
A D I S T R I B U T E D U N I X S Y S T E M B A S E D O N A

V I R T U A L C I R C U I T S W I T C H

G. W. R. Luderer,
H. Che, J. P. Haggerty

P. A. KirsBs t , W. T. Marshall

Bell Laboratories
Murray Hill, New Jersey 07974

t Current address: University of Illinois,
Urbana, Illinois 61801

ABSTRACT

The popular UNIX TM operating system provides time-sharing
service on a single computer. This paper reports on the design and
implementation of a distributed UNIX system. The new operating
system consists of two components: the S-UNIX subsystem
provides a complete UNIX process environment enhanced by
access to remote files; the F-UNIX subsystem is specialized to offer
remote file service. A system can be configured out of many
computers which operate either under the S-UNIX or the F-UNIX
operating subsystem. The file servers together present the view of a
single global file system. A single-service view is presented to any
user terminal connected to one of the S-UNIX subsystems.

Computers communicate with each other through a high-bandwidth
virtual circuit switch. Small front-end processors handle the data
and control protocol for error and flow-controlled virtual circuits.
Terminals may be connected directly to the computers or through
the switch.

Operational since early 1980, the system has served as a vehicle to
explore virtual circuit switching as the basis for distributed system
design. The performance of the communication software has been
a focus of our work. Performance measurement results are
presented for user process level and operating system driver level
data transfer rates, message exchange times, and system capacity
benchmarks. The architecture offers reliability and modularly
growable configurations. The communication service offered" can
serve as the foundation for different distributed architectures.

1. INTRODUCTION

The UNIX time-sharing system is widely known and used [Ritchie
1974]. The virtues of distributed systems have been extolled in
many places (for a comprehensive treatment see [Bochmann 1979],
[Clark 1978], [Thurber 1979]). Thus, the idea of a distributed
UNIX system has appealed to many.

* UNIX is a trademark of Bell Laboratories

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1981 A C M 0 - 8 9 7 9 1 - 0 6 2 - 1 - 1 2 / 8 1 - 0 1 6 0 $00 . 75

In spring of 1979, when we began to study possible designs, we saw
several major short-term goals for a multicomputer UNIX system
arrangement:

i. increased capacity, i.e. being able to give better service to
more simultaneous users,

ii. modular growth, i.e. being able to add computers as the load
increases,

iii. increased availability, i.e. computer failure should not cause
system failure,

iv. faster recovery, in particular file system checking and repair.

Figure 1 shows our first configuration. Connected through a high-
bandwidth switch are two kinds of computers. The processors in
the top row run the user processes, while those in the bottom row
implement a global file system. All the user files are handled by
the file server computers.

Io,,,-,o.I

FIGURE I

System with terminals on computers

Since the disks in the top row hold only local files, such as
temporaries or the boot image, whose identities are of no interest
to the user, the user processes can run on any of these computers.
All files and devices that need be shared are on the bottom row
computers. Here, the terminals are connected to the top row
computers in a interleaved hunt sequence, which enables some
primitive load balancing I. For growth, computers can be added in
both the top and the bottom rows. For reliability, spares in both
rows can prevent total service outage, and operator intervention can
allow recovery from a degraded state.

1. This configuration does not allow direct communication between two terminals
on different computers as offered by the wr/te command.

160

Figure 2 shows a variation of our configuration with the terminals
connected through the switch. It is more flexible and provides
potential cost savings.

i'lp Q ~

... '" :

FIGURE 2

System with terminals on switch

The above two configurations model a computer center and not the
geographically distributed system that many envision for the future.
We feel, however, that our design takes a step in that direction, as
shown in Figure 3. The same file servers appear at the bottom, but
the top row consists of remote personal computers each serving a
single user.

PERSONAL COMPUTERS

~ocsss~o C~ D O I-3 ~ L~
ri lES SPECIAL DEVICES

FIGURE 3

System with personal computers

The operating subsystems in the two types of computers are
different and specialized, i.e. we have a heterogeneous network,
We hope this results in a very important long-term benefit: reduced
software complexity 2. Not having to handle disparate tasks reduces
component complexity; being able to replace functional components
as user needs change and technology advances helps with the
management of system complexity. Of course, the decomposition
has to be "right," and the interfaces must be long-lived (like the
system bus of a computer family).

S-UNIX is the name we have given to the specialized operating
subsystem that runs user processes; it is "stripped" of most files,
and models the later-to-be-achieved "single-user" UNIX system.
The subsystem running on the file server is called F-UNIX.

The remainder of the paper has the following structure. Section 2
presents some general design considerations. We have separated
the UNIX operating system related discussion from a discussion of

2. The emphasis here is on "long-term'; a substantiation follows later under
"Potential Extensions".

the communication service subsystem. These topics are treated in
Sections 3 and 4 respectively. Section 5 discusses performance, and
Section 6 gives some ideas about possible future extensions.
Finally, in Section 7 we compare our system with related efforts of
others.

2. GENERAL DESIGN CONSIDERATIONS

We gave ourselves the strict requirement of preserving the UNIX
process environment and file system behavior, i.e. full compatibility
with an existing version. We made as few changes to the UNIX
code as possible, but we did make radical changes when they
became necessary. The division between the file system and the
rest of UNIX is not across a well-defined interface and required
major redesign. It was also clear at the outset that the success of
this project hinged upon efficient interprocessor communication
software and hardware, and about half of our effort was applied
towards this goal.

The obvious choice for the computer hardware was the high end of
Digital Equipment Corporation's PDP-11 line. More unusual is our
choice of the intereonnection medium. Most contemporary designs
of distributed systems use a packet switch and a message or
datagram discipline for intercomputer communication. We wanted
to explore the suitability of virtual circuits as the underlying
communication architecture. One frequently encounters two
objections to the use of circuit switches for distributed computer
systems: First, fixed bandwidth allocation is particularly wasteful for
the bursty kind of traffic common to data communication. Second,
there seems to be more algorithmic complexity in programs that
have to keep track of circuit states. (As one reviewer observed,
"virtual circuits are always necessary, for reliability; the question
often asked is at what level of the protocol hierarchy". We decided
to push them to as low a level as possible, under the assumption
(1) that they are generally useful; (2) that they require a lot of host
resources to manage which can be more easily off-loaded to a
peripheral if the circuit protocol is a low-level basic service,) One
might say that there is intrinsic atomicity in pure message
disciplines. We took the second argument as a challenge: if we
could develop a workable and efficient communication architecture
based on virtual circuits, we expected to see potential advantages in
the areas of system management and extension to other services
than data communication, e. g. voice, facsimile, etc. The first
objection we could easily overcome. We found a switch that
combines the desirable properties of both packet and virtual circuit
switching: the Datakit switch [Fraser 1979]. It offers the
functionality of a virtual circuit switch with dynamic bandwidth
allocation, since it uses packet switching (demand multiplexing) in
its internal implementation.

As to the second objection, we must leave it to the reader to judge
whether the modest amount of added complexity is worth the
advantages gained.

3. THE S-UNIX AND F-UNIX SUBSYSTEMS

The UNIX file system name space is a singly rooted tree, with
intermediate nodes representing directories and with leaves
representing files or devices.

Our initial intent was to remove all files from the S-UNIX side and
put them on the F-UNIX side. We ended up keeping local files for
four reasons:

a. An S-UNIX subsystem should be able to access more than
one file server. To preserve a singly rooted name space tree
with no name recognition in S-UNIX would require a file
server hierarchy, which is undesirable because of reliability
and performance.

/

161

b. It is impractical, at least for exploratory development, if one
cannot bootstrap an S-UNIX subsystem from a local file.

c. There are potential efficiency gains if some frequently used
files like load modules are kept locally.

d. The down-stream model of a personal UNIX system should
have the option of local files.

Point (a) actually calls for a local name space, not local file space.
For example, one could add a small name space management
facility in the operating system. However, we decided to keep the
root of the global file system tree on the S-UNIX side.

In the current UNIX system, the file space is extended by
"mounting" a properly formated disk volume on top of an existing
directory. We have expanded this concept by allowing the S-UNIX
user to "mount a file server" in an analogous way. Whereas the
existing mount procedure requires a special file representing a
properly structured block device (e.g. a formated disk volume), our
new procedure substitutes a device communicating with a file
server, i.e., a circuit to the switch. Multiple mounts of both kinds
can be active simultaneously.

Figure 4 shows the file name space of a configuration of two S-
UNIX systems which have mounted F-UNIX file servers F-UNIX!
and F-UNIX 2 on mount points FI and F2, respectively, in their
local name space.

I t72 " , f 17;I :
I [1 \ t l 1 1 % •
l - J l \ i I i 1 \ I

\ " " ~ ~J~ X , - ' ~ ~ /

/ 1 \ l(/ 1 \ ~

FIGURE 4

File name space of a 2/2 configuration

Processes on the S-UNIX side see no difference between local and
remote files, except for performance. All system calls of the S-
UNIX subsystem apply to both local and remote files. This
includes special files, i.e. devices, on the F-UNIX subsystem. No
F-UNIX system can access files of another F-UNIX nor can it get
to local S-UNIX files.

Growth and recovery from failure can thus be handled by adding or
removing S-UNIX and F-UNIX computers from in-service
configurations, subject to appropriate operating procedures. Failure
of an F-UNIX system can be handled by moving the disk volumes
(or backed-up versions) to a spare computer and mounting that
new file server on the failed F-UNIX machine's mount point in
each S-UNIX. Failure of an S-UNIX machine disrupts all user
sessions on that system, but the other systems remain unaffected.

File access control in the UNIX system depends on the user /d and
group M. For philosophical and pragmatic reasons, we have chosen
to have a single password file on our systems; thus the id numbers
denoting file ownership are global to all S-UNIX and F-UNIX
machines.

By taking the position that the operating subsystems and the
communication mechanism are trustworthy, we avoid having to
deal with problems of authentication beyond those present in the
current UNIX system. We realize that, once we allow remote
"personal" computers, the local operating system cannot be trusted
anymore. We shall return to this problem under "Potential
Extensions".

3.1 S/F-UNIX Implementation

The following description requires an understanding of UNIX
internals [Thompson 1978]. The reader unfamiliar with or
uninterested in UNIX internals may skip to Section 4.

3.1.1 The Cut Between S-UNIX and F-UNIX Accessing files from
multiple computers and preserving local files turned out to be
conflicting objectives. There are two obvious ways of introducing
remote files. The first is to have the remote file server look like a
block-addressable device [Glasscr 1980]. Because blocks contain
housekeeping information and we wanted to preserve the shared
file access properties of the UNIX system, we would have to
introduce an inordinate amount of extra messages for locking and
unlocking. The second way is to translate all remote-file-related
system calls into appropriate messages. This is complicated because
the operating system itself makes file system references, e.g. for
core dumps, for writing the accounting file, and for loading
programs. Our implementation followed this second choice closely.
We introduced changes wherever the name-to-disk-address
converter (namei) is invoked, to handle remoteness.

3.1.2 Remote lnodes In the UNIX system, each file on a volume is
described by a data structure called an inode, which is read into
memory when the file is opened. The inode contains almost all the
information about a file, e.g. its type (directory, ordinary file,
device, etc.), owner, access permissions, length, and physical
address. We introduce an inode of type remote that is created in
memory when a remote file is opened. It contains just enough
information for the S-UNIX subsystem to talk about the file:

• a pointer to a data structure identifying the F-UNIX machine
holding the file,

• a unique number assigned by that F-UNIX machine.

All other information about a remote file, e.g. its access permission
and length, is maintained only by the remote file server. This
allows all S-UNIX machines to see a consistent description of the
file. The introduction of the remote inode enables us to restrict the
number of messages exchanged to one request and one reply per
call. The basic algorithm is: if a path name crosses the mount point
of a remote file server, stop interpreting the path name and send a
message with the remaining path name. If a remote file is being
opened or created, the F-UNIX subsystem returns a tag of its
choosing to be used in future references. Tags are also returned in
response to chroot or chdir system calls. All absolute pathnames
carry the root tag, and all relative pathnames carry the current
directory tag. Thus the file server always sees the equivalent of an
absolute pathname and does not have to remember the current
directory; yet the tag (really an inode number) serves to speed up
the search process.

In order to allow several S-UNIX machines to update the same
remote file concurrently, the cache of disk blocks in S-UNIX
memory had to be restricted to local files only. The F-UNIX
subsystem, on the other hand, can use a large part of its memory as
a cache, since it does not run user processes.

3.1.3 Special Files Devices are treated like special files in the
UNIX system. Peripherals on the F-UNIX subsystem can thus be
easily accessed in the usual manner. For example, an S-UNIX
machine can write to a tape drive on an F-UNIX machine. Special
peripherals like printers or phototypesetters could be handled by F-
UNIX subsystems running on small dedicated computers with or
without local secondary storage.

A new special UNIX interprocess communication mechanism is the
fifo, which provides communication between unrelated processes by
associating a new special file type with a file name. Since remote
fifos are legal, they can be used for interprocessor communication
between S-UNIX machines or between an S-UNIX machine and an
F-UNIX machine.

3.1.4 File Server Details The file server computers are running
under the F-UNIX operating subsystem. There is one file server
process for each circuit connected to an S-UNIX machine. These

162

processes execute in kernel mode. When started, they are
connected to the circuit and obey the S-UNIX controlled file service
protocol, starting with a 'mount file server" request. Each S-UNIX
machine is then handled by at least one server process on each F-
UNIX. F-UNIX multitasking is simply implemented by starting
several server processes per S-UNIX, each on a different circuit.
The degree of multiplexing is thus chosen on the S-UNIX side,
where as many requests can be outstanding as there are circuits to
F-UNIX systems.

One design decision concerns the amount of S-UNIX state
information to be kept in the F-UNIX subsystem. The file server
does not keep a count of all open-operations against a file. Rather
it keeps track of which S-UNIX machine has the file opened (at
least once). Disappearing S-UNIX systems that do not properly
close their files are discovered, and the files are closed.

3.1.5 File Service Protocol Interaction between both subsystems at
the functional level is handled by the file service protocol, which is
strictly a sequential message exchange over one virtual circuit.
Error and flow control are supported by the circuit mechanism.

Out of 27 system call types related to files, 18 result in message
traffic if remote files are involved. Of these, 10 contain a path
name as an argument, and the remaining 8 refer to already opened
files. Path names or the data read or written can be up to 64K
bytes long. The structure of each message is a type code followed
by type-dependent data.

4. COMMUNICATION SUBSYSTEM

The communication subsystem is built on the concept of a virtual
circuit service. It is thus independent of the S/F-UNIX
architecture and can be used as the foundation for different
distributed system designs [Luderer 1981]. In the following, we
shall introduce the Datakit switch, then explain how we use it, and
finally give details about the protocols and the switch interface.

4.1 The Datakit Switch

Datakit is functionally a virtual circuit switch [Fraser 1979].
Computers and terminals are connected in a star topology to
interface modules interconnected by a backplane. Packet switching
occurs on the up-link and down-link of a folded bus on the
backplane. The switch module at the pivot replaces packet source
addresses with destination addresses (Figure 5).

;(X;RC[-ADC~ESS[D PACm[TI [

TO COMPUTERS AND
TERMINALS

FIGURE 5

Datakit Switch

The aggregate data rate is 7 Mbit/s which corresponds to a payload
of 42,000 16-data-byte packets per second. Due to asynchronous
time-division multiplexing, it effectively provides dynamic
bandwidth allocation on virtual circuits. The subscriber link
interface is that of a Digital Equipment Corporation (DEC) DRI 1-
C program-controlled, word-parallel communication device. We
converted this interface to direct memory access with the help of a
very fast (200us instruction time) communication front-end
processor, the DEC KMC1 l-B, which also handles our link protocol

[Digital 1978]. The Datakit switch, in its largest configuration, can
address a quarter million distinct subscriber circuits, which are
usually partitioned into 511 physical subscriber links each
multiplexed into a maximum of 511 full-duplex virtual circuits.

4.2 Connection Procedure

The switch contains a table that defines the end points of each
circuit, i.e. the subscriber's interface module address and one of its
virtual circuits. Circuit set-up and take-down are managed by a
subscriber computer designated as Common Control. We have
implemented a control program that resides in a DEC LSI-11
computer. This computer also holds a monitor program that in
addition to other functions periodically receives status information
from each subscriber interface module, e.g. a count of packets lost
due to errors.

The switch is initialized such that the control program is connected
to each bootstrapped subscriber's circuit 1, which is the signaling
circuit for all circuit set-ups and take-downs. By convention, the
subscriber manages only its odd-numbered circuits, starting with 3;
Common Control owns and manages the subscriber's even-
numbered circuits.

Common Control contains a simple name server that will establish
circuits between any two subscribers. For example, when an F-
UNIX computer is restarted, it announces to the name server that
it is willing to accept file service requests on a specified service
circuit. Likewise, when an S-UNIX computer is restarted, it selects
an odd-numbered circuit and asks Common Control to connect it to
the file server. Common Control will then allocate and set up an
even-numbered circuit on the F-UNIX machine being called, which
will be informed of the request and in turn acknowledge it to the
requester.

The same mechanism is used to request other kinds of service. For
example, small computers with no local secondary storage (e.g.
PDP-I1123's) have a program in ROM that requests a circuit to a
pre-established boot server, and a higher level protocol used on that
circuit down-loads the image of the operating subsystem.

4.3 Circuit Protocol

A great deal of attention has been paid to the design of a simple
and efficient circuit mechanism (we actually implemented four
different designs). Major guidelines were to take advantage of the
switch's hardware properties and to design a protocol that would fit
into the front-end processor (4K bytes data, 8K bytes of code).
The error behavior of the switch is characterized by very high
reliability (we observed one faulty packet in six months) and the
fact that the only possible error is loss of a packet 0 6 bytes). We
call our protocol the NK protocol (network kernel). It is unusual in
that it places the burden of error control solely on the transmitter
site. This greatly simplifies the logic of the receiver, which has only
one state and two local counters.

The NK protocol provides an error-free stream of bytes on a virtual
circuit. The Datakit interface hardware expects and delivers 17-
byte packets. The first byte identifies the virtual circuit. The
format of the remaining 16 bytes is dictated by the NK protocol.
The first byte is always a control byte followed by 0 to 15 data
bytes, The control byte consists of a 3-bit command and a 5-bit
argument. We will sketch the protocol by explaining the receiver
action for the four commands it recognizes.

a. Initialization: The transmitter bids for a window size (i.e.
number of buffers). The receiver accepts it or reduces it to
its liking, and returns its decision.

b. Data packet with sequence number: If the number is
expected, the packet is accepted and the local count is
incremented (modulo window size). Otherwise the packet is
flushed. No response is sent.

c. Data packet with sequence number and request for response:
Same action as above, except that, in case of success, the
sequence number is returned.

163

d. Enquiry request: A reply command with the last accepted
sequence number is returned.

The above protocol has been working to our full satisfaction for
data transfer on virtual circuits. However, it had to be modified to
serve reliably for communicating with Common Control in the
circuit set-up process. Here we operate with short messages only
(one packet). The problem was survival of the system in case of
failure of Common Control. A workable solution was found by
letting Common Control delay the packet acknowledgment (case c
above) until an acknowledgment of the reply was received. This
causes a circuit set-up message to be re-sent repeatedly, even across
crashes, until the required action is complete.

We have investigated the properties of this protocol to determine
the choice of window size and acknowledge frequency as a function
of the delay parameters of the network. Results will be reported
elsewhere.

4.4 The Switch Interface

The driver on the host computer copies the data to be transmitted
into a system buffer and gives a write command with a buffer
pointer and the circuit number to the front-end processor, which
empties the buffer and implements the above circuit protocol.
Since buffer allocation is on a per-circuit basis on both ends,
multiple circuit transmission is interleaved. For receiving, blocks
are assembled in the front-end from packets and then copied into
the waiting system buffer.

In order to further improve performance, we have built a peripheral
to the front-end processor that eliminates the DR11-C and connects
directly (i.e., not over the UNIBUS 3) to the Datakit switch.

5. PERFORMANCE MEASUREMENTS

We distinguish three major dimensions when characterizing the
performance of a computing system:

i. Capacity: what is the rate at which useful work can be
performed?

ii. Responsiveness: what is the delay before a desired action
takes place?

iii. Overhead: how many system resources are used to perform a
specified activity?

For distributed systems, we characterize interprocessor
communication by three measurements along these dimensions:

a. the achievable data transfer rate,

b. the time to exchange a null message,

c. the CPU time needed to perform communication.

The measurements given below refer to a configuration of two
DEC PDP-11/45 computers 4 connected through the Datakit switch.
Unless otherwise stated, the interface is a KMCll-B controlled
special line card.

5.1 Data Transfer

Figure 6 shows data transfer rates between two processors as a
function of the block size. The two solid curves show user level
data transfer, i.e. process to process, and kernel level transfer, i.e.
between specially instrumented drivers on each computer,
respectively. The latter is more typical of the file server which runs
in kernel mode. For comparison, the intracomputer pipe rate
between user processes is shown as a dotted line. The data were
generated within one computer and thrown away after arrival at the
receiver.

!
!

so / _ __To__///f

o~ . - ~ ' - ~ . / , ', ,~, -~, ~ ,
s ~ [svTzs]

FIGURE 6

Data transfer rates between PDP11-45's

Figure 7 shows the CPU utilization of the host computer for the
three experiments of Figure 6.

.
PIPE ON 5AMI[CPU

IK

¢C g

US[R-TO- U , ~ R ~

I I ! I t J
O 4 t6 n4 156 10~a 4094

nLOCK SiZE IEYTES}

FIGURE 7

CPU Overhead for communication

As with many communication media used for local area
networking, the Datakit switch is supposed to be operated in an
area of light loading. Notice that, as the load increases, so does the
throughput since there are no losses due to collision.

5.2 Responsiveness

A test script that invokes commands which use all of the remote
file system functions was executed in two modes, and the total
elapsed time and CPU resources used were measured. Figure 8
below shows the results. Notice that all programs had to be loaded
from the remote file server. In both cases, CPU time contains 2
sec of user CPU time.

UNIBUS is a trademark of Digital Equipment Coi'poration

Neither computer had a cache memory. The core memory on the file server
computer'slowed it down by about 10% compared to the other computer, which
had MOS memory.

164

EJcperiment Elapsed CPU
script run with Time Time

(S-VNtX)

local files only 39 see 12 sec

remote files only 51 sec 16 sec

FIGURE 8
Response Time Test

Another measure of responsiveness is the elapsed time in which a
short message can be sent and acknowledgment received. We
measured 11 msec for an exchange between user processes on
different processors.

However, at the kernel-to-kernel level we successfully sent a
message in 900 zsec. We believe this result bodes well for new
computer architectures with low context switch overhead and
segment switching instead of copying.

5.3 Capacity

A multithread benchmark script was executed to determine system
capacity. The set of application processes in the script is assumed
to be a crude approximation of some realistic work load. A series
of experiments were performed, increasing the number of scripts
beyond saturation. As the script is executed many times, one can
determine the maximum number of processes that terminate per
hour as a relative measure of capacity.

Measurement

sec/run
scripts completed
scripts/hour

sec/seript
real time
user time
system time

CPU utilization
local
remote

Local
Files

1699
20
43

419 _+ 22
28 -+ 0.4
42_+ 1

94%
0%

Remote
Files

1988
15
28

651 ± 46
30 ± 0.5
69-+ I

89%
43%

FIGURE 9
:throughput Test

5.3.1 Virtual Circuit Set-Up We have measured the time for setting
up a virtual circuit between two processes in different computers,
i.e. the elapsed time from a process issuing a dial request until the
called process has opened the new circuit. About half of this time
is due to UNIX file system activity. Figure 10 shows the
measurements for different computers serving as Common Control.

Common Control
Computer

LSI-11

PDP- 11/23

PDP- 11/45

Elapsed!
Time

100 ms

62 ms

50 ms

FIGURE 10
Circuit Set-up Time

5.3.2 Performance Discussion Many researchers have found the
actually achieved data transfer rates across unloaded high-
bandwidth communication media to be disappointingly low due to
the complexity of the communication software. At the outset,
using DRI 1-C hardware, we observed user level transfer rates in
the 10-15 kbyte/sec range with practically 100% host CPU
utilization. Similar results have been reported by others using a
variety of communication media. For example, going through
several levels of protocol (some unnecessary), UNIX systems
connected over the 6.25 Mbyte/sec Hyperchannel from Network
Systems Corporation achieve an effective rate of 18 kbyte/sec
[Goldsmith 1981] 5. Likewise, user level data transfer on a 370
kbyte/sec (2.94 Mbit/sec) Ethernet s has been observed as 10
kbyte/sec [Spector 1981], and as 50 kbyte/s on the 10 Mbit/s
Ethernet between the much faster Dorado computers [Crane 80].
Even the highly optimized Tandem system with two 13 Mbyte/sec
Dynabus connections yields only a rote of 65 kbyte/sec at a buffer
size of 512 bytes. [Usas 1979].

In the light of these reported results we consider the performance
of our current interface to be an advance in the design of efficient
communication interfaces:

i. a user level transfer rate of 48 to 55 kbyte/sec at a host CPU
utilization of 45 to 80% with a relatively slow CPU (11/45) 7,

ii. a kernel level transfer rate of 125 kbyte/sec,

iii. a kernel level message transfer time of 900 as across the
switching system.

With the same interface hardware (a 1 Mbit/sec DEC DMC-11),
and the DDCMP network protocol, used as a machine-to-machine
link, the network in use at Purdue has been able to achieve 31.25
kbyte/s between 2 PDP-11/70's.

System performance observations indicate that command execution
times are increased by an average of 55% if remote files are
accessed, showing a range of 37 to 75%. Throughput
measurements show a decrease of about 35%. Distributing the load
of one computer across two specialized computers does not double
the capacity, at best we may achieve that two computers carry the
load of one in our current architecture, (We have optimized only
the lower communication protocol; the file service protocol carries,
among other things, the overhead of accommodating computers
with different data representations). An explanation for this
phenomenon is that the transmission delays can be overlapped with
local processing (hence no losses), but the off-loaded file service is
compensated for by the communication load (hence no gains). A
very promising result is the short circuit set-up time. Once switch
interfaces supporting a larger number of virtual circuits become
available, a more dynamic use of circuits can be made; e.g., one
will be able to afford setting up circuits for a brief message
interchange.

5. Hyperchannel is a trademark of Network Systems Corporation.
6. Ethernet is a trademark of Xerox Corporation.
7. The variation is due to different driver designs which allow some trade-off of

transfer rate against CPU intensity.

165

We have conducted extensive communication performance
measurements using both software and hardware monitoring
techniques. Our results indicate that in order to achieve high
transfer rates a fast front-end processor is essential. In our case,
the speeds of the host and the front-end are 0.3 and 5 MIPS,
respectively. Conversely, the degree of responsiveness is
dominated by the speed of the host processor.

6. POTENTIAL EXTENSIONS

6.1 Computer Pool

UNIX process creation uses the ~fork ~ system call. A process
calling fork is duplicated: the child process shares the code and all
the outside connections (open files) with the parent process. Both
continue execution following the fork call, but each knows about its
identity, and, of course, the parent recognizes the fork operation's
success or failure. We propose to extend this mechanism by
supplying an argument to fork, the name of the computer on which
the child process is to start. The name could be a generic name
asking for any free member of a pool of computers. The fork call
would then result in a service request to Common Control which
would forward it to an available server, an operation similar to a
hunt sequence on a telephone switch. The servers in this pool are
assumed to have announced their availability.

The computer pool could be used in a variety of ways. First, one
could assign each user logging on from a terminal a "personal"
computer for the duration of the session. The obvious advantages
are: no sharing with other users and no dependence on one specific
computer. Second, one could assign additional computers to a user
as the need arises. For example, the UNIX command interpreter
recognizes ~&" at the end of a command as a request for
background execution, which is implemented via fork. In our
model, the background work could be executed on another
computer. Further, heavily used commands currently resulting in a
pipeline of so-called filter processes could run on several
processors. However, there are several problems yet to be solved
with this approach. First, one would need communication between
S-UNIX subsystems, e.g. through pipes, Second, one would have
to bequeath the user's identity to the forked-to pool processor.
Third, a particular problem occurs due to the UNIX feature of
"set-user-id', which allows processes to assume the privilege of
acting on behalf of a user different from the invoker ("effective
user" as opposed to "real user"). This set of problems would be
greatly simplified if the S-UNIX subsystem were not allowed to
have local files.

In a nutshell, the access control problem boils down to the
following choice: In a multi-user S-UNIX architecture (our current
implementation) the file server trusts the S-UNIX side, which is
supplying an (presumably unforgeable) user id with each file open
request, assuming that the authentication (login, password) has
been valid. Privileged processes (set-user-id) supply the changed
"effective user id" with each open request and can thus run on the
S-UNIX subsystem. On the other hand, with a remote single-user
S-UNIX, the file server has to remember the established "real user
id" for each subsystem, and a privileged process could not run on
the remote system, since there is no way to guarantee that its open
requests do not come from an impostor process. One way out
would be to restrict privileged processes to run on the file server,
which is only possible if it does not require access to files on other
S-UNIX or F-UNIX systems.

In summary, the extended fork mechanism in connection with a
computer pool could be used to exploit obvious parallelism to give
users the power of one or more dedicated computers.

6.2 Further Specialization of Subsystems

Redesign of the component subsystems would preserve the
protocols but move towards more specialization. For example, the
file server could be redesigned to achieve:

a. greater reliability,

b. higher performance,

c. faster recovery from failure,

d. less component complexity.

Specifically, we would redesign the housekeeping algorithms
according to the concept of a "stable storage system.' This would
reduce the damage caused by file server crashes and shorten the
recovery time. The latter would be a much welcome improvement,
since significant time is currently spent in checking and repairing
crashed file systems. The fact that the F-UNIX subsystem offers a
full UNIX process environment is an advantage; all that is needed
is a special message from the S-UNIX side to start a check and
repair process. (Currently, the F-UNIX local operator console has
to be used for this activity.)

For extreme reliability requirements, mirrored writing or
incremental back-up could be implemented. There are several
obvious avenues for performance improvement: a large disk buffer
cache, improved in-memory and on-disk search techniques, lower
overhead for task switching, contiguous storage and read-ahead for
executable files, etc. Reduced complexity would result from
restricting the file server to be a computer that handles one disk
drive (including name management) and nothing else.

We see significant potential gains in performance and simplicity if
the virtual circuit interface we are using could be further exploited
by supporting a large number of virtual circuits on each computer,
by offering short circuit set-up times, and by implementing the
protocol up to the user process level in the hardware (front-end
processor). Given these opportunities, we would map each open
file into a circuit, which would let all the (de)multiplexing work be
done in the front-end.

An architectural revision towards economy of mechanisms and less
algorithmic complexity is to merge our concept of ~mounting a file
server" by extending the UNIX concept of mounting a file system
to encompass remote file systems implemented as file servers.

7. RELATED WORK BY OTHERS

The literature on distributed systems is extensive and surveyed
elsewhere [Bochmann 1979]. Issues of remote file service have
been thoroughly discussed in [Sturgis 1980]. We shall therefore
restrict ourselves here to UNIX-related efforts.

The idea of interconnecting several UNIX systems has been
explored by several people. The most widely used file transfer
utility is known as uucp (UNIX-to-UNIX Copy). It uses the dial-up
network and spools explicitly named remote/local file transfer
requests for asynchronous execution [Nowitz 1980].

The above scheme is the least transparent of a number of
heterogeneous approaches, which all deal with a network of
autonomous and more or less equal UNIX systems. To access
remote files in addition to local ones, they have been augmented to
also recognize remote file names. The remote files are either
identified explicitly with a system prefix [Chesson 1975], [Lu
1979], [Antonelli 1980], or the names are integrated into a global
name space [Glasser 1980]. The latter, however, provides only
read access to remote files and uses user-level daemon processes
for intercomputer communication.

Another approach is heterogeneous: computers are specialized to
handle only a subset of the operating system functions. At the two
ends of the scale are the satellite processor systems [Lycldama
1978], [Barak 1980], which off-load all system calls including file
service to a mother system, and the file server in the Spider
Network [Fraser 1974], which is a full-fledged UNIX system
restricted to and modified for safe keeping of valuable files.

Virtual circuits on multiplexed direct links have been used in the
Purdue network [Croft 1977]. Virtual circuits and the Datakit
switch have been used to connect autonomous UNIX systems
[Fraser 1975], [Chesson 1980]. The use of pipes and I /O
redirection for connection to remote resources was proposed by

166

[Holmgren 1978], who has master and slave processes on each
computer manage the interaction.

In the light of this prior work, our architecture combines the
following attributes: a heterogeneous system with specialized
computers, a global file system view with complete read/write
transparency, full integration into the operating system kernel with
no communication daemon processes, use of virtual circuits within
the operating system, and an emphasis on performance that makes
operation without local files feasible, since remote files can be
accessed almost as fast as local ones.

8. CONCLUSION

We have built a distributed system with functionally specialized
computers connected by a high-bandwidth virtual circuit switch.
The two operating system components allow us to construct
configurations with differing degrees of file system access and
termiual-to-termiual communication. All configurations share the
attribute of presenting a single global file system implemented by a
varying number of file server computers. Local files accessible only
from the home computer are optional. Terminals can be connected
in several ways: to local hosts, through the switch, or through a
front-end. Communication between users on different hosts is
more restricted than in uniprocessor UNIX systems: terminal-to-
terminal communication and interprocessor pipes are not
implemented, but remote tiros can to some degree replace the
latter.

Besides preserving as much of the UNIX capabilities as possible, we
concentrated on performance issues. The performance degradation
due to the separation of file service from user process handling has
been made tolerable by an efficiently designed communication
service with novel hardware and software. We have shown that
communication based on virtual circuits can achieve high transfer
rates, fast response, and low local overhead.

The resulting configurations offer modular growth and potentially
more reliability. In spite of advances made in the efficiency of
communication, the cost per user of such systems cannot yet
compete with a multiplicity of smaller systems each serving smaller
communities. A rough and safe estimate is that the CPU and
memory resources ought to be doubled to achieve comparable
capacity and responsiveness in an aggregate configuration.

However, we believe that with the cost of hardware steadily
decreasing and with the efficiency of communication interfaces
increasing, the extra costs of such architectures will become
affordable when weighted against the additional advantages:

i. the ability to provide a single service to a larger community;

ii. the opportunity for modular growth with increasing load;

iii. less variability in the level of service;

iv. increased service availability;

v. faster recovery from failures;

vi. the potential to react faster to changes in user needs;

vii. the potential to introduce new technology in a less disruptive
manner than in the past.

9. A C K N O W L E D G M E N T S

A. G. Fraser and G. L. Chesson gave us access to their Datakit
hardware and software]Chesson 1980]. E. Sirota from Brown
University built the KMC/Datakit interface under the direction of
R. C. Haight during a summer assignment. M. J, Bach converted
the S-UNIX operating system to a more recent release. M. D. Beck
conducted several of the measurements reported here, using
facilities developed by J. Feder and D. A. De Graaf.

D. L. Bayer, R. H. Canaday, C. F. Simone, E. N. Pinson, J. M.
Scanlon, and B. A. Tague deserve our thanks for encouraging and
furthering this work.

Finally, this work would not have been possible without Ken
Thompson and Dennis Ritchie having supplied us with a
foundation to build upon: an efficient and understandable operating
system, the UNIX system.

R E F E R E N C E S

[Antonelli 1980] C. J. Antonelli, L. S. Hamilton, P. M. Lu, J. J.
Wallace, K. Yueh, "SDS/NET - An Interactive Distributed
Operating System", COMPCON Fall "80, 21st IEEE Comp.
Soc. Conference, pp. 487-493.

]Barak 1980] Amnon B. Barak, Amos Shapir, "UNIX with Satellite
Processors', Software Practice and Experience, VoI.10,
pp.383-392, May 1980.

[Bochmann 1979] G. yon Bochmann, Architecture of Distributed
Computer Systems, Lecture Notes in Computer Science # 77,
Springer-Verlag, New York, 1979.

]Chesson 1975] G. L. Chesson, 'The Network UNIX System,"
Operating Systems Review, Vol. 9, No. 5 (1975), pp. 60-66.
Also in Proc. of the 5th Symposium on Operating Systems
Principles.

]Chesson 1980] G. L. Chesson, ~Datakit Software Architecture ~,
Proc. ICC 79, June 1979, Boston Ma., pp.20.2.1-20.2.5

]Clark 1978] D. Clark, "An Introduction to Local Area Networks,"
Proceedings IEEE, Vol.66, No.11, November 1978,
pp.1497-1517.

[Crane 1980] R. C. Crane and E. A. Taft, "Practical Considerations
in Ethernet Local Network Design", Hawaii International
Conference on System Sciences, January 1980,

[Croft 80] W. J. Croft, "UNIX Networking at Purdue ' , UNIX
Usenix Conference, University of Delaware, June 1980.

[Digital 1978] Digital Equipment Corporation, Maynard, Mass.,
PDPII Peripherals Handbook, 1978, pp. 331-339.
- - , ~KMCI 1-B Unibus Microprocessor', YM-C093C-00,
January 1979.
- - , "COMM IOP-DUP Programming Manual", No. AA-
5670A-TC.
- - , "Terminals and Communications Handbook', 1979.

[Fraser 1974] A. G. Fraser, ~Spider - an Experimental Data
Communication System," Proc. IEEE Conf. on
Communications, June 1974, pp. 21-30; IEEE Cat No.
74CH0859-9-CSCB.

[Fraser 1975] A. G. Fraser, "A Virtual Channel Network",
Datamation, Vol.21, No.2; February 1975, pp. 51-58.

]Fraser 1979] A. G. Fraser, "Datakit - A Modular Network for
Synchronous and Asynchronous Traffic", Proc. ICC 1979,
June 1979, Boston, Ma., pp,20.1.1-20.1.3

[Glasser 1980] A. Glasser and D. M. Ungar, "A Distributed UNIX
System", Proc. of the Fifth Berkeley Workshop on Distributed
Data Management and Computer Networks, Feb. 3-5, 1980,
p. 241

]Goldsmith 1981] S. Goldsmith, private communication,
measurement at Bell Labs Murray Hill Comp Center

[Holmgren 1978] S. F. Holmgren, 'Resource Sharing UNIX,"
Seventeenth IEEE Computer Society International Conference,
Washington, D.C., September 5-8, 1978 (New York: IEEE,
1978), pp. 302-305.

]Kaufeld 1980] J. C. Kaufeld, D. Russell, "Distributed UNIX
System~, Workshop on Fundamental Issues in Distributed
Computing, acre SIGOPS and SIGPLAN, Dec. 15-17, 1980,
Fallbrook, Ca.

167

[Lu 1979] P. M. Lu, "A System for Resources Sharing in a
Distributed Environment - RIDE', Prec. IEEE Computer
Society's Third International COMPSAC, 1979.

[Luderer 1981] G. W. R. Luderer, H. Che, W. T. Marshall, "A
Virtual Circuit Switch as the Basis for a Distributed
System', Seventh Data Communications Symposium -
1981, ACM, IEEE Computer Society, IEEE
Communications Society, October 27-29, 1981, (accepted
paper).

[Lycklama 1978] H. Lycklama and C. Christensen, "A
Minicomputer Satellite Processor System," Bell @stem
Technical Journal, Vol. 57, No. 6 (July-August 1978).

[Nowitz 1980] D. A. Nowitz, M. E. Lesk, 'Implementation of a
Dial-up Network of UNIX Systems," COMPCON Fall "80,
21st IEEE Comp. Soc. Conference, pp. 483-486.

[Peterson 1979] James L. Peterson, "Notes on a Workshop on
Distributed Computing', ACM Operating Systems Review,
Vol. 13, No.3, July 1979, pp.18-30

[Ritchie 1974] D. M. Ritchie and K. L. Thompson, "The UNIX
Time-sharing System, ' Communications of the ACM, Vol.
17, No. 7, July 1974, pp. 365-375.

[Spector 1981] A. L. Spoctor, Stanford University and Xerox
Corporation, private communication

[Sturgis 1980] H. SturgJs, J. Mitchell, and J. Israel, "Issues in the
Design and Use of a Distributed File System', ACM
Operating Systems Review, Volume 14, Number 3, July
1980, p.55-69.

[Thompson 1978] K. Thompson, "UNIX Implementation", Bell
System Technical Journal, Vol. 57, No. 6, Part 2 (July -
August 1978), pp.1931-1946.

[Thurber 1979] Kenneth J. Thurber and Gerald M. Masson,
Distributed Processor Communication Architecture, Lexington
Books, D. C. Heath and Company, Lexington, Mass., 1979.

[Usas 1980] A. M. Usas, private communication of measurements
done under Tandem's Guardian operating system at Bell
Laboratories.

168

