The S/Net's Linda Kernel

Nicholas Carriero and David Gelernter
Yale University
Department of Computer Science
New Haven, Connecticut

extended abstract

Linda consists of a few simple operators that, when injected into
a host language h, turn h into a parallel programming language.
{Most of our programming experiments so far have been conducted
in C-Linda, but we have recently implemented a Fortran-Linda pre-
processor as well) The S/Net is a multi-computer that can also
function as the backbane of a local area net; each S/Net is a
collection of not more than sixty-four memory-disjoint computer
nodes communicating over a fast, word-parallel broadeast bus. We
have implemented a Linda-supporting communication kernel on an
S/Net at AT&T Bell Labs (where the machine was designed and
built), and this implementation is interesting, we argue, for two
reasons. It demonstrates, first, that Linda's powerful and flexible
communication primitives can be made to run well; the language's
shared-memory-like semantics can In fact be supported in the
absence of physically shared memory. Second, although Linda and
the 5/Net are particularly well-matched, the simplicity of the
language, of the implementation’s design and of the S/Net's logical
structure suggest that Linda implementations might readily be
eonstructed on similar architectures elsewhere. A Linda kernel
similar to the S/Nel’s has in fact recently been brought up, in
preliminary form, on an Ethernet-based network of Micro-Vax
workstations.

Processes in Linda communicate through 2 globally-shared
collection of ordered tuples called tuple space or TS. The operators
that Linda provides add tuples to this shared collection, remove
tuples and read tuples. out(t} causes tuple ¢ to be added to TS;
the executing process continues immediately. 1in(s) causes some
tuple t that matches template s to be withdrawn from TS; the
values of the actuals in ¢ are assigned to the formals in s, and the
executing process continues. If no matching ¢ is available when
in(s) exccutes, the executing process suspends until onc is, then

If many matching £’s are available, one is
read(s) is the same as in(s), with actuals
except that the matched tuple

proceeds as before.
chosen arbitrarily.
assigned to formals as before,
remains in TS.

Our 8/Net implementation of these operations buys speed at the
expense of communication bandwidth and local memory; the
reasonableness of this trade-ofl was our starting point. In the
kernel scheme we implemented (many otliers are possible), executing
out (i) causes tuple { to be broadcast to every node in the network;
thus every node stores a complete copy of TS. Executing in(s)

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Compuling Machinery. Ta capy
otherwise, or to republish, requires a fee and/or specific permission.

© 1985 ACM-0-89791-174-1-12/85-0160 $00.75

160

triggers a local search for a matching £. If one is found, the local
kernel asks £’s origin node for permission to delete it; if permission
Is granted, t is returned to the process that executed in().
(Permission is denied only when some other process is attcmpting to
detete ¢ more-or-less simultaneously, and i2 has been told to go
ahead.) If the local search triggered by in({s) turns up no
matching tuple, all newly-arriving tuples are checked until a match
occurs, at which polnt the matched tuple is deleted and returned as
before. rTead() works in the same way as in(), except that no
tuple-deletion need be attempted; as soon as a matching wuple is
found, It is returned immediately to the reading process.

‘We have studied the kernel’s performance on a small (8 node)
S/Net by measuring running times for processes doing
communication only, and by experimenting with a simple matrix
multiplication program in the promising but relatively unfamiliar
distributed-data-structure style. Communication delays in our
system are comparable in rough terms (given its idiosyncratic
character, and our hardware) to delays in efficient message-passing
kernels for bus-based networks like Birrel and Nelson's RPC kernel
and Cheriton and Zwaenpoel’s V kernel,

Linda offers parallel programmers a new way of looking at
network communication systems. Standard communication
protocols require that information be handed around [rom process
to process: no process can unburden itself of new data without first
determining where the data should go, and then handing it along
explicitly. Linda processes, on the other hand, are anhonymous
drones sharing access to one data pool. Shared memory has long
been regarded as the most flexible and powerful way of sharing
information among parallel processes -- but a naive shared memory
is hard to implement without hardware support, and requires the
addition of synchronization protocols if it is to be safely accessed in
parallel. In Linda, however, the shared memoty’s cell-size is the
logical tuple, not the physical byte, and so it is coarse-grained
enough ta be supported efficiently without special hardware. And
because, in Linda’s shared memory, data may not be altered in sidy
-- it is accessible via read, remove and add instead of the standard
read and write - it may safely be shared by any number of parallel
processes. Although much work needs to be done and our work
with the Linda kernel is still at an early stage, we have taken (we
feel) a significant first step towards demonstrating the power and
practicality of Linda as a parallel programming model.

This work was performed primarily at AT&T Bell Labs,
Holmdel; 8id Ahuja, Erik DeBenedictis, Robers Gaglianello, Howard
Katseff and Thomas London, all of Bell Labs, were our research
collaboraters. This material is based upon work supported by the
National Sclence IF'oundation under Grant No. MCS-8303805.

