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INFORMATION TRANSMISSION IN COMPUTATIONAL SYSTEMS 

Ellis Cohen 
University of Newcastle upon Tyne 

This paper presents Strong Dependency, a formalism based on an information theoretic approach to inform- 
ation transmission in computational systems. Using the formalism, we show how the imposition of initial 
constraints reduces variety in a system, eliminating undesirable information paths. In this way, 
protection problems, such as the Confinement Problem, may be solved. A variety of inductive techniques 
are developed useful for proving that such solutions are correct. 

Section 1, INTRODUCTION 

Users of large computational systems require 
assurances that information they deem private 
remains private. Recent work (e.g. [Denning 76, 
Walters 75]) has used a notion of "information 
flow" in order to formally state such assurances. 
If, for each operation provided at some level of 
a system, one can determine the information flow 
resulting from that operation - inductive tech- 
niques can be used to determine the extent of 
information transmission in the system as a whole. 

Initial constraints on a system can decrease the 
variety in a system, reducing the variety conveyed 
and preventing transmission of information. 
Initial constraints are important~ for current 
systems tend to provide fairly elaborate mechanisms 
[Cohen and Jefferson 75] for preventing inform- 
ation transmission, however, these must be initial- 
ised properly in order to have the desired effect. 
Sections 5 and 6 show how the Strong Dependency 
formalism can be used to state what must be proven 

- the absence of certain information transmission 
paths given proper initialisation. 

The information flow resulting from execution of 
a single operation can formally be determined 
from the semantics of the operation. However, 
except for work by Jones & Lipton [75], oper- 
ational information flow has been based on the 
syntax of the operation instead [Denning and 
Denning 76, Millen 76]. 

This paper introduces Strong Dependency, which 
derives the information flow from the functional 
semantics of an operation. (A companion paper 
[Cohen 77] derives axiomatic techniques for 
determining the operational information flow 
from syntax.) Furthermore, it provides a 
unified theory of information transmission for 
both single operations and for the entire system. 

Strong Dependency is based on ideas taken from 
classical information theory [Ashby 56]. Notably, 
it borrows the idea that information is trans- 
mitted from a source to a destination only when 
variety in the source can be conveyed to the 
destination. Sections 2-4 provide background 
definitions and formalise these ideas. 

The research described in this paper was supported 
at Carnegie-Mellon University by the Defense 
Advanced Research Projects Agency (F44620-73-C- 
0074) where it is monitored by the Air Force 
Office of Scientific Research, and by the 
National Science Foundation under grant MCS75- 
07251A01. 

Proving the absence of information transmission 
over all possible executions of a system requires 
an inductive proof technique. Section 7 accord- 
ingly derives Strong Dependency Induction, which 
is shown to be a generalisation of the information 
flow induction techniques mentioned above. Section 
8 shows how Strong Dependency Induction might be 
used, by certifying a solution to the Confinement 
Problem [Lampson 73] in a simple system. 

Information flow has generally been defined as 
transitive. That is, if information can flow from 
a to m and from m to b, then a flow from a to b is 
assumed as well. Section 9 illustrates two systems 
where transitivity fairly obviously does net hold. 
Moreover, a technique for Separation of Variety is 
derived, which can be used in conjunction with 
Strong Dependency Induction to prove absence of 
information transmission in non-transitive cases. 

Section 2. COMPUTATIONAL SYSTEMS 

A Computational System is formally specified as a 
triple <NM,E,A>. We may imagine that a system is 
comprised of a set of objects (e.g. variables, 
files, processes) named by NM. The value (contents) 
of some object x (x s NM) depends upon the state of 
the system ~ ( o ¢ E ). I write ~.x to mean the 
value of x in state ~. 
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Execution of an operation alters the state. 
Formally we define an operation 6 ( 6 e A ) as a 
mapping from states to states and interpret 
6(~) = o* to mean that o* is the new state after 
5 is executed in state 0. Informally we can 
define operations by any convenient programming- 
language-like notation. For example, if ~ were 
some state such that O.a = 11~ and 6 were the 
operation 8: b * a, then the state 6(o) would be 
identical to o except that b's value in state 
5(o) would be 11 ( 6(o).b = 11 ), regardless of 
its value in state 0. 

I write ~ = o2 to mean that ~ and o2 must have 
the same values for all objects except x. 
Formally 

~ 02 ~def ( V y ~ . . x ) (  ~ . y  = O2.y ) 

In the example above~ 6(0) ~ 0. 

A history is defined as a sequence of operations. 
If H were 616283 then execution of H indicates 
sequential execution of 51~ 8 2 and then 83 . 

aCe) = (518263) (0) = 53(62(51(o))) 

Section 3. INFORMATION TRANSMISSION 

Information transmission in computational systems 
can be formalised by considering the classical 
treatment of information theory [Ashby 56]. 
For examples consider execution of 

6: b 4 - a  

with respect to an information channel having a 
as a source and b as a destination. Our task is 
to determine whether information is transmitted 
over that channel. Classical information theory 

tells us that 

Information is transmitted over a channel when 
variety is conveyed from the source to the 
destination 

For example, if (in a 16 bit machine) a could 
(with equal probability) take on any of 2"'16 
possible values, then there are log2(2"'16) = 
16 bits of variety in a and execution of 6 
conveys all of that variety to b, for after 
execution of 6, b may also take on 2"'16 values, 
each one corresponding to an initial value of a. 

In general, information can be transmitted from 
a to b over execution of H if, by suitably 
varying the initial value of a (exploring the 
variety in a), the resulting value in b after 
H's execution will also vary (showing that the 
variety is conveyed to b). Note that this 
formulation implies that if a is known to be a 
particular constant, then no information can be 
transmitted from a to b. If a initially 
contains no variety, then surely none can be 

conveyed to b. 

Section 4. STRONG DEPENIENCY 

Classical information theory is concerned with the 
amount of information transmitted over a channel. 
Strong Dependency is only concerned with whether 
any information can be transmitted at all. I 
write a ~Hb, b Strongly Depends on a over execu- 
tion of H, to mean that variety in a can be 
conveyed to b over execution of the sequence of 
operations H. Formally 

~Hb 02 A 
a ~def (~o2) ( ~ =a 

a(ol ).b ~ H(o2).b ) 

~ 022 represents two suitably chosen states that 
differ at a alone - i.e. exhibiting variety in a. 
That variety can be conveyed to b, if after exec- 
ution of H, the value of b differs in the two 

states. 

Figure I presents two examples of Strong Dependeac~ 
both shewing how information can be transmitted 
from a to b over execution of a single operation. 

Example 1: 5: b * a 

~_ a_/ 6(4) 6(~) 
a 10 20 10 20 
b 40 40 10 20 

Example 2: 5: if a then b * x 

~ ~(~ ) ~(02) 
a true false true false 
b 40 40 60 40 
x 60 60 60 60 

o 1 = o 2  
a 

5 a ~  b 

Figure .1 

5(ol).b ~ 5(o2).b 

Example two has intrigued previous researchers, 
for if information transmission is perceived as a 
"flow" of information, then when a is false, as in 
o2, execution of 5 has no effect and can hardly 
result in a "flow" of information from a to b. 
Yet the fact that b's value does not change, of 
course indicates that a must be false, represen- 
ting new information gained about a. Jones and 
Lipton [75] and Denning [76] discuss these situ- 
ations using the terms "negative inference" and 
"implicit flow" respectively. These cases need 
not be treated specially. Using Strong Dependenc~ 
we never ask whether there is a "flow" of inform- 
ation when a history is executed in some parti- 
cular state; rather we compare the effect of 
execution in different states. Analogously, in 
classical information theory, the information 
transmitted over a channel is not determined by 
the contents of any single message, but rather by 
the variety in the set of contents of all possible 

messages. 

Section ~. TRANSMISSION AND CONSTRAINTS 

This section considers the effect of constraining 
a system so that it is permitted to begin exec- 
ution only in some subset of all possible initial 
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states. The approach to constraint again derives 
from classical information theory: 

Constraint reduces the variety in a system 
potentially reducing the variety that may be 
conveyed 

For example, if a system is initially constrained 
so that a can only take on values from ~ to 7, 
then execution of 

6 :  b ~ - a  

can still transmit information from a to b. 
is written 

a~6b where 

~(~) ~ @ ~ c.a ~ 7 

This 

However if 6" is the operation 

6": b e a div 20 (integer division) 

then, the resulting value of b is always ~ when 
q0 is satisfied initially. No variety is conveyed 
so imposing q0 prevents information transmission 
from a to b and 

8" , 
-i a [~ b even though a 17~6 b 

The definition of Strong Dependency determined 
the initial va~ety in a by examining arbitrary 
pairs of states that differed at a alone. In the 
presence of the constraint ~, we need only 
consider states thai satisfy ~. Formally 

~ o2 ~ m(~) A ~I = q2 A re(q2) 
x def x 

(.~oio2) ( oi too2 A 
a b =--def 

H(ol).b ~ H((y2).b ) 

The examples above showed how information trans- 
mission could be prevented by reducing the variety 
in the source a. A more traditional sort of 
contraint has been discussed previously by Millen 
[76], who notes that execution of 

6: i_f q the___~ b * a 

causes no transmission of information from a to 
b if q is constrained to be false. Formally, it 
can be shown that 

6 
a ~ b where 

~(~) ~ ~ ~.q 

H 
I've implied that ~ a ~V~ b guarantees that 
information cannot b e  ~ transmitted from a 
to b over transmission of H given any ~. In fact, 
this guarantee may not hold for constraints that 
are not autonomous. A formal definition of 
autonomy and additional details can be found in 
[Cohen 763 . Informally, ~ is autonomous if the 
constraints on the values of each object are 
independent. 

Examples of autonomous constraints are: 

re(a) ~ o . a  ~ 7 ^ ~ . b  = 12 
~ ( a )  --- (Vx) (  ~.x~18 ) 

Non autonomous constraints are: 

e(=) -= c.a ~ a.b 
~(a) ------ (•a,b)(b ¢ ~.a. refs D 

~.a. level= ~ob. level) 

where refs and level are distinct subcomponents 
of state ~. This last constraint can be read as: 
If b is in the set of objects a can reference in 
state ~, then the (dynamic security) level of a 
and b are the same. The dynamic nature of levels 
requires a non-autonomous constraint. If security 
levels were statically associated with objects, 
level(a) indicating a's level, the constraint 
would be autonomous. 

~(a) ~ (~a,b)( b ¢ a.a. refs o 
level(a) = level(b) ) 

The value of a in state ~ is dependent upon the 
properties of other objects (i.e. level(b)), but 
independent of their value. The remaining 
examples in this paper will all use autonomous 
constraints° (See the Appendix for effects of 
non-autonomy.) 

Section 6. INFORMATION PROBLEMS AND SOLUTIONS 

This section discusses how the Strong Dependency 
formalism can be used to state two well known 
problems - the Security Level Problem [Denning 76] 
and the Confinement Problem [Lampson 73] in a 
manner that is independent of any particular 
computational system. 

The last section discussed the operation 

5: i_f q then b ~ a 

and showed that although 
the constraint 

a ~ b, imposition of 

~ ( ~ )  ~ -~ a . q  

prevented transmission of information from a to b. 
We can think of ~ as sol~ the information 
problem 

6 

That is - guarantee that no information may be 
transmitted from a to b. A solution to the 
problem is represented by a constraint~ whose 
imposition prevents the specified information 
transmission. ~ can be thought of as character- 
ising what are often referred to as "secure 
states". 

The Confinement problem is c o n c e r n e d  with 
guaranteeing the privacy of information held by 
individual users. The problem is typically 
described in terms of the difficult situation 
where a user engages a service. The private 
information must be passed to that service and so 
seems to be temporarily out of direct control of 
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the user° A number of solutions to this problem 
have been proposed [Rotenberg 73, Cohen & 
Jefferson 75, Lampson 73]. This paper will 
concentrate on a more general formulation of the 
problem instead. 

Objects (including executors) can be divided into 
three groups. Those characterised as "Private" 
corresponding to objects directly under the 
control of the owners of the information. "Spy" 
characterises the objects to which that inform- 
ation must not be transmitted. The remainder of 
the objects can temporarily hold private inform- 
ation as long as it is not subsequently trans- 
mitted to a spy. 

The confinement problem can then be specified as 

(Mx,y) ( x ~ y o. Private(x) D --~Spy(y) ) 

H 
where x ~ y ~def (~H) ( x [ ~  y ) 

That is, if execution of any history transmits 
information from a private object to some other 
object, then that other object must not be a spy. 

Of course, each user of a system may define 
confinement differently, in terms of different 
sets of "private" and "spy" objects; each one 
defining a different instance of the Confinement 
problem. Each instance of the problem determines 
a different set of solutions ~. Thus a system 
itself does not solve the Confinement problem. 
Rather a system may provide mechanisms that permit 
a user to produce secure states and which then 
guarantees that subsequent states remain secure. 

The Security level problem is usually described 
as having less of an individualistic flavour. 
Each object x is initially assigned a security 
level, Level(x) determined on a system wide 
basis. No information is to be transmitted from 
an object at one level to an object at a lower 
level. Formally 

(Vx,y) ( x~ y D Level(x) ~ Level(y) ) 

Section 7. STRONG DEPENDENCY INDUCTION 

Proving the correctness of solutions to the 
Confinement problem or the Security level problem 
requires an analysis of information paths over all 
possible histories. Strong Dependency Induction 
makes that task practical. Intuitively, it is 
based on the notion that if information is trans- 
mitted from a to b over execution of HH', then 
there must be some intermediate object m (perhaps 
the same as a or b in degenerate Cases) such that 
execution of H transmits information from a to m 
and execution of H' transmits information from m 
to b. Formally it can be proven that the 
following property holds. 

PROPERTY I (Flow Property) 

a b D ~m) ( a m A m b ) 

When an initial constraint ~ is imposed on the 
system, the theorem continues to hold as long as 

is both invariant (that is (Va,8)(~(~) 
~(6(~)) ) and autonomous (other generalisations 
may be found in [Cohen 76]). 

PROPERTY 2 (Flow with Constraint) 

If ~0 is invariant and autonomous then 

a b D (~m)( a s a m  

The following property follows directly. 

PROPERTY 3 (End point Isolation) 

If ~ is invariant and autonomous then: 

To show ~ a i d  b prove 

~m~b,6) ( ~ m~ 6 b ) o/_ 

~m~a,8) ( ~ a ~Sm ) 

That is, if no single operation can transmit 
information t__o b from any other object or if no 
single operation can transmit information from a 
to any other object, then information cannot be 
transmitted from a to b over any history. 

More generally, we may want to show that x~_ y 
can be permitted, but only for certain classes ~ 
of <x,y> pairs, for example when Level(x) 
Level(y). That relationship is both reflexive 
and transitive, and in general 

PROPERTY 4 (Lattice Induction) 

If ~ is invariant and autonomous and q is 
reflexive and transitive then 

To show (Vx,y) ( x ~ y D q(x,y) ) 

Prove (Vx,y,6) ( x~5 y D q(x,y) ) 

Thus for the Security level problem, it is only 
necessary to show that if x's security level is 
greater than y's, no single operation transmits 
information from x to yo 

Reflexive, transitive relations arise naturally in 
the definition of information problems. As a 
result, a number of researchers [Denning 75, 
Walters 75, Jones & Lipton 76] have suggested an 
information flow relation that is itself reflexive 
and transitive. Such a relation is analogous %o 
Strong Dependency having the property that 

a m A m b 3. a b 

as noted by Denning [75], this property does not 
always hold, and can indicate that information 
may be transmitted even when no such transmission 
is possible. In section 9 we will explore just 
such a situation and develop a technique suitable 
for handling it correctly. 
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Section 8.. AN EXAMPLE OF STRONG DEPENDENCY 
INDUCTION 

This section illustrates Strong Dependency 
Induction by proving the correctness of a solution 
to the Confinement Problem in a simple system. 
Imagine a system where each object contains two 
disjoint subeomponents, one holding "data" and one 
holding a pointer %o another object: The system 
has two sets of operations: 

81(y,x): if y.ptr = x then y. data* x. data 
82(y,x): i.j.y, ptr = x then y.ptr ~ x. ptr 

If y points to x, then execution of 51(y,x) will 
copy data from x to y. If y points to x and x 
points to w, then after execution of 52(y,x), y 
will point to w as illustrated in figure 2. 

before 
~ ~ ~ after 

Figure 2 

If it is assumed that any object that is not 
"private" is a"spy", the Confinement problem can 
be stated as: 

(Vx,y) ( x ~y D. Private(x) D Private(y) 

I'll show that as long as a spy doesn't point to 
a private object, confinement is enforced. 
Formally the initial constraint ~ can be chosen 

to be 

~(~) ~ Wy) ( Private(~.y. ptr) • Private(y) 

That is, if in any state ~, an object y points to 
a private object, then y must be private 

is autonomous and can easily be shown to be 
invariant (the only interesting case is 62(y,x)). 

Next, pick 

q(x,y) ~ Private(x) • Private(y) 

noting that q is both reflexive and transitive. It 
can be easily shown that 

(Vx,y,6) ( x I~ Y o q(x,y) ) 

By Lattice Induction, confinement is enforced. 

Section 9. SEPARATION OF VARIET[ 

Strong Dependency Inducti'on may fail to be useful 
in proving the absence of information transmission 
if the Strong Dependency relation is not trans- 
itive. This section explores two non-transitive 

examples and derives a new technique, Separation 
of Variety, which extends the applicability of 
Strong Dependency Induction. 

Consider the system 

51: i j_ q then m 4- a 
52: i_~_ m q then b 4- m 

Information cannot be transmitted from a to b in 
this system. If q is false, no information can be 
obtained from a; if q is true, no information 
can be stored in b. Formally, it can be shown 
that 

[ ]~162 
m a b even though 

a m and m b 

Thus an attempt to prove ~ a~b directly by 
End point Isolation is doomed to failure, for 

property 3 requires that 

(~5,xla) ( m a x ) [ yet a m ] o r  

{v6,x b) x ) [ y e t  m b ] 

The  i n f o r m a l  e x p l a n a t i o n  a b o v e  w h i c h  a r g u e d  t h a t  

i n f o r m a t i o n  c o u l d  n o t  be  t r a n s m i t t e d  f r o m  a t o  
b p r o c e e d e d  b y  d i s t i n g u i s h i n g  two  c a s e s  - q f a l s e  
a n d  q t r u e .  T h i s  c a n  be  f o r m a l i s e d  i n  t h e  
f o l l o w i n g  way .  L e t  

ml(~) ~ m ~.q 
~2(~) ~ ~.q 

T h o u g h  a m, ~ a m a n d  

6 
(y6,x~b) ( ~ a ~ 1  ) x 

so  b y  p r o p e r t y  3 ,  ~ a ~I~-1 b .  

Similarly ~ m ~ ~62 b which is the main result 
needed to ~2 demonstrate ~ a ~ 2 b. 

Since ~I and ~2 cover all cases, ~ a~b. 

Not every separation into cases is legitimate. 
Consider the system 

8: if a the____n b * O else b * 1 

Pick 

~1(~) ~ ~ ~ . a  
~2(~) ~ ~ . a  

Then ~ a ~] b and ~ a ~_ b yet inform- 
ation eerwalnly can be transmitted from a to b. 
The trouble is that ~1 and ~2 are dependent upon 
the value of a - the very object that is in 
question as an information source° Separation of 
variety is legitimate only when each of the 
separating constraints is independent of the 
information source in question. Define 

is a-independent 
def 

( V o i , ~ 2 )  ( ol ,~ o-2 ~ .  ~ ( o i )  = ~ (~2 )  ) 
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If there is any set of constraints ":[~i}, each 
a-independent, not necessarily disjoint, but such 
that any state is satisfied by at least one ~i - 
then - if no information is transmitted from a to 
b given each of the ~i's in turn, then no inform- 
ation can be transmitted from a to b at all. 

PROPERTY ~ (Separation of variety) 

I f  (Verdi) ( ~ o i ( ~ )  ) [ to guarantee that ~i 
covers all cases ] 

and (Vi) ( ~oi is a-independent ) 

then (Yi) ( -7 a i b ) ~" -~ a 

or more generally 

PROPERTY 6 (Separation with Constraint) 

If (yc~i) (~(o) ) [ to guarantee that ~i 
covers all cases ] 

and (yi) ( ~i is a-independent ) 

H H 
then (Vi) ( -~ a I~ ~ b ) o -~ a ~ b 

Another use of separation of variety arises in 
showing that no information can be transmitted 
from a to b in the system 

81 : m ~ m + k*a 
62: b ~ m nod k 

Pick ~i(c) ~ ( ~.m mod k ) = i 

Firs% (Vi) ( ~ m I~. i b ) though m 

$ b) more generally (~i) (Vx~b,6) ( ~ x l~i 

Since each ~0i can be shown to be invariant, End 
point Isolation can be used to show that 

( ~ i )  ( ~ a ~ o i  b ) 

F i n a l l y ,  by S e p a r a t i o n  o f  v a r i e t y  ~ a l ~ b .  

Th i s  example i s s e s p e c i a l l y  i n t e r e s t i n g ,  f o r  
m Ii>~^~ b t a k e s  a d v a n t a g e  of  t h e  f a c t  showing 

t h a t  i n f o r m a t i o ~ W ± t r a n s m i s s i o n  may be e l i m i n a t e d  
by s u f f i c i e n t l y ,  r e d u c i n g  t h e  v a r i e t y  i n  t he  
source (section 5). 

Section 10. CONCLUSION 

This paper has presented Strong Dependency, a 
formalism for describing information transmission 
in computational systems and for proving that 
information is not transmitted over certain paths. 
Attention was restricted to systems constrained by 
a class of predicates which are both autonomous 
and invariant and the paper considered whether any 
information at all might be transmitted over an 
information channel, without attempting to measure 
the channel capacity. A discussion of the more 
general situation may be found in [Cohen 76]. 

In analysing transmission from a to b, the paper 
considered the effect that a change in a might 
have on b over any arbitrary sequence of oper- 
ations. If we are concerned with information 
transmission as the result of execution of a 
sequential program, we instead need consider the 
effect on b over executions of the program. The 
resulting theory is discussed in [Cohen 77]. 
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APPENDIX: NON-AUTONOMOUS CONSTRAINTS 

Strong Dependency is not a wholly adequate 
formalism for determining information trans- 
mission given non-autonomous constraints. 
Consider the system 

8: b * al 

constrained by 

e(o) ~ o. al = o. a2 

It can be shown that ~ al ~ b. However, 
information is certainly transmitted from al to b. 
An observer of b, knowing that ~ holds, still 
gains information about al (its value~) from 
execution of 6. 

The definition of Strong Dependency considers 
variety in al alone, but ~ eliminates this 
variety by forcing al to remain the same as a2. 
The effect is similar to constraining al to be a 
constant. ~ essentially spreads a1's variety to 
a2. To deal with the spread, Strong Dependency 
can be extended to allow a set of objects as an 
information source, and autonomy can be considered 
relative to that set alone [Cohen 76]. In the 
example above, ~ is said to be 
[al,a2]-autonomous and [al,a2] ~ b. 

Formal methods for showing that b depends on al - 
without needing to explicitly be concerned about 
a2 - can be derived using statistical inference 
methods. That is~ however~ beyond the scope of 
this paper. 
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