
A PAGE ALLOCATION STRATEGY ***
FORMULTIPROGRA~91ING SYSTEm'S

by

Donald D. Chamberlin
Samuel H. Fuller**
Leonard Y. Liu*

INTRODUCT ION

In a multiprogramming, virtual-memory computing

system, many processes compete simultaneously for

system resources, which include CPU's, main memory

page frames, and the transmission capacity of the

paging drum. (We define a "process" here as a

program with i ts own virtual memory, requiring an

allocation of real memory and a CPU in order to

execute). This paper studies ways of allocating

resources to processes in order to maximize

throughput in systems which are not CPU-bound.

As is customary, we define the multiprogramming

set" (MPS) as the set of processes el igible for

allocation of resources at any given time. Each

process in the MPS is allocated a certain number

of page frames and allowed to execute, interrupted

periodically by page faults. A process remains

in the MPS unti l i t finishes or exhausts i ts "time

sl ice", at which time i t is demoted. We assume

the existence of two resource managers within the

operating system: The Paging Manager and the

Scheduler. The function bf the Paging Manager is

to control the size of the MPS, and to allocate

main storage page frames among those processes in

the MPS. The function of the Scheduler is to

assign time-slice lengths to the various processes,

and to define a promotion order among those pro-

cesses not currently in the MPS. The Scheduler

must ensure that system responsiveness is adequate,

while the Paging Manager is primarily concerned

with throughput. This paper studies possible

strategies for the Paging Manager. A strategy for

the Scheduler is proposed in (2).

In order to evaluate various strategies for the

resource managers, i t was necessary to construct

a model of a time-sharing system. Our model is

analytical in nature but is not based on queueing

theory.

MODELLING THE USER LOAD

In an earl ier paper (I) , Belady and Kuehner intro-

duced the concept of a "l i fe-t ime function" which

relates e i , the expected execution time between

page faults for a given process, to Pi' the number

of page frames allocated to the process. (In this

paper, we assume that the page frame allocation

to a given process is constant for the short term,

and that a process can fetch a new page only by

relinquishing a page i t currently possesses in

main storage. In the long term, by monitoring the

behavior of a process, the Paging Manager may

choose to change i ts page frame allocation).

Belady and Kuehner cited evidence that the l i f e -

time function has two regions: a concave upward

region, followed by a concave downward region, as

shown in Figure I .

*IBM Research Laboratory, San Jose, Calif.

**Departments of Computer Science and Eleztrical hngineering,-G~rnegie-Mellon Univ., Pittsburgh, Pa.

***This is an extended abstract of a paper which has been accepted for publication in IBM Journal of Research
and DeveloDment. The work first appeared as I~ Research Report RC3848, Thomas J. Watson Research Center,
Yorktown Heights, New York (May 1972).

66

I
concave I concave
upward ~ down,yard •

1

_BL

1

PI: page frames allocated to proce~ss i

Figure l

Lifetime Function for Process l

For the present paper, we f i t the lifetime function
curve with the simple equation

2 B i
e l " 1~Ci~2

(I)

This equation enables us to describe a process by
the following two parameters:

C i (pages) A relative measure of the

number of page frames needed

to enable the process to

execute eff ic ient ly. More

precisely, the number of page

frames which provides the

process with half of i ts

largest possible "l i fet ime."

B i (sec) The expected execution time
between page faults for pro-

cess i when i t is allocated

C i page frames.

Like Belady and Kuehner, we assume that the para-

meters B i and C i are invariant during the period

'of interest. Also, we assume that, during the

period of interest, processes neither arrive nor

terminate. Therefore, we can completely describe

the load on the system by specifying, for each

process, the parameters B i and C i . Experience has

shown that, on the IBM 360/67 system, appropriate

values for Ci's are in the low tens of pages, and

for Bi's are in the low tens of milliseconds.

(4)(6)

MODELLING THE PAGING DRUM

Whenever a process sustains a page fault, i t goes

into a wait state until the required page can be

fetched from the paging drum. The length of the

waiting period depends on the capabilities of the

drum and on the length of the queue of requests

for pages to be fetched. In this paper, we assume

that the circumference of the drum is divided

into sectors. When a drum request is made, the

request is placed in the appropriate sector queue.

As the drum rotates, i ts read-write heads reach

each sector in turn and service the requests on

each sector queue in f i r s t - i n , f i rst-out order.

Simulation experiments were performed to investi-

gate the relationship between the average time to

service a page fetch request (W) and the total

load on the paging drum in requests per second (U).

A total of N M processes were assumed to be in the

system. Each process was assumed to execute for

a random (exponentially distributed) period of

time, then make a page request which was placed on

one of N s sector queues with equal probability.

The drum was assumed to rotate with period T,

servicing one request from each sector in turn.

Consistent with our assumption of a non-CPU-bound

system, we assumed that no process ever waits

for a CPU after i ts page request has been satis-

fied. By adjusting the mean execution interval,

we varied the total drum load (U) and observed

the effect on the average wait time (W).

As expected, the results were dependent on the

degree of multiprogramming, N M. When N M = l , the

single process always sees an empty drum queue,

67

and the average wait time to service a fault is

the "no load" wait:

WNL consists of one-half revolution average latency,

plus one sector-read-time to transmit the page.

I f there are many processes in the system, W varies

from WNL to in f in i t y , depending on the load U. W

approaches in f in i ty as U approaches the maximum

transmission capacity M of the drum, which is

given by:
N s M=--

(3)
Simulat ion experiments produced a fami ly of curves

which give W as a funct ion of U fo r various values

of N M, as shown in Figure 2

E

i

|
!

NM,I
WNL

IM
U : total load on drum, faults/sec.

Figure 2

Drum Wait as a Function of Load

The following equation was found to f i t the simu-

lation data very closely:

2K M 2I.~ (4)
W= 'M-U + WNL M

where M and WNL are defined by equations (2) and

(3) and K M is a factor determined by the degree of

multiprogramming, defined as follows:

NM-1

The total drum load U consists of the sum of the

real-time page fault rates of a11 the processes in

the multiprogramming set:

~" (6)
U = ~ u i

i=l

where

i (7)
Ul = e.-i-W

I

DEFINITION OF VALUE

We now wish to make a reasonable definition of the

"value" of a particular allocation of pages to a

particular set of processes. First, we note that

the "rate of progress" r i of process i (in virtual

seconds per real second) is given by the equation:

e i

q e.+w (8)
1

We wish to take into account the fact that some

processes are more "demanding" than others in the

sense that they require more page frames in order

to execute efficiently, and that it is more

d i f f i cu l t (and hence more valuable) to execute an

instruction for a more demanding process than for

a less demanding process. We wi l l define the "rate

of accrual of value" (v i) of process i to be the

product of i ts "demand" (Di) and i ts rate of pro-

gress (r i) :

~i : D±~i (9)

We proceed to define the rate of accrual of value

for the system as a whole (V) as the sum of the

value rates of al l the processes in the system:

" j (I0)
V= Z v i

i=l

We are now le f t with the task of defining the "de-

mand" (Di) of a process. What we really want is a

measure of the relative cost to the system (in

page-seconds) of executing an instruction for pro-

cess i . To gain such a measure, weconsider a

hypothetical experiment in which process i runs

alone on a virtual-memory computer. We allocate

68

to the process various numbers of page frames Pi '

allowing the other page frames to stand id le , and

observe i ts behavior.

From equations (l) and (8) , we can f ind the average

"cost" in system page-seconds required to give one

v i r tua l second to the process, as a function of Pi"

There is some optimal page frame allocation Pi*

which minimizes the system's cost to execute the

process. The "demand" of process i is defined as

the actual cost at this minimum point:

= (~) , (I I) D i
Pi = Pi

From equations (l) and (8), D i may be expressed in

terms of the characteristics B i and C i of the pro-

cess :
C]

,~N22L + 2BiWNL Di = ~ (12)

This def in i t ion of "demand" has the feature that

i t ' i s a property only of the characteristics of

the individual process, and does not depend on the

other processes which may be running concurrently.

Equations (4), (6), and (7) can be combined to give

an impl ic i t equation for W in terms of the e i 's of

the processes. I f we know B i , C i , and Pi for a l l

processes, we can find the e i 's from equ. (1) and

then solve for W. Once W is known, equ. (8) gives

us r i for each process, and equs. (9) and (lO)

give us V, the value of the given page al location.

An interactive PL/I program was writ ten to execute

the above procedure. Given B i and C i for a l l pro-

cesses, and N S and T for the drum, the program can

f ind the value of any given page al locat ion, or

f ind the optimal al location of any given number of

pages.

EXPERIMENTS

The f i r s t experiments done with the program were

studies of page allocation in a simple system con-

taining only two processes. The system drum was

given parameters T = lO msec, N S = 5, correspond-

ing to an IBM 2305 drum with page size = 2K bytes

(5). Figures 5 and 6 show equal-value contours on

the space of possible page allocations. In Ex-

periment l (Figure 3), the two processes were

ident ical : B i = 20 msec., C i = 50 pages. In ex-

periment 2 (Figure 4), process l was the same as

above but process 2 was less demanding (B i = 20

msec., C. = 25 pages). The locus of optimal a l lo - 1

6O

5G
OJ

~. 4c

o~ 20

~-,a
=

0
0 I0

",ws

\ s s #

V=30 ~

20 30 40 50 60

PI ' p q e frames allocated to ~ o c ~ s I

Figure 3: Experiment l

6O

al 50 1 I .
0

o°U 3(

2(

i
g , e ~

o _ _ 0 I0 20 30 40 50 60
Pi,PO94 frames allocated to process I

Figure 4: Experiment 2

69

cations of various numbers of pages is shown as

a heavy line. The value contours are discontinuous

on the axes (axis intercepts for the contours are
represented by X's).

In addition to allocating pages, the Paging Manager

must control the size of the multiprogramming set.

Experiment 4 gives us insight into the nature of

this task. We keep the 2305 drum characteristics

as above, and assume the user load consists of many

identical processes, all with B i = 30 msec, C i =

50 pages. For various numbers of pages in the system,

and for various degrees of multiprogramming, we

find the optimal-value page allocation and record

U (total drum load) and V (total system value) for

this allocation. A family of curves showing drum

load as a function of total pages for various

degrees of multiprogramming is shown in Figure 5.

4 0 0

3 0 (

2OO

E

Ioo

I I I I I
50 I 0 0 150 2O0 250

Np ~ IotoI system poge fromes

Figure 5: Experiment 4

Superimposed on these curves is a locus which

shows the degree of multiprogramming which yields

optimum value for any given number of pages.

Note that as the number of pages increases, the

optimal degree of multiprogramming increases,

tending to keep the drum load U within a certain
band of values.

In addition to the above experiments, a number of

other experiments (described in the ful l paper)

were performed to investigate page allocations in

more complex environments of many nonidentical

processes. The objective was to find heuristics

which would enable the Paging Manager to choose

an MPS and allocate pages on the basis of measure-

ments which can be easily made on real systems.

The results of our experimentation are the follow-

ing two heuristics, which depend only on the

real-time page-fault rates of the various processes,

u i , and the total system page-fault rate U:

Heuristic I: Control the size of the MPS in such a

way that U is kept between limits Umi n and Uma x,

which are defined as properties of a particular

system.

Implementation: I f U <Umi n, promote another pro-

cess into the MPS; the process to be promoted wil l

be chosen by the system scheduler (2). I f U > Umax,

demote the process which has been longest in the

MPS. Umi n and Uma x are chosen far enough apart that

the probability of jumping from U < Umi n to U >Uma x
is negligible.

Heuristic 2: Allocate page frames to the processes

in the MPS in such a way that all their page fault

rates are equal (u i = ~).

Implementation: I f process i has u i< ~ and pro-

cess j has uj > ~, take a page frame away from

process i and give i t to process j . (Note:

Heuristic 2 is similar in concept to the Page Fault

Frequency Replacement Algorithm proposed by Chu

and Opderbeck (3)).

In order to evaluate the two heuristics, experi-

ments were performed to compare the system value

V produced by the heuristics with the best possible

value realizable under the same conditions. In

Experiment 7, for example, a system with 50 pages

and a 2305 drum was loaded with the eight processes

described below:

7O

-1
50 I

I
I

V* ",' "1
45-1

40"1

I
I
I

V: 35-1
t o t a l 1

system v a l u e I
I

(p l g e - l e c / e e c) I

30-- I

I
I
I

25-- I
I
I
I
I

2 o - I

15.,,,

10-

.5--

2

4

k
4 2 2

2

U
MIN

1

1

2

8 8
2 22
* 1 2

2

2
24 ;84

4
k l

U
MAX

4
1

4
4

8

22
2

* 4
2 4
2
2 1

4 2
4
1
5

2

1

0-11
I I I I I I I

0 50 100 150 200 250 300 350 400

Us t o t a l s y s t e m page f a u l t r a t s (£ a u l ~ s / e u e)

Figure 6: Experiment 7

71

Process Bi(msec.) Ci(pages)

l I0 50

2 lO 50

3 50 lO

4 50 lO

5 I0 I0

6 lO]0

7 50 50

8 50 50

The f i r s t part of the experiment was to find the

best page allocation for each of the 256 possible

MPS's, and to measure i ts value. The highest value

realizable by any possible MPS, with optimal page

allocation, is denoted by V*; i t was found to have

the value V* = 46.02 pages. The next part of the

experiment consisted in allocating page frames

according to Heuristic 2 (u i = u) for each of the

256 possible MPS's. For each such allocation, the

system paging rate U and the system value V were

found. These measurements are plotted on a

U-V plane in Figure 6, in which each point repre-

sents a possible MPS. (Note: This Figure was

produced by a computer printout. The appearance

of a number such as "8" denotes the clustering of

8 points in the same print position. An asterisk

(*) denotes clustering of more than 9 points).

I f we employ Heuristic l with Umi n = 150 faults/sec

and Uma x = 250 faults/sec, we are confined to some

MPS in the center region of the graph. The mean

value of all points in the center region is 40.I

pages, 87% of V*. So we see that the two heuristics

used in conjunction wil l result in an average sys-

tem value of 87% of the best possible value under

the conditions of the experiment. Other experiments

were performed with similar results.

CONCLUSIONS

We have proposed an analytic model for the behavior

of processes in a non-CPU-bound virtual-memory

system, and for the performance of the paging drum.

Our model is unusual in that i t takes into account

the tradeoff between two scarce resources of the

system: main memory page frames and paging

channel capacity. Combining our definition for

"value" with the model, we have developed methods

of measuring the value of a given page-frame

allocation, and of finding the optimal allocation

of a given number of pages among a given set of

processes. We have tested our methods on simple

systems and found the results to be intuit ively
reasonable.

We have proposed a pair of simple, low overhead

heuristics for page management, and evaluated them

by means of the model. Under the conditions of our

experiments, the heuristics provide an inexpensive

means for dynamically tuning a system for near-

optimal throughput.

REFERENCES

(1) Belady, L. A. and Kuehner, C. J. Dynamic

space-sharing in computer systems. Comm.

ACM 12,5 (May 1969) pp. 282-288.

(2) Chamberlin, D. D. A scheduling mechanism

for interactive systems with virtual memory.

IBM Research Report RC 3911, Thomas J.

Watson Research Center, Yorktown Heights,

N.Y. (June 1972).

(3) Chu, W. W. and Opderbeck, H. The page fault

frequency replacement algorithm. Proc. 1972

FJCC, Vol. 41, pp. 597-609.

(4) Doherty, W. J.

sponsiveness.

pp. 97-III.

Scheduling TSS/360 for re-

Proc. 1970 FJCC, Vol. 37,

(5) IBM Systems Component Summary: 2305 Fixed

Head Storage ,. IBM Publication No. GA26-

1589-I (June 1970).

(6) Pinkerton, T. B. Program Behavior and

Control in Virtual Storage Computer

Systems. PhD. Thesis, University of

Michigan, 1968.

72

