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ABSTRACT 

The popular UNIX TM operating system provides time-sharing 
service on a single computer. This paper reports on the design and 
implementation of a distributed UNIX system. The new operating 
system consists of two components: the S-UNIX subsystem 
provides a complete UNIX process environment enhanced by 
access to remote files; the F-UNIX subsystem is specialized to offer 
remote file service. A system can be configured out of many 
computers which operate either under the S-UNIX or the F-UNIX 
operating subsystem. The file servers together present the view of a 
single global file system. A single-service view is presented to any 
user terminal connected to one of the S-UNIX subsystems. 

Computers communicate with each other through a high-bandwidth 
virtual circuit switch. Small front-end processors handle the data 
and control protocol for error and flow-controlled virtual circuits. 
Terminals may be connected directly to the computers or through 
the switch. 

Operational since early 1980, the system has served as a vehicle to 
explore virtual circuit switching as the basis for distributed system 
design. The performance of the communication software has been 
a focus of our work. Performance measurement results are 
presented for user process level and operating system driver level 
data transfer rates, message exchange times, and system capacity 
benchmarks. The architecture offers reliability and modularly 
growable configurations. The communication service offered" can 
serve as the foundation for different distributed architectures. 

1. INTRODUCTION 

The UNIX time-sharing system is widely known and used [Ritchie 
1974]. The virtues of distributed systems have been extolled in 
many places (for a comprehensive treatment see [Bochmann 1979], 
[Clark 1978], [Thurber 1979]). Thus, the idea of a distributed 
UNIX system has appealed to many. 

* UNIX is a trademark of Bell Laboratories 
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In spring of 1979, when we began to study possible designs, we saw 
several major short-term goals for a multicomputer UNIX system 
arrangement: 

i. increased capacity, i.e. being able to give better service to 
more simultaneous users, 

ii. modular growth, i.e. being able to add computers as the load 
increases, 

iii. increased availability, i.e. computer failure should not cause 
system failure, 

iv. faster recovery, in particular file system checking and repair. 

Figure 1 shows our first configuration. Connected through a high- 
bandwidth switch are two kinds of computers. The processors in 
the top row run the user processes, while those in the bottom row 
implement a global file system. All the user files are handled by 
the file server computers. 
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FIGURE I 

System with terminals on computers 

Since the disks in the top row hold only local files, such as 
temporaries or the boot image, whose identities are of no interest 
to the user, the user processes can run on any of these computers. 
All files and devices that need be shared are on the bottom row 
computers. Here, the terminals are connected to the top row 
computers in a interleaved hunt sequence, which enables some 
primitive load balancing I. For growth, computers can be added in 
both the top and the bottom rows. For reliability, spares in both 
rows can prevent total service outage, and operator intervention can 
allow recovery from a degraded state. 

1. This configuration does not allow direct communication between two terminals 
on different computers as offered by the wr/te command. 
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Figure 2 shows a variation of our configuration with the terminals 
connected through the switch. It is more flexible and provides 
potential cost savings. 
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FIGURE 2 

System with terminals on switch 

The above two configurations model a computer center and not the 
geographically distributed system that many envision for the future. 
We feel, however, that our design takes a step in that direction, as 
shown in Figure 3. The same file servers appear at the bottom, but 
the top row consists of remote personal computers each serving a 
single user. 
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FIGURE 3 

System with personal computers 

The operating subsystems in the two types of computers are 
different and specialized, i.e. we have a heterogeneous network, 
We hope this results in a very important long-term benefit: reduced 
software complexity 2. Not having to handle disparate tasks reduces 
component complexity; being able to replace functional components 
as user needs change and technology advances helps with the 
management of system complexity. Of course, the decomposition 
has to be "right," and the interfaces must be long-lived (like the 
system bus of a computer family). 

S-UNIX is the name we have given to the specialized operating 
subsystem that runs user processes; it is "stripped" of most files, 
and models the later-to-be-achieved "single-user" UNIX system. 
The subsystem running on the file server is called F-UNIX. 

The remainder of the paper has the following structure. Section 2 
presents some general design considerations. We have separated 
the UNIX operating system related discussion from a discussion of 

2. The emphasis here is on "long-term'; a substantiation follows later under 
"Potential Extensions". 

the communication service subsystem. These topics are treated in 
Sections 3 and 4 respectively. Section 5 discusses performance, and 
Section 6 gives some ideas about possible future extensions. 
Finally, in Section 7 we compare our system with related efforts of 
others. 

2. GENERAL DESIGN CONSIDERATIONS 

We gave ourselves the strict requirement of preserving the UNIX 
process environment and file system behavior, i.e. full compatibility 
with an existing version. We made as few changes to the UNIX 
code as possible, but we did make radical changes when they 
became necessary. The division between the file system and the 
rest of UNIX is not across a well-defined interface and required 
major redesign. It was also clear at the outset that the success of 
this project hinged upon efficient interprocessor communication 
software and hardware, and about half of our effort was applied 
towards this goal. 

The obvious choice for the computer hardware was the high end of 
Digital Equipment Corporation's PDP-11 line. More unusual is our 
choice of the intereonnection medium. Most contemporary designs 
of distributed systems use a packet switch and a message or 
datagram discipline for intercomputer communication. We wanted 
to explore the suitability of virtual circuits as the underlying 
communication architecture. One frequently encounters two 
objections to the use of circuit switches for distributed computer 
systems: First, fixed bandwidth allocation is particularly wasteful for 
the bursty kind of traffic common to data communication. Second, 
there seems to be more algorithmic complexity in programs that 
have to keep track of circuit states. (As one reviewer observed, 
"virtual circuits are always necessary, for reliability; the question 
often asked is at what level of the protocol hierarchy". We decided 
to push them to as low a level as possible, under the assumption 
(1) that they are generally useful; (2) that they require a lot of host 
resources to manage which can be more easily off-loaded to a 
peripheral if the circuit protocol is a low-level basic service,) One 
might say that there is intrinsic atomicity in pure message 
disciplines. We took the second argument as a challenge: if we 
could develop a workable and efficient communication architecture 
based on virtual circuits, we expected to see potential advantages in 
the areas of system management and extension to other services 
than data communication, e. g. voice, facsimile, etc. The first 
objection we could easily overcome. We found a switch that 
combines the desirable properties of both packet and virtual circuit 
switching: the Datakit switch [Fraser 1979]. It offers the 
functionality of a virtual circuit switch with dynamic bandwidth 
allocation, since it uses packet switching (demand multiplexing) in 
its internal implementation. 

As to the second objection, we must leave it to the reader to judge 
whether the modest amount of added complexity is worth the 
advantages gained. 

3. THE S-UNIX AND F-UNIX SUBSYSTEMS 

The UNIX file system name space is a singly rooted tree, with 
intermediate nodes representing directories and with leaves 
representing files or devices. 

Our initial intent was to remove all files from the S-UNIX side and 
put them on the F-UNIX side. We ended up keeping local files for 
four reasons: 

a. An S-UNIX subsystem should be able to access more than 
one file server. To preserve a singly rooted name space tree 
with no name recognition in S-UNIX would require a file 
server hierarchy, which is undesirable because of reliability 
and performance. 

/ 
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b. It is impractical, at least for exploratory development, if one 
cannot bootstrap an S-UNIX subsystem from a local file. 

c. There are potential efficiency gains if some frequently used 
files like load modules are kept locally. 

d. The down-stream model of a personal UNIX system should 
have the option of local files. 

Point (a) actually calls for a local name space, not local file space. 
For example, one could add a small name space management 
facility in the operating system. However, we decided to keep the 
root of the global file system tree on the S-UNIX side. 

In the current UNIX system, the file space is extended by 
"mounting" a properly formated disk volume on top of an existing 
directory. We have expanded this concept by allowing the S-UNIX 
user to "mount a file server" in an analogous way. Whereas the 
existing mount procedure requires a special file representing a 
properly structured block device (e.g. a formated disk volume), our 
new procedure substitutes a device communicating with a file 
server, i.e., a circuit to the switch. Multiple mounts of both kinds 
can be active simultaneously. 

Figure 4 shows the file name space of a configuration of two S- 
UNIX systems which have mounted F-UNIX file servers F-UNIX! 
and F-UNIX 2 on mount points FI and F2, respectively, in their 
local name space. 
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FIGURE 4 

File name space of a 2/2 configuration 

Processes on the S-UNIX side see no difference between local and 
remote files, except for performance. All system calls of the S- 
UNIX subsystem apply to both local and remote files. This 
includes special files, i.e. devices, on the F-UNIX subsystem. No 
F-UNIX system can access files of another F-UNIX nor can it get 
to local S-UNIX files. 

Growth and recovery from failure can thus be handled by adding or 
removing S-UNIX and F-UNIX computers from in-service 
configurations, subject to appropriate operating procedures. Failure 
of an F-UNIX system can be handled by moving the disk volumes 
(or backed-up versions) to a spare computer and mounting that 
new file server on the failed F-UNIX machine's mount point in 
each S-UNIX. Failure of an S-UNIX machine disrupts all user 
sessions on that system, but the other systems remain unaffected. 

File access control in the UNIX system depends on the user /d  and 
group M. For philosophical and pragmatic reasons, we have chosen 
to have a single password file on our systems; thus the id numbers 
denoting file ownership are global to all S-UNIX and F-UNIX 
machines. 

By taking the position that the operating subsystems and the 
communication mechanism are trustworthy, we avoid having to 
deal with problems of authentication beyond those present in the 
current UNIX system. We realize that, once we allow remote 
"personal" computers, the local operating system cannot be trusted 
anymore. We shall return to this problem under "Potential 
Extensions". 

3.1 S/F-UNIX Implementation 

The following description requires an understanding of UNIX 
internals [Thompson 1978]. The reader unfamiliar with or 
uninterested in UNIX internals may skip to Section 4. 

3.1.1 The Cut Between S-UNIX and F-UNIX Accessing files from 
multiple computers and preserving local files turned out to be 
conflicting objectives. There are two obvious ways of introducing 
remote files. The first is to have the remote file server look like a 
block-addressable device [Glasscr 1980]. Because blocks contain 
housekeeping information and we wanted to preserve the shared 
file access properties of the UNIX system, we would have to 
introduce an inordinate amount of extra messages for locking and 
unlocking. The second way is to translate all remote-file-related 
system calls into appropriate messages. This is complicated because 
the operating system itself makes file system references, e.g. for 
core dumps, for writing the accounting file, and for loading 
programs. Our implementation followed this second choice closely. 
We introduced changes wherever the name-to-disk-address 
converter (namei) is invoked, to handle remoteness. 

3.1.2 Remote lnodes In the UNIX system, each file on a volume is 
described by a data structure called an inode, which is read into 
memory when the file is opened. The inode contains almost all the 
information about a file, e.g. its type (directory, ordinary file, 
device, etc.), owner, access permissions, length, and physical 
address. We introduce an inode of type remote that is created in 
memory when a remote file is opened. It contains just enough 
information for the S-UNIX subsystem to talk about the file: 

• a pointer to a data structure identifying the F-UNIX machine 
holding the file, 

• a unique number assigned by that F-UNIX machine. 

All other information about a remote file, e.g. its access permission 
and length, is maintained only by the remote file server. This 
allows all S-UNIX machines to see a consistent description of the 
file. The introduction of the remote inode enables us to restrict the 
number of messages exchanged to one request and one reply per 
call. The basic algorithm is: if a path name crosses the mount point 
of a remote file server, stop interpreting the path name and send a 
message with the remaining path name. If a remote file is being 
opened or created, the F-UNIX subsystem returns a tag of its 
choosing to be used in future references. Tags are also returned in 
response to chroot or chdir system calls. All absolute pathnames 
carry the root tag, and all relative pathnames carry the current 
directory tag. Thus the file server always sees the equivalent of an 
absolute pathname and does not have to remember the current 
directory; yet the tag (really an inode number) serves to speed up 
the search process. 

In order to allow several S-UNIX machines to update the same 
remote file concurrently, the cache of disk blocks in S-UNIX 
memory had to be restricted to local files only. The F-UNIX 
subsystem, on the other hand, can use a large part of its memory as 
a cache, since it does not run user processes. 

3.1.3 Special Files Devices are treated like special files in the 
UNIX system. Peripherals on the F-UNIX subsystem can thus be 
easily accessed in the usual manner. For example, an S-UNIX 
machine can write to a tape drive on an F-UNIX machine. Special 
peripherals like printers or phototypesetters could be handled by F- 
UNIX subsystems running on small dedicated computers with or 
without local secondary storage. 

A new special UNIX interprocess communication mechanism is the 
fifo, which provides communication between unrelated processes by 
associating a new special file type with a file name. Since remote 
fifos are legal, they can be used for interprocessor communication 
between S-UNIX machines or between an S-UNIX machine and an 
F-UNIX machine. 

3.1.4 File Server Details The file server computers are running 
under the F-UNIX operating subsystem. There is one file server 
process for each circuit connected to an S-UNIX machine. These 
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processes execute in kernel mode. When started, they are 
connected to the circuit and obey the S-UNIX controlled file service 
protocol, starting with a 'mount file server" request. Each S-UNIX 
machine is then handled by at least one server process on each F- 
UNIX. F-UNIX multitasking is simply implemented by starting 
several server processes per S-UNIX, each on a different circuit. 
The degree of multiplexing is thus chosen on the S-UNIX side, 
where as many requests can be outstanding as there are circuits to 
F-UNIX systems. 

One design decision concerns the amount of S-UNIX state 
information to be kept in the F-UNIX subsystem. The file server 
does not keep a count of all open-operations against a file. Rather 
it keeps track of which S-UNIX machine has the file opened (at 
least once). Disappearing S-UNIX systems that do not properly 
close their files are discovered, and the files are closed. 

3.1.5 File Service Protocol Interaction between both subsystems at 
the functional level is handled by the file service protocol, which is 
strictly a sequential message exchange over one virtual circuit. 
Error and flow control are supported by the circuit mechanism. 

Out of 27 system call types related to files, 18 result in message 
traffic if remote files are involved. Of these, 10 contain a path 
name as an argument, and the remaining 8 refer to already opened 
files. Path names or the data read or written can be up to 64K 
bytes long. The structure of each message is a type code followed 
by type-dependent data. 

4. COMMUNICATION SUBSYSTEM 

The communication subsystem is built on the concept of a virtual 
circuit service. It is thus independent of the S/F-UNIX 
architecture and can be used as the foundation for different 
distributed system designs [Luderer 1981]. In the following, we 
shall introduce the Datakit switch, then explain how we use it, and 
finally give details about the protocols and the switch interface. 

4.1 The Datakit Switch 

Datakit is functionally a virtual circuit switch [Fraser 1979]. 
Computers and terminals are connected in a star topology to 
interface modules interconnected by a backplane. Packet switching 
occurs on the up-link and down-link of a folded bus on the 
backplane. The switch module at the pivot replaces packet source 
addresses with destination addresses (Figure 5). 
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FIGURE 5 

Datakit Switch 

The aggregate data rate is 7 Mbit/s which corresponds to a payload 
of 42,000 16-data-byte packets per second. Due to asynchronous 
time-division multiplexing, it effectively provides dynamic 
bandwidth allocation on virtual circuits. The subscriber link 
interface is that of a Digital Equipment Corporation (DEC) DRI 1- 
C program-controlled, word-parallel communication device. We 
converted this interface to direct memory access with the help of a 
very fast (200us instruction time) communication front-end 
processor, the DEC KMC1 l-B, which also handles our link protocol 

[Digital 1978]. The Datakit switch, in its largest configuration, can 
address a quarter million distinct subscriber circuits, which are 
usually partitioned into 511 physical subscriber links each 
multiplexed into a maximum of 511 full-duplex virtual circuits. 

4.2 Connection Procedure 

The switch contains a table that defines the end points of each 
circuit, i.e. the subscriber's interface module address and one of its 
virtual circuits. Circuit set-up and take-down are managed by a 
subscriber computer designated as Common Control. We have 
implemented a control program that resides in a DEC LSI-11 
computer. This computer also holds a monitor program that in 
addition to other functions periodically receives status information 
from each subscriber interface module, e.g. a count of packets lost 
due to errors. 

The switch is initialized such that the control program is connected 
to each bootstrapped subscriber's circuit 1, which is the signaling 
circuit for all circuit set-ups and take-downs. By convention, the 
subscriber manages only its odd-numbered circuits, starting with 3; 
Common Control owns and manages the subscriber's even- 
numbered circuits. 

Common Control contains a simple name server that will establish 
circuits between any two subscribers. For example, when an F- 
UNIX computer is restarted, it announces to the name server that 
it is willing to accept file service requests on a specified service 
circuit. Likewise, when an S-UNIX computer is restarted, it selects 
an odd-numbered circuit and asks Common Control to connect it to 
the file server. Common Control will then allocate and set up an 
even-numbered circuit on the F-UNIX machine being called, which 
will be informed of the request and in turn acknowledge it to the 
requester. 

The same mechanism is used to request other kinds of service. For 
example, small computers with no local secondary storage (e.g. 
PDP-I1123's) have a program in ROM that requests a circuit to a 
pre-established boot server, and a higher level protocol used on that 
circuit down-loads the image of the operating subsystem. 

4.3 Circuit Protocol 

A great deal of attention has been paid to the design of a simple 
and efficient circuit mechanism (we actually implemented four 
different designs). Major guidelines were to take advantage of the 
switch's hardware properties and to design a protocol that would fit 
into the front-end processor (4K bytes data, 8K bytes of code). 
The error behavior of the switch is characterized by very high 
reliability (we observed one faulty packet in six months) and the 
fact that the only possible error is loss of a packet 0 6  bytes). We 
call our protocol the NK protocol (network kernel). It is unusual in 
that it places the burden of error control solely on the transmitter 
site. This greatly simplifies the logic of the receiver, which has only 
one state and two local counters. 

The NK protocol provides an error-free stream of bytes on a virtual 
circuit. The Datakit interface hardware expects and delivers 17- 
byte packets. The first byte identifies the virtual circuit. The 
format of the remaining 16 bytes is dictated by the NK protocol. 
The first byte is always a control byte followed by 0 to 15 data 
bytes, The control byte consists of a 3-bit command and a 5-bit 
argument. We will sketch the protocol by explaining the receiver 
action for the four commands it recognizes. 

a. Initialization: The transmitter bids for a window size (i.e. 
number of buffers). The receiver accepts it or reduces it to 
its liking, and returns its decision. 

b. Data packet with sequence number: If the number is 
expected, the packet is accepted and the local count is 
incremented (modulo window size). Otherwise the packet is 
flushed. No response is sent. 

c. Data packet with sequence number and request for response: 
Same action as above, except that, in case of success, the 
sequence number is returned. 
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d. Enquiry request: A reply command with the last accepted 
sequence number is returned. 

The above protocol has been working to our full satisfaction for 
data transfer on virtual circuits. However, it had to be modified to 
serve reliably for communicating with Common Control in the 
circuit set-up process. Here we operate with short messages only 
(one packet). The problem was survival of the system in case of 
failure of Common Control. A workable solution was found by 
letting Common Control delay the packet acknowledgment (case c 
above) until an acknowledgment of the reply was received. This 
causes a circuit set-up message to be re-sent repeatedly, even across 
crashes, until the required action is complete. 

We have investigated the properties of this protocol to determine 
the choice of window size and acknowledge frequency as a function 
of the delay parameters of the network. Results will be reported 
elsewhere. 

4.4 The Switch Interface 

The driver on the host computer copies the data to be transmitted 
into a system buffer and gives a write command with a buffer 
pointer and the circuit number to the front-end processor, which 
empties the buffer and implements the above circuit protocol. 
Since buffer allocation is on a per-circuit basis on both ends, 
multiple circuit transmission is interleaved. For receiving, blocks 
are assembled in the front-end from packets and then copied into 
the waiting system buffer. 

In order to further improve performance, we have built a peripheral 
to the front-end processor that eliminates the DR11-C and connects 
directly (i.e., not over the UNIBUS 3) to the Datakit switch. 

5. PERFORMANCE MEASUREMENTS 

We distinguish three major dimensions when characterizing the 
performance of a computing system: 

i. Capacity: what is the rate at which useful work can be 
performed? 

ii. Responsiveness: what is the delay before a desired action 
takes place? 

iii. Overhead: how many system resources are used to perform a 
specified activity? 

For distributed systems, we characterize interprocessor 
communication by three measurements along these dimensions: 

a. the achievable data transfer rate, 

b. the time to exchange a null message, 

c. the CPU time needed to perform communication. 

The measurements given below refer to a configuration of two 
DEC PDP-11/45 computers 4 connected through the Datakit switch. 
Unless otherwise stated, the interface is a KMCll-B controlled 
special line card. 

5.1 Data Transfer 

Figure 6 shows data transfer rates between two processors as a 
function of the block size. The two solid curves show user level 
data transfer, i.e. process to process, and kernel level transfer, i.e. 
between specially instrumented drivers on each computer, 
respectively. The latter is more typical of the file server which runs 
in kernel mode. For comparison, the intracomputer pipe rate 
between user processes is shown as a dotted line. The data were 
generated within one computer and thrown away after arrival at the 
receiver. 
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FIGURE 6 

Data transfer rates between PDP11-45's 

Figure 7 shows the CPU utilization of the host computer for the 
three experiments of Figure 6. 
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FIGURE 7 

CPU Overhead for communication 

As with many communication media used for local area 
networking, the Datakit switch is supposed to be operated in an 
area of light loading. Notice that, as the load increases, so does the 
throughput since there are no losses due to collision. 

5.2 Responsiveness 

A test script that invokes commands which use all of the remote 
file system functions was executed in two modes, and the total 
elapsed time and CPU resources used were measured. Figure 8 
below shows the results. Notice that all programs had to be loaded 
from the remote file server. In both cases, CPU time contains 2 
sec of user CPU time. 

UNIBUS is a trademark of Digital Equipment Coi'poration 

Neither computer had a cache memory. The core memory on the file server 
computer'slowed it down by about 10% compared to the other computer, which 
had MOS memory. 
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EJcperiment Elapsed CPU 
script run with Time Time 

(S-VNtX) 

local files only 39 see 12 sec 

remote files only 51 sec 16 sec 

FIGURE 8 
Response Time Test 

Another measure of responsiveness is the elapsed time in which a 
short message can be sent and acknowledgment received. We 
measured 11 msec for an exchange between user processes on 
different processors. 

However, at the kernel-to-kernel level we successfully sent a 
message in 900 zsec. We believe this result bodes well for new 
computer architectures with low context switch overhead and 
segment switching instead of copying. 

5.3 Capacity 

A multithread benchmark script was executed to determine system 
capacity. The set of application processes in the script is assumed 
to be a crude approximation of some realistic work load. A series 
of experiments were performed, increasing the number of scripts 
beyond saturation. As the script is executed many times, one can 
determine the maximum number of processes that terminate per 
hour as a relative measure of capacity. 

Measurement 

sec/run 
scripts completed 
scripts/hour 

sec/seript 
real time 
user time 
system time 

CPU utilization 
local 
remote 

Local 
Files 

1699 
20 
43 

419 _+ 22 
28 -+ 0.4 
42_+ 1 

94% 
0% 

Remote 
Files 

1988 
15 
28 

651 ± 46 
30 ± 0.5 
69-+ I 

89% 
43% 

FIGURE 9 
:throughput Test 

5.3.1 Virtual Circuit Set-Up We have measured the time for setting 
up a virtual circuit between two processes in different computers, 
i.e. the elapsed time from a process issuing a dial request until the 
called process has opened the new circuit. About half of this time 
is due to UNIX file system activity. Figure 10 shows the 
measurements for different computers serving as Common Control. 

Common Control 
Computer 

LSI-11 

PDP- 11/23 

PDP- 11/45 

Elapsed! 
Time 

100 ms 

62 ms 

50 ms 

FIGURE 10 
Circuit Set-up Time 

5.3.2 Performance Discussion Many researchers have found the 
actually achieved data transfer rates across unloaded high- 
bandwidth communication media to be disappointingly low due to 
the complexity of the communication software. At the outset, 
using DRI 1-C hardware, we observed user level transfer rates in 
the 10-15 kbyte/sec range with practically 100% host CPU 
utilization. Similar results have been reported by others using a 
variety of communication media. For example, going through 
several levels of protocol (some unnecessary), UNIX systems 
connected over the 6.25 Mbyte/sec Hyperchannel from Network 
Systems Corporation achieve an effective rate of 18 kbyte/sec 
[Goldsmith 1981] 5. Likewise, user level data transfer on a 370 
kbyte/sec (2.94 Mbit/sec) Ethernet s has been observed as 10 
kbyte/sec [Spector 1981], and as 50 kbyte/s on the 10 Mbit/s 
Ethernet between the much faster Dorado computers [Crane 80]. 
Even the highly optimized Tandem system with two 13 Mbyte/sec 
Dynabus connections yields only a rote of 65 kbyte/sec at a buffer 
size of 512 bytes. [Usas 1979]. 

In the light of these reported results we consider the performance 
of our current interface to be an advance in the design of efficient 
communication interfaces: 

i. a user level transfer rate of 48 to 55 kbyte/sec at a host CPU 
utilization of 45 to 80% with a relatively slow CPU (11/45) 7, 

ii. a kernel level transfer rate of 125 kbyte/sec, 

iii. a kernel level message transfer time of 900 as across the 
switching system. 

With the same interface hardware (a 1 Mbit/sec DEC DMC-11), 
and the DDCMP network protocol, used as a machine-to-machine 
link, the network in use at Purdue has been able to achieve 31.25 
kbyte/s between 2 PDP-11/70's. 

System performance observations indicate that command execution 
times are increased by an average of 55% if remote files are 
accessed, showing a range of 37 to 75%.  Throughput 
measurements show a decrease of about 35%. Distributing the load 
of one computer across two specialized computers does not double 
the capacity, at best we may achieve that two computers carry the 
load of one in our current architecture, (We have optimized only 
the lower communication protocol; the file service protocol carries, 
among other things, the overhead of accommodating computers 
with different data representations). An explanation for this 
phenomenon is that the transmission delays can be overlapped with 
local processing (hence no losses), but the off-loaded file service is 
compensated for by the communication load (hence no gains). A 
very promising result is the short circuit set-up time. Once switch 
interfaces supporting a larger number of virtual circuits become 
available, a more dynamic use of circuits can be made; e.g., one 
will be able to afford setting up circuits for a brief message 
interchange. 

5. Hyperchannel is a trademark of Network Systems Corporation. 
6. Ethernet is a trademark of Xerox Corporation. 
7. The variation is due to different driver designs which allow some trade-off of 

transfer rate against CPU intensity. 
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We have conducted extensive communication performance 
measurements using both software and hardware monitoring 
techniques. Our results indicate that in order to achieve high 
transfer rates a fast front-end processor is essential. In our case, 
the speeds of the host and the front-end are 0.3 and 5 MIPS, 
respectively. Conversely, the degree of responsiveness is 
dominated by the speed of the host processor. 

6. POTENTIAL EXTENSIONS 

6.1 Computer Pool 

UNIX process creation uses the ~fork ~ system call. A process 
calling fork is duplicated: the child process shares the code and all 
the outside connections (open files) with the parent process. Both 
continue execution following the fork call, but each knows about its 
identity, and, of course, the parent recognizes the fork operation's 
success or failure. We propose to extend this mechanism by 
supplying an argument to fork, the name of the computer on which 
the child process is to start. The name could be a generic name 
asking for any free member of a pool of computers. The fork call 
would then result in a service request to Common Control which 
would forward it to an available server, an operation similar to a 
hunt sequence on a telephone switch. The servers in this pool are 
assumed to have announced their availability. 

The computer pool could be used in a variety of ways. First, one 
could assign each user logging on from a terminal a "personal" 
computer for the duration of the session. The obvious advantages 
are: no sharing with other users and no dependence on one specific 
computer. Second, one could assign additional computers to a user 
as the need arises. For example, the UNIX command interpreter 
recognizes ~&" at the end of a command as a request for 
background execution, which is implemented via fork. In our 
model, the background work could be executed on another 
computer. Further, heavily used commands currently resulting in a 
pipeline of so-called filter processes could run on several 
processors. However, there are several problems yet to be solved 
with this approach. First, one would need communication between 
S-UNIX subsystems, e.g. through pipes, Second, one would have 
to bequeath the user's identity to the forked-to pool processor. 
Third, a particular problem occurs due to the UNIX feature of 
"set-user-id', which allows processes to assume the privilege of 
acting on behalf of a user different from the invoker ("effective 
user" as opposed to "real user"). This set of problems would be 
greatly simplified if the S-UNIX subsystem were not allowed to 
have local files. 

In a nutshell, the access control problem boils down to the 
following choice: In a multi-user S-UNIX architecture (our current 
implementation) the file server trusts the S-UNIX side, which is 
supplying an (presumably unforgeable) user id with each file open 
request, assuming that the authentication (login, password) has 
been valid. Privileged processes (set-user-id) supply the changed 
"effective user id" with each open request and can thus run on the 
S-UNIX subsystem. On the other hand, with a remote single-user 
S-UNIX, the file server has to remember the established "real user 
id" for each subsystem, and a privileged process could not run on 
the remote system, since there is no way to guarantee that its open 
requests do not come from an impostor process. One way out 
would be to restrict privileged processes to run on the file server, 
which is only possible if it does not require access to files on other 
S-UNIX or F-UNIX systems. 

In summary, the extended fork mechanism in connection with a 
computer pool could be used to exploit obvious parallelism to give 
users the power of one or more dedicated computers. 

6.2 Further Specialization of Subsystems 

Redesign of the component subsystems would preserve the 
protocols but move towards more specialization. For example, the 
file server could be redesigned to achieve: 

a. greater reliability, 

b. higher performance, 

c. faster recovery from failure, 

d. less component complexity. 

Specifically, we would redesign the housekeeping algorithms 
according to the concept of a "stable storage system.' This would 
reduce the damage caused by file server crashes and shorten the 
recovery time. The latter would be a much welcome improvement, 
since significant time is currently spent in checking and repairing 
crashed file systems. The fact that the F-UNIX subsystem offers a 
full UNIX process environment is an advantage; all that is needed 
is a special message from the S-UNIX side to start a check and 
repair process. (Currently, the F-UNIX local operator console has 
to be used for this activity.) 

For extreme reliability requirements, mirrored writing or 
incremental back-up could be implemented. There are several 
obvious avenues for performance improvement: a large disk buffer 
cache, improved in-memory and on-disk search techniques, lower 
overhead for task switching, contiguous storage and read-ahead for 
executable files, etc. Reduced complexity would result from 
restricting the file server to be a computer that handles one disk 
drive (including name management) and nothing else. 

We see significant potential gains in performance and simplicity if 
the virtual circuit interface we are using could be further exploited 
by supporting a large number of virtual circuits on each computer, 
by offering short circuit set-up times, and by implementing the 
protocol up to the user process level in the hardware (front-end 
processor). Given these opportunities, we would map each open 
file into a circuit, which would let all the (de)multiplexing work be 
done in the front-end. 

An architectural revision towards economy of mechanisms and less 
algorithmic complexity is to merge our concept of ~mounting a file 
server" by extending the UNIX concept of mounting a file system 
to encompass remote file systems implemented as file servers. 

7. RELATED WORK BY OTHERS 

The literature on distributed systems is extensive and surveyed 
elsewhere [Bochmann 1979]. Issues of remote file service have 
been thoroughly discussed in [Sturgis 1980]. We shall therefore 
restrict ourselves here to UNIX-related efforts. 

The idea of interconnecting several UNIX systems has been 
explored by several people. The most widely used file transfer 
utility is known as uucp (UNIX-to-UNIX Copy). It uses the dial-up 
network and spools explicitly named remote/local file transfer 
requests for asynchronous execution [Nowitz 1980]. 

The above scheme is the least transparent of a number of 
heterogeneous approaches, which all deal with a network of 
autonomous and more or less equal UNIX systems. To access 
remote files in addition to local ones, they have been augmented to 
also recognize remote file names. The remote files are either 
identified explicitly with a system prefix [Chesson 1975], [Lu 
1979], [Antonelli 1980], or the names are integrated into a global 
name space [Glasser 1980]. The latter, however, provides only 
read access to remote files and uses user-level daemon processes 
for intercomputer communication. 

Another approach is heterogeneous: computers are specialized to 
handle only a subset of the operating system functions. At the two 
ends of the scale are the satellite processor systems [Lycldama 
1978], [Barak 1980], which off-load all system calls including file 
service to a mother system, and the file server in the Spider 
Network [Fraser 1974], which is a full-fledged UNIX system 
restricted to and modified for safe keeping of valuable files. 

Virtual circuits on multiplexed direct links have been used in the 
Purdue network [Croft 1977]. Virtual circuits and the Datakit 
switch have been used to connect autonomous UNIX systems 
[Fraser 1975], [Chesson 1980]. The use of pipes and I /O 
redirection for connection to remote resources was proposed by 

166 



[Holmgren 1978], who has master and slave processes on each 
computer manage the interaction. 

In the light of this prior work, our architecture combines the 
following attributes: a heterogeneous system with specialized 
computers, a global file system view with complete read/write 
transparency, full integration into the operating system kernel with 
no communication daemon processes, use of virtual circuits within 
the operating system, and an emphasis on performance that makes 
operation without local files feasible, since remote files can be 
accessed almost as fast as local ones. 

8. CONCLUSION 

We have built a distributed system with functionally specialized 
computers connected by a high-bandwidth virtual circuit switch. 
The two operating system components allow us to construct 
configurations with differing degrees of file system access and 
termiual-to-termiual communication. All configurations share the 
attribute of presenting a single global file system implemented by a 
varying number of file server computers. Local files accessible only 
from the home computer are optional. Terminals can be connected 
in several ways: to local hosts, through the switch, or through a 
front-end. Communication between users on different hosts is 
more restricted than in uniprocessor UNIX systems: terminal-to- 
terminal communication and interprocessor pipes are not 
implemented, but remote tiros can to some degree replace the 
latter. 

Besides preserving as much of the UNIX capabilities as possible, we 
concentrated on performance issues. The performance degradation 
due to the separation of file service from user process handling has 
been made tolerable by an efficiently designed communication 
service with novel hardware and software. We have shown that 
communication based on virtual circuits can achieve high transfer 
rates, fast response, and low local overhead. 

The resulting configurations offer modular growth and potentially 
more reliability. In spite of advances made in the efficiency of 
communication, the cost per user of such systems cannot yet 
compete with a multiplicity of  smaller systems each serving smaller 
communities. A rough and safe estimate is that the CPU and 
memory resources ought to be doubled to achieve comparable 
capacity and responsiveness in an aggregate configuration. 

However, we believe that with the cost of hardware steadily 
decreasing and with the efficiency of communication interfaces 
increasing, the extra costs of such architectures will become 
affordable when weighted against the additional advantages: 

i. the ability to provide a single service to a larger community; 

ii. the opportunity for modular growth with increasing load; 

iii. less variability in the level of service; 

iv. increased service availability; 

v. faster recovery from failures; 

vi. the potential to react faster to changes in user needs; 

vii. the potential to introduce new technology in a less disruptive 
manner than in the past. 
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