with task 3. 
An HLF schedule would have selected task 3 and 
either task i or task 2 initially. A polynomial 
algorithm for this problem has not been obtained. 

HLFNET is an algorithm that has been proposed 
[5] for unknown mean task times. This algorithm 
is essentially an HLF algorithm assuming that all 
tasks have equal mean times. Note that HLFNET 
would be optimal in this example and that HLF is 
not. This supports findings in [5] that HLFNET is 
a reasonable algorithm when means are unknown. 

3.2. Results for Unequal Processors. 

3.2.1. ExFs with Two Non-identical Proces- 
sors. The results of section 3.1.1 can be 
extended to the case where the two processors have 
different rates. Let the mean time for all tasks 
on the fast processor be unity and on the slow 
processor be 1/a. If the fast processor is 
assigned a task x I of ExF G and the slow proces- 
sor is assigned x 2 in a schedule X, we have 

i i a T(G_x2,X ) T(G,X) = l+a + l~a T(G - Xl,X) + l~a 

A schedule is defined to be HLF if and only if, 
at all times, the fast processor is assigned an 
executable task at a higher level than all other 
executable tasks and the slow processor is then 
assigned an executable task at the highest level 
among all remmining executable tasks. Thus a 
task may be initially assigned to the slow 
processor and later switched to the fast processor. 
As discussed before, the maximum number of pre- 
emptions of tasks (on the slow processor) is N-I. 
The theorems for this case are identical to those ~ 
in section 3.1.1. 
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3.2.2. ExFs and ErFs with Non-Preemptive 

Scheduling. 

(a) Task 2 completes. 

(b) Task i completes and S kept idle. 

S idle 

(c) F assigned to task 4. 

F: fast processor 
S: slow processor 

F~ -. 5 Keeping a slow processor idle. 

It has been shown for non-preemptive 
scheduling of some deterministic models that 
keeping a processor idle even when there is a 
ready task can produce smaller finishing times [6]. 
The same result applies to ExFs and ErFs when 
there are two or more non-identical processors. 
A two processor example is given in Figure 5 
where, initially, the slow processor is assigned 
to task i and the fast processor is assigned to 
task 2 (Fig. 5a). If the fast processor completes 

its task first then it is assigned next to task 3 
(Fig. 5b). Assuming that the slow processor 
completes task 1 next, it now becomes possible, 
given widely differing processor speeds, that 
it would be advantageous to not assign the slow 
processor to task 4 but rather to wait for the 
fast processor to complete task 3 so that it could 
then be assigned to task 4, and subsequently the 
remainder of the chain (Fig. 5c). 

4. A Simulation of Multi-tasking in a Time- 
sharing System. Browne et. al [8] predicted that 
multi-tasking in a multi-programming environment 
would not result in a significant reduction in 
user response time. In Table III we give the 
results of our simulation of multi-tasking in a 
time-sharing system that concur with that predic- 
tion. The parameters for this simulation were 
obtained from a software monitor on a CDC-6400 at 
the University of Texas at Austin. A description 
of the system can be found in [9]. 

A simulation of the University of Texas 
single processor time-sharing system was written 
and validated and tnen modified so that two 
processing units were simulated in the place of 
the one original processor. The service rates for 
the two processors were equal to the service rate 
of the original processor. The degree of multi- 
tasking was varied from none to extremely 
optimistic. 

We now discuss five cases that were simulated. 

Case (a). The maximum response time is 
obtained when we assume that 

(1) All tasks can always be processed in 
parallel by both processors. 

(2) All task execution times are known. 

(3) Both CPUs always work in parallel on 
that job in the CPU queue with the 
Shortest Remaining Time (SRT). 

Case (b). Consider another model where 
the two processors always process different jobs 
if there are 2 or more jobs in the CPU queue. The 
two processors cooperate on a single job only if 
there is one job in the CPU queue. In this case 
too we assume that all jobs can be processed in 
parallel by both CPUs at all times. We assume 
that the CPU discipline is processing-sharing. 

Case (d). In this case we assume that an 
optimal multi-tasking scheduling algorithm is one 
that results in a single job processing rate of 
2N where N is the processing rate of one CPU. We 
then construct a worst case multi-tasking sched- 
uling algorithm (in comparison to the assumed 
optimal algorithm) in accordance with the bound 
discussed in section i. In this case the single 
job processing rate by both CPUs would be 1.33~. 

Case (c). In general it is unrealistic to 
assume that the multi-tasklng of a single process 
could utilize two processors throughout the 
duration of the execution of the process. The 
assumption of a single job processing rate of 1.5N 
with an optimal multi-tasking scheduling algorithm 
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is not pessimistic. 

Case (e). Here we assume that no multl-task- 
ing is done. It should be noted that this is the 
worst case for all cases in which the effective 
single process multl-tasklng rate is less than or 
equal to 1.5~. 

Optimal vs. Non-Optlmal Multi-tasking 
Scheduling Algorithms. 

~f case (b) is considered the optimum multi- 
tasking algorithm, then case (d) is the corres- 
ponding worst-multi-tasklng algorithm. Similarly 
case (e) is the worst case if case (c) corresponds 
to the optimum multl-tasklng schedule. The 
difference in response time between case (b) and 
(d) is 10% and between (c) and (e) is 8%. Since 
HLF is a near-optlmal algorithm, the difference in 
response times between the HLF case and the opti- 
mum multl-tasklng case would be very small. 

Multi-taskin 8 vs. No Multi-tasking. 

Excluding all multl-tasklng overhead costs, 
there is approximately a 12% reduction in user 
response time between cases (e) and (a). From 
this we conclude that response time is relatively 
insensitive to the scheduling algorithm chosen 
for multl-tasklng. We note that the 12% differ- 
ence found between cases (e) and (a) would prob- 
ably be reduced significantly if multl-tasking 
overhead costs were included in the case (a) 
simulation. 

CPU Service Late  
Schsd~,tlluS Stn l l le  Job f o r  More Desrse  o f  User  Response  

Case D:J.sctpline Service Rate 'JL~m One Job Mo l t t - cssk tn  S Ttne (8ec.)  

• p r o c e s s o r  ll* 2~ none 1 . 0 1 6  
shar:l.n S 

d p r o c e s s o r  1.33~ 21,t modera te  0 . 9 9 8  
e b n r l n l  

• p r o c e s s o r  1 .$0~ 21J opt:l,m:l.st t o  0 . 9 3 4  
s h r : l . n  l 

b p r o c e s s o r  2~ 2~ very  0.900 
l h e r t n K  opC:JJLf.8 t i c  

• p r o c e s s o r  21A 211 e x t r e m e l y  0 • 894 
s h n r t n l  opt:l.nte t 1c 

• i 8  t h e  eel.nil1• proceseor  s e r v i c e  r a t e .  

Table III. Results from the Simulation 
of Multi-tasking in a Time-sharing 
System. 

SUMMARY 

We conclude that 

(i) Multi-tasking in a typical time sharing 
system results in small reduction in response 
time. 

(2) Response time is not very sensitive to the 
multi-tasking scheduling algorithm used. Thus, 
without regard to scheduling costs, the response 
time resulting from using known near-optimal 
polynomial algorithms such as HLF (and HLFNET) can 

be expected to differ insignificantly from the 
response time resulting from an optimal algorithm. 
Since optimal algorithms are NP-complete HLF (and 
HLFNET) are preferred algorithms. 

(3) Though multi-tasking may not reduce response 
significantly in multi-programming systems, it 
could be useful in speeding up high priority jobs. 

(4) Parallelism recognizers should attempt to 
divide programs into tasks with approximately 
equal mean times. 

APPENDIX 

Definitions 

An ExF is a forest where all task times are 
independent identical exponential random variables. 
We define G and H as ExFs and N i and M i as the 

number of vertices at level i for G and H respec- 

tively, for i = 1,2,3,...,. Clearly N i and M i are 

non-negatlve integers. Let S(G,m) be the number 

of tasks at level m or higher in G. Then 

S(G,m) = ~ N i (i) 

i>m 

G is defined to be as flat as H, denoted by C~H, 

IFF S(G,m) = S(H,m) for m = 1,2,3 .... (2) 

G is defined to be a_sfla____t_o_rflatte______r tha___n_H, 
denoted by G=H, if and only if: 

S(G,m) ~ S(H,m) for m = 1,2,3,... (3) 

G is defined to be flatter than H, denoted by G=H, 
if and only if (3) is true, and there exists some 
m, such that 

S(G,m) < S(H,m) (4) 

We define X to be an HLF schedule on G which 
initially processes tasks x I and x 2 if there are at 

least two initial tasks in G and processes task x I 

if there is only one. Similarly, we define Y and 
Z to be schedules on H; where Y is HLF and Z is 
arbitrary. If H has at least two initial tasks, 
then Y will begin with tasks Yl and Y2 and Z will 

begin with z I and z 2. If H has only one initial 

task, then Y will begin with Yl and Z with z I. 

Let G - x i be the subgraph of G obtained by 

deleting x i. We define H - Yi and H - z i 

similarly. 

Theorems for Optimality of HLF for ExFs and Two 
Processors 

We present the following theorems without 
detailed proof in order to establish the opti- 
mality of the HLF scheduling algorithm for ExFs 
and two processors. 

Theorem i 

Let H have two or more executable tasks. 
Then 
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H - Yi [ H - z i i=1,2 (5) 

Furthermore, if the level of Y. is greater than 
l 

the level of z i then 

H - Yi ~ H - z i i=1,2 (6) 

Proof: A Proof for (5) is shown by establishing 
that 

S(H - Yl,m)~S(H - zl,m ) for all m, i=1,2. 

(6) can be proven by showing 

S(H - Yi,level of yi)<S(H - zi, level of zi) 

and using (5). 

Theorem 2 

Let G and H have two or more initial tasks. 
If G~H, then 

G - x i ~ H - Yl (7) 

Furthermore, if G=H, then either 

G - x I = H - Yl (8) 

or G - x 2 = H - Y2 

or both (8) and (9) are true. 

Proof: (7) can be proved by showing that 

S(G - xi,m) ~ S(H - Yi,m) for all m, i=1,2 

(8) and (9) are proven by showing that for some m 

S(G - xi,m) < S(H - Yi,m) 

and by using (7). 

Corollary 1 

If CwH, then G - x i ~ H - Yi' 

Proof: Follows from Theorem 2. 

i-1,2 

Theorem 3 

Let G and H have two or more executable tasks. 
If G ~H, then 

G - x i ~ H - z i i=1,2 (i0) 

Furthermore, if G=H, then either 

G - x I = H - z I (ii) 

or G - x 2 = H - z 2 (12) 

or both (ii) and (12) are true. 

Proof: Proof follows from theorems i and 2. 

Theorem 4 

If G~H, then T(G,X) = T(H,Y) where X and Y 
are arbitrary HLF schedules. 

Proof: The proof for when G and H are both chains 
follows from (2). The proof for when G and H have 
at least two initial tasks is an induction on the 
number of tasks in G and H. 

It is important to realize here that due to 
the memoryless property of a random exponential 
distribution the costs of executing G and H can be 
expressed as 

T(G,X) = 1/2 + 1/2 * T(G - x ,X) + 1/2 *T(G-x2X) 
1 

and 

T(H,Y) = 1/2 + i/2 * T(H - yl,Y) + 1/2 *T(H-Y2,Y) 

respectively. Corollary i and the induction 
hypothesis can be applied directly to these cost 
functions. 

Theorem 4 implies that the mean finishing 
times of all HLF schedules for a given ExF are 
equal. Therefore, we henceforth define T(G,HLF) 
as the mean finishing time of all HLF schedules 
for the ExF G. 

Theorem 5 

Let G have at least two initial tasks. If G 
contains N tasks, then 

Level of x i ! T(G,HLF) ! N 

Proof: By induction on N. 

Theorem 6 

If G=H, then T(G,HLF) < T(H,HLF) 

Proof: By induction on M, the number of nodes in 
H. Theorems 2, 4 and 5 are used to prove four 
cases. These cases are i) Both G and H have at 
least two initial nodes, 2) Both G and H have less 
than two initial nodes, 3) H has less than two 
initial tasks while G has at least two, and 4) G 
has less than two executable tasks while H has at 
least two. 

Theorem 7 

A two processor schedule on an ExF is optimal 
if and only if it is HLF. 

Proof: By induction on the number of tasks. 
Note that since all HLF schedules have the same 
completion time it follows that all HLF schedules 
are optimal. 

Theorems for Optimality of HLF for ErFs and Two 
Processors 

An ErF is a forest where all task times are 
lid Erlang random variables. If preemption is 
not allowed with two processors and ErF precedence 
graph, then HLF is an optimal scheduling policy. 
The proof is inductive and the 2 induction assump- 
tions are outlined below; proofs are found in a 
forthcoming paper. 

The definitions of flatness have to be some- 
what modified when non-preemptive tasks are 
considered. Let G be an ErF. Let a task at level 
£ in G have received t units of processing; this 
task will still have a processor assigned to it. 
We shall refer to this state of the system as 
(G,£,t). The state (G,£,t) is said to be flatter 
than the state (G~,£~,t ~) if for t > t ~, 

S(G,m) < S(G',m) all m 

S(G-Z,m) < S(G~-~',m) all m 
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The induction assumptions are obviously true 
for ErFs with i, 2, and 3 nodes. We show that if 
the assumption is true for ErFs with n-i or fewer 
nodes, then it is true for ErFs with n nodes. 

Induction Assumptions 

For all ErFs with n or fewer nodes, in which 
a processor may have been assigned to a task. 

(i) HLF is an optimal policy for processing all 
unprocessed tasks. (If a task is partially 
processed, the processor must complete that task 
and all succeeding tasks will be assigned in an 
HLF manner.) 

(2) If G and G ~ are ErFs, the optimal expected 
time for G cannot exceed the optimal expected 
time for G'. 

If preemption is allowed, the optimal policy 
is to processor-share all tasks at the highest 
level if there are two or more tasks at the high- 
est level; if there is only one task at the 
highest level, then it should be processed and 
all initial tasks at the next highest level 
should be processor-shared. We shall refer to 
this policy as the preemptive HLF policy. The 
theorem that the preemptive HLF policy is optimal 
for two processors and ErFs is proved inductively 
in a manner similar to that of the non-preemptive 
CaSe. 

The Erlang random variable may be represented 
by a sequence of lid exponential random variables. 
Since preemption is allowed we may have several 
partially processed tasks. The "state" of a 
partially processed task consists of the number 
of exponential "stages" left in that task. The 
state of the ErF is the forest of unfinished 
exponential stages. Note that the scheduling 
policy cannot know the state of the system because 
it cannot know the number of exponential stages 
left in a partially processed task, but it may 
attempt to surmise the state from the amount of 
processing that each task has had. 

Given a state G of an ErF we define an ExF 
G ~ with a one-to-one correspondence between stages 
in G and tasks in G~; if stage i must precede 
stage j in G then task i must precede task j in 
G ". If G and H are states of ErFs and G" and H" 
are corresponding ExFs, we define G=H if and only 
if G ~ ~ H ~. 

The inductive proof that the preemptive HLF 
policy is optimal for ErFs is similar to that for 
ExFs. The induction assumptions are: (i) 
Preemptive HLF policy is optimal for ErFs with n 
or fewer unfinished tasks (note: not stages). 

(2) If G and H are ErFs and if G=H, then the 
optimal expected completion time for G cannot 
exceed that for H. 
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