
Proceedings of Sixth ACM Symposium on Operating Systems Principles (November 1977) 133-139.

INFORMATION TRANSMISSION IN COMPUTATIONAL SYSTEMS

Ellis Cohen
University of Newcastle upon Tyne

This paper presents Strong Dependency, a formalism based on an information theoretic approach to inform-
ation transmission in computational systems. Using the formalism, we show how the imposition of initial
constraints reduces variety in a system, eliminating undesirable information paths. In this way,
protection problems, such as the Confinement Problem, may be solved. A variety of inductive techniques
are developed useful for proving that such solutions are correct.

Section 1, INTRODUCTION

Users of large computational systems require
assurances that information they deem private
remains private. Recent work (e.g. [Denning 76,
Walters 75]) has used a notion of "information
flow" in order to formally state such assurances.
If, for each operation provided at some level of
a system, one can determine the information flow
resulting from that operation - inductive tech-
niques can be used to determine the extent of
information transmission in the system as a whole.

Initial constraints on a system can decrease the
variety in a system, reducing the variety conveyed
and preventing transmission of information.
Initial constraints are important~ for current
systems tend to provide fairly elaborate mechanisms
[Cohen and Jefferson 75] for preventing inform-
ation transmission, however, these must be initial-
ised properly in order to have the desired effect.
Sections 5 and 6 show how the Strong Dependency
formalism can be used to state what must be proven

- the absence of certain information transmission
paths given proper initialisation.

The information flow resulting from execution of
a single operation can formally be determined
from the semantics of the operation. However,
except for work by Jones & Lipton [75], oper-
ational information flow has been based on the
syntax of the operation instead [Denning and
Denning 76, Millen 76].

This paper introduces Strong Dependency, which
derives the information flow from the functional
semantics of an operation. (A companion paper
[Cohen 77] derives axiomatic techniques for
determining the operational information flow
from syntax.) Furthermore, it provides a
unified theory of information transmission for
both single operations and for the entire system.

Strong Dependency is based on ideas taken from
classical information theory [Ashby 56]. Notably,
it borrows the idea that information is trans-
mitted from a source to a destination only when
variety in the source can be conveyed to the
destination. Sections 2-4 provide background
definitions and formalise these ideas.

The research described in this paper was supported
at Carnegie-Mellon University by the Defense
Advanced Research Projects Agency (F44620-73-C-
0074) where it is monitored by the Air Force
Office of Scientific Research, and by the
National Science Foundation under grant MCS75-
07251A01.

Proving the absence of information transmission
over all possible executions of a system requires
an inductive proof technique. Section 7 accord-
ingly derives Strong Dependency Induction, which
is shown to be a generalisation of the information
flow induction techniques mentioned above. Section
8 shows how Strong Dependency Induction might be
used, by certifying a solution to the Confinement
Problem [Lampson 73] in a simple system.

Information flow has generally been defined as
transitive. That is, if information can flow from
a to m and from m to b, then a flow from a to b is
assumed as well. Section 9 illustrates two systems
where transitivity fairly obviously does net hold.
Moreover, a technique for Separation of Variety is
derived, which can be used in conjunction with
Strong Dependency Induction to prove absence of
information transmission in non-transitive cases.

Section 2. COMPUTATIONAL SYSTEMS

A Computational System is formally specified as a
triple <NM,E,A>. We may imagine that a system is
comprised of a set of objects (e.g. variables,
files, processes) named by NM. The value (contents)
of some object x (x s NM) depends upon the state of
the system ~ (o ¢ E). I write ~.x to mean the
value of x in state ~.

133

Execution of an operation alters the state.
Formally we define an operation 6 (6 e A) as a
mapping from states to states and interpret
6(~) = o* to mean that o* is the new state after
5 is executed in state 0. Informally we can
define operations by any convenient programming-
language-like notation. For example, if ~ were
some state such that O.a = 11~ and 6 were the
operation 8: b * a, then the state 6(o) would be
identical to o except that b's value in state
5(o) would be 11 (6(o).b = 11), regardless of
its value in state 0.

I write ~ = o2 to mean that ~ and o2 must have
the same values for all objects except x.
Formally

~ 02 ~def (V y ~ . . x) (~ . y = O2.y)

In the example above~ 6(0) ~ 0.

A history is defined as a sequence of operations.
If H were 616283 then execution of H indicates
sequential execution of 51~ 8 2 and then 83 .

aCe) = (518263) (0) = 53(62(51(o)))

Section 3. INFORMATION TRANSMISSION

Information transmission in computational systems
can be formalised by considering the classical
treatment of information theory [Ashby 56].
For examples consider execution of

6: b 4 - a

with respect to an information channel having a
as a source and b as a destination. Our task is
to determine whether information is transmitted
over that channel. Classical information theory

tells us that

Information is transmitted over a channel when
variety is conveyed from the source to the
destination

For example, if (in a 16 bit machine) a could
(with equal probability) take on any of 2"'16
possible values, then there are log2(2"'16) =
16 bits of variety in a and execution of 6
conveys all of that variety to b, for after
execution of 6, b may also take on 2"'16 values,
each one corresponding to an initial value of a.

In general, information can be transmitted from
a to b over execution of H if, by suitably
varying the initial value of a (exploring the
variety in a), the resulting value in b after
H's execution will also vary (showing that the
variety is conveyed to b). Note that this
formulation implies that if a is known to be a
particular constant, then no information can be
transmitted from a to b. If a initially
contains no variety, then surely none can be

conveyed to b.

Section 4. STRONG DEPENIENCY

Classical information theory is concerned with the
amount of information transmitted over a channel.
Strong Dependency is only concerned with whether
any information can be transmitted at all. I
write a ~Hb, b Strongly Depends on a over execu-
tion of H, to mean that variety in a can be
conveyed to b over execution of the sequence of
operations H. Formally

~Hb 02 A
a ~def (~o2) (~ =a

a(ol).b ~ H(o2).b)

~ 022 represents two suitably chosen states that
differ at a alone - i.e. exhibiting variety in a.
That variety can be conveyed to b, if after exec-
ution of H, the value of b differs in the two

states.

Figure I presents two examples of Strong Dependeac~
both shewing how information can be transmitted
from a to b over execution of a single operation.

Example 1: 5: b * a

~_ a_/ 6(4) 6(~)
a 10 20 10 20
b 40 40 10 20

Example 2: 5: if a then b * x

~ ~(~) ~(02)
a true false true false
b 40 40 60 40
x 60 60 60 60

o 1 = o 2
a

5 a ~ b

Figure .1

5(ol).b ~ 5(o2).b

Example two has intrigued previous researchers,
for if information transmission is perceived as a
"flow" of information, then when a is false, as in
o2, execution of 5 has no effect and can hardly
result in a "flow" of information from a to b.
Yet the fact that b's value does not change, of
course indicates that a must be false, represen-
ting new information gained about a. Jones and
Lipton [75] and Denning [76] discuss these situ-
ations using the terms "negative inference" and
"implicit flow" respectively. These cases need
not be treated specially. Using Strong Dependenc~
we never ask whether there is a "flow" of inform-
ation when a history is executed in some parti-
cular state; rather we compare the effect of
execution in different states. Analogously, in
classical information theory, the information
transmitted over a channel is not determined by
the contents of any single message, but rather by
the variety in the set of contents of all possible

messages.

Section ~. TRANSMISSION AND CONSTRAINTS

This section considers the effect of constraining
a system so that it is permitted to begin exec-
ution only in some subset of all possible initial

134

states. The approach to constraint again derives
from classical information theory:

Constraint reduces the variety in a system
potentially reducing the variety that may be
conveyed

For example, if a system is initially constrained
so that a can only take on values from ~ to 7,
then execution of

6 : b ~ - a

can still transmit information from a to b.
is written

a~6b where

~(~) ~ @ ~ c.a ~ 7

This

However if 6" is the operation

6": b e a div 20 (integer division)

then, the resulting value of b is always ~ when
q0 is satisfied initially. No variety is conveyed
so imposing q0 prevents information transmission
from a to b and

8" ,
-i a [~ b even though a 17~6 b

The definition of Strong Dependency determined
the initial va~ety in a by examining arbitrary
pairs of states that differed at a alone. In the
presence of the constraint ~, we need only
consider states thai satisfy ~. Formally

~ o2 ~ m(~) A ~I = q2 A re(q2)
x def x

(.~oio2) (oi too2 A
a b =--def

H(ol).b ~ H((y2).b)

The examples above showed how information trans-
mission could be prevented by reducing the variety
in the source a. A more traditional sort of
contraint has been discussed previously by Millen
[76], who notes that execution of

6: i_f q the___~ b * a

causes no transmission of information from a to
b if q is constrained to be false. Formally, it
can be shown that

6
a ~ b where

~(~) ~ ~ ~.q

H
I've implied that ~ a ~V~ b guarantees that
information cannot b e ~ transmitted from a
to b over transmission of H given any ~. In fact,
this guarantee may not hold for constraints that
are not autonomous. A formal definition of
autonomy and additional details can be found in
[Cohen 763 . Informally, ~ is autonomous if the
constraints on the values of each object are
independent.

Examples of autonomous constraints are:

re(a) ~ o . a ~ 7 ^ ~ . b = 12
~ (a) --- (Vx) (~.x~18)

Non autonomous constraints are:

e(=) -= c.a ~ a.b
~(a) ------ (•a,b)(b ¢ ~.a. refs D

~.a. level= ~ob. level)

where refs and level are distinct subcomponents
of state ~. This last constraint can be read as:
If b is in the set of objects a can reference in
state ~, then the (dynamic security) level of a
and b are the same. The dynamic nature of levels
requires a non-autonomous constraint. If security
levels were statically associated with objects,
level(a) indicating a's level, the constraint
would be autonomous.

~(a) ~ (~a,b)(b ¢ a.a. refs o
level(a) = level(b))

The value of a in state ~ is dependent upon the
properties of other objects (i.e. level(b)), but
independent of their value. The remaining
examples in this paper will all use autonomous
constraints° (See the Appendix for effects of
non-autonomy.)

Section 6. INFORMATION PROBLEMS AND SOLUTIONS

This section discusses how the Strong Dependency
formalism can be used to state two well known
problems - the Security Level Problem [Denning 76]
and the Confinement Problem [Lampson 73] in a
manner that is independent of any particular
computational system.

The last section discussed the operation

5: i_f q then b ~ a

and showed that although
the constraint

a ~ b, imposition of

~ (~) ~ -~ a . q

prevented transmission of information from a to b.
We can think of ~ as sol~ the information
problem

6

That is - guarantee that no information may be
transmitted from a to b. A solution to the
problem is represented by a constraint~ whose
imposition prevents the specified information
transmission. ~ can be thought of as character-
ising what are often referred to as "secure
states".

The Confinement problem is c o n c e r n e d with
guaranteeing the privacy of information held by
individual users. The problem is typically
described in terms of the difficult situation
where a user engages a service. The private
information must be passed to that service and so
seems to be temporarily out of direct control of

135

the user° A number of solutions to this problem
have been proposed [Rotenberg 73, Cohen &
Jefferson 75, Lampson 73]. This paper will
concentrate on a more general formulation of the
problem instead.

Objects (including executors) can be divided into
three groups. Those characterised as "Private"
corresponding to objects directly under the
control of the owners of the information. "Spy"
characterises the objects to which that inform-
ation must not be transmitted. The remainder of
the objects can temporarily hold private inform-
ation as long as it is not subsequently trans-
mitted to a spy.

The confinement problem can then be specified as

(Mx,y) (x ~ y o. Private(x) D --~Spy(y))

H
where x ~ y ~def (~H) (x [~ y)

That is, if execution of any history transmits
information from a private object to some other
object, then that other object must not be a spy.

Of course, each user of a system may define
confinement differently, in terms of different
sets of "private" and "spy" objects; each one
defining a different instance of the Confinement
problem. Each instance of the problem determines
a different set of solutions ~. Thus a system
itself does not solve the Confinement problem.
Rather a system may provide mechanisms that permit
a user to produce secure states and which then
guarantees that subsequent states remain secure.

The Security level problem is usually described
as having less of an individualistic flavour.
Each object x is initially assigned a security
level, Level(x) determined on a system wide
basis. No information is to be transmitted from
an object at one level to an object at a lower
level. Formally

(Vx,y) (x~ y D Level(x) ~ Level(y))

Section 7. STRONG DEPENDENCY INDUCTION

Proving the correctness of solutions to the
Confinement problem or the Security level problem
requires an analysis of information paths over all
possible histories. Strong Dependency Induction
makes that task practical. Intuitively, it is
based on the notion that if information is trans-
mitted from a to b over execution of HH', then
there must be some intermediate object m (perhaps
the same as a or b in degenerate Cases) such that
execution of H transmits information from a to m
and execution of H' transmits information from m
to b. Formally it can be proven that the
following property holds.

PROPERTY I (Flow Property)

a b D ~m) (a m A m b)

When an initial constraint ~ is imposed on the
system, the theorem continues to hold as long as

is both invariant (that is (Va,8)(~(~)
~(6(~))) and autonomous (other generalisations
may be found in [Cohen 76]).

PROPERTY 2 (Flow with Constraint)

If ~0 is invariant and autonomous then

a b D (~m)(a s a m

The following property follows directly.

PROPERTY 3 (End point Isolation)

If ~ is invariant and autonomous then:

To show ~ a i d b prove

~m~b,6) (~ m~ 6 b) o/_

~m~a,8) (~ a ~Sm)

That is, if no single operation can transmit
information t__o b from any other object or if no
single operation can transmit information from a
to any other object, then information cannot be
transmitted from a to b over any history.

More generally, we may want to show that x~_ y
can be permitted, but only for certain classes ~
of <x,y> pairs, for example when Level(x)
Level(y). That relationship is both reflexive
and transitive, and in general

PROPERTY 4 (Lattice Induction)

If ~ is invariant and autonomous and q is
reflexive and transitive then

To show (Vx,y) (x ~ y D q(x,y))

Prove (Vx,y,6) (x~5 y D q(x,y))

Thus for the Security level problem, it is only
necessary to show that if x's security level is
greater than y's, no single operation transmits
information from x to yo

Reflexive, transitive relations arise naturally in
the definition of information problems. As a
result, a number of researchers [Denning 75,
Walters 75, Jones & Lipton 76] have suggested an
information flow relation that is itself reflexive
and transitive. Such a relation is analogous %o
Strong Dependency having the property that

a m A m b 3. a b

as noted by Denning [75], this property does not
always hold, and can indicate that information
may be transmitted even when no such transmission
is possible. In section 9 we will explore just
such a situation and develop a technique suitable
for handling it correctly.

136

Section 8.. AN EXAMPLE OF STRONG DEPENDENCY
INDUCTION

This section illustrates Strong Dependency
Induction by proving the correctness of a solution
to the Confinement Problem in a simple system.
Imagine a system where each object contains two
disjoint subeomponents, one holding "data" and one
holding a pointer %o another object: The system
has two sets of operations:

81(y,x): if y.ptr = x then y. data* x. data
82(y,x): i.j.y, ptr = x then y.ptr ~ x. ptr

If y points to x, then execution of 51(y,x) will
copy data from x to y. If y points to x and x
points to w, then after execution of 52(y,x), y
will point to w as illustrated in figure 2.

before
~ ~ ~ after

Figure 2

If it is assumed that any object that is not
"private" is a"spy", the Confinement problem can
be stated as:

(Vx,y) (x ~y D. Private(x) D Private(y)

I'll show that as long as a spy doesn't point to
a private object, confinement is enforced.
Formally the initial constraint ~ can be chosen

to be

~(~) ~ Wy) (Private(~.y. ptr) • Private(y)

That is, if in any state ~, an object y points to
a private object, then y must be private

is autonomous and can easily be shown to be
invariant (the only interesting case is 62(y,x)).

Next, pick

q(x,y) ~ Private(x) • Private(y)

noting that q is both reflexive and transitive. It
can be easily shown that

(Vx,y,6) (x I~ Y o q(x,y))

By Lattice Induction, confinement is enforced.

Section 9. SEPARATION OF VARIET[

Strong Dependency Inducti'on may fail to be useful
in proving the absence of information transmission
if the Strong Dependency relation is not trans-
itive. This section explores two non-transitive

examples and derives a new technique, Separation
of Variety, which extends the applicability of
Strong Dependency Induction.

Consider the system

51: i j_ q then m 4- a
52: i_~_ m q then b 4- m

Information cannot be transmitted from a to b in
this system. If q is false, no information can be
obtained from a; if q is true, no information
can be stored in b. Formally, it can be shown
that

[]~162
m a b even though

a m and m b

Thus an attempt to prove ~ a~b directly by
End point Isolation is doomed to failure, for

property 3 requires that

(~5,xla) (m a x) [yet a m] o r

{v6,x b) x) [y e t m b]

The i n f o r m a l e x p l a n a t i o n a b o v e w h i c h a r g u e d t h a t

i n f o r m a t i o n c o u l d n o t be t r a n s m i t t e d f r o m a t o
b p r o c e e d e d b y d i s t i n g u i s h i n g two c a s e s - q f a l s e
a n d q t r u e . T h i s c a n be f o r m a l i s e d i n t h e
f o l l o w i n g way . L e t

ml(~) ~ m ~.q
~2(~) ~ ~.q

T h o u g h a m, ~ a m a n d

6
(y6,x~b) (~ a ~ 1) x

so b y p r o p e r t y 3 , ~ a ~I~-1 b .

Similarly ~ m ~ ~62 b which is the main result
needed to ~2 demonstrate ~ a ~ 2 b.

Since ~I and ~2 cover all cases, ~ a~b.

Not every separation into cases is legitimate.
Consider the system

8: if a the____n b * O else b * 1

Pick

~1(~) ~ ~ ~ . a
~2(~) ~ ~ . a

Then ~ a ~] b and ~ a ~_ b yet inform-
ation eerwalnly can be transmitted from a to b.
The trouble is that ~1 and ~2 are dependent upon
the value of a - the very object that is in
question as an information source° Separation of
variety is legitimate only when each of the
separating constraints is independent of the
information source in question. Define

is a-independent
def

(V o i , ~ 2) (ol ,~ o-2 ~ . ~ (o i) = ~ (~2))

137

If there is any set of constraints ":[~i}, each
a-independent, not necessarily disjoint, but such
that any state is satisfied by at least one ~i -
then - if no information is transmitted from a to
b given each of the ~i's in turn, then no inform-
ation can be transmitted from a to b at all.

PROPERTY ~ (Separation of variety)

I f (Verdi) (~ o i (~)) [to guarantee that ~i
covers all cases]

and (Vi) (~oi is a-independent)

then (Yi) (-7 a i b) ~" -~ a

or more generally

PROPERTY 6 (Separation with Constraint)

If (yc~i) (~(o)) [to guarantee that ~i
covers all cases]

and (yi) (~i is a-independent)

H H
then (Vi) (-~ a I~ ~ b) o -~ a ~ b

Another use of separation of variety arises in
showing that no information can be transmitted
from a to b in the system

81 : m ~ m + k*a
62: b ~ m nod k

Pick ~i(c) ~ (~.m mod k) = i

Firs% (Vi) (~ m I~. i b) though m

$ b) more generally (~i) (Vx~b,6) (~ x l~i

Since each ~0i can be shown to be invariant, End
point Isolation can be used to show that

(~ i) (~ a ~ o i b)

F i n a l l y , by S e p a r a t i o n o f v a r i e t y ~ a l ~ b .

Th i s example i s s e s p e c i a l l y i n t e r e s t i n g , f o r
m Ii>~^~ b t a k e s a d v a n t a g e of t h e f a c t showing

t h a t i n f o r m a t i o ~ W ± t r a n s m i s s i o n may be e l i m i n a t e d
by s u f f i c i e n t l y , r e d u c i n g t h e v a r i e t y i n t he
source (section 5).

Section 10. CONCLUSION

This paper has presented Strong Dependency, a
formalism for describing information transmission
in computational systems and for proving that
information is not transmitted over certain paths.
Attention was restricted to systems constrained by
a class of predicates which are both autonomous
and invariant and the paper considered whether any
information at all might be transmitted over an
information channel, without attempting to measure
the channel capacity. A discussion of the more
general situation may be found in [Cohen 76].

In analysing transmission from a to b, the paper
considered the effect that a change in a might
have on b over any arbitrary sequence of oper-
ations. If we are concerned with information
transmission as the result of execution of a
sequential program, we instead need consider the
effect on b over executions of the program. The
resulting theory is discussed in [Cohen 77].

ACKNOWLEDGEMENTS

It's a pleasure to thank Dorothy Denning for her
comments and to thank the whole host of members
of the CMU community for many discussions of this
material.

REFERENCES

W. Ashby. "An Introduction to Cybernetics", 1956.

E. Cohen. "Strong Dependency: A Formalism for
Describing Information Transmission in
Computational Systems", Carnegie-Mellon Univ.,
Comp. Sci. Tech. Report, August 1976.

E. Cohen. "Information Transmission in Sequential
Programs", Submitted for publication 1977.

E. Cohen, D. Jefferson. "Protection in the HYDRA
Operating System", Proc. 5th Symp. on
Operating Systems Principles, November 1975.

D. Denning, "Secure Information Flow in Computer
Systems", Ph.D. Thesis, Comp. Sci. Dept.,
Purdue Univ., May 1975.

D. Denning, "A Lattice Model of Secure Information
Flow", CACM v. 19, 5, (May 1976).

D. Denning, P. Denning, "Certification of Programs
for Secure Information Flow", Purdue Univ.,
CSD-TR 181, March 1976.

A. Jones, R. Lipton. "The Enforcement of Security
Policies for Computations", Proc. 5th Symp. on
Operating Systems Principles, November 1975.

B. Lampson. "A Note on the Confinement Problem",
CACM v. 16, 10 (October 1973).

J. Millen. "Security Kernal Validation in
Practice", CACM v. 19, 5 (May 1976).

L. Rotenberg. "Making Computers Keep Secrets",
Ph.D. Thesis MIT, MAC-TR-116, September 1973.

K. Walters, et al. "Structural Specification of a
Security Kernel", 1975 Intl. Conf. on Reliable
Software, April 1975o

138

APPENDIX: NON-AUTONOMOUS CONSTRAINTS

Strong Dependency is not a wholly adequate
formalism for determining information trans-
mission given non-autonomous constraints.
Consider the system

8: b * al

constrained by

e(o) ~ o. al = o. a2

It can be shown that ~ al ~ b. However,
information is certainly transmitted from al to b.
An observer of b, knowing that ~ holds, still
gains information about al (its value~) from
execution of 6.

The definition of Strong Dependency considers
variety in al alone, but ~ eliminates this
variety by forcing al to remain the same as a2.
The effect is similar to constraining al to be a
constant. ~ essentially spreads a1's variety to
a2. To deal with the spread, Strong Dependency
can be extended to allow a set of objects as an
information source, and autonomy can be considered
relative to that set alone [Cohen 76]. In the
example above, ~ is said to be
[al,a2]-autonomous and [al,a2] ~ b.

Formal methods for showing that b depends on al -
without needing to explicitly be concerned about
a2 - can be derived using statistical inference
methods. That is~ however~ beyond the scope of
this paper.

139

