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INTRODUCT ION 

In a multiprogramming, virtual-memory computing 

system, many processes compete simultaneously for 

system resources, which include CPU's, main memory 

page frames, and the transmission capacity of the 

paging drum. (We define a "process" here as a 

program with i ts own virtual memory, requiring an 

allocation of real memory and a CPU in order to 

execute). This paper studies ways of allocating 

resources to processes in order to maximize 

throughput in systems which are not CPU-bound. 

As is customary, we define the multiprogramming 

set" (MPS) as the set of processes el igible for 

allocation of resources at any given time. Each 

process in the MPS is allocated a certain number 

of page frames and allowed to execute, interrupted 

periodically by page faults. A process remains 

in the MPS unti l  i t  finishes or exhausts i ts  "time 

sl ice", at which time i t  is demoted. We assume 

the existence of two resource managers within the 

operating system: The Paging Manager and the 

Scheduler. The function bf the Paging Manager is 

to control the size of the MPS, and to allocate 

main storage page frames among those processes in 

the MPS. The function of the Scheduler is to 

assign time-slice lengths to the various processes, 

and to define a promotion order among those pro- 

cesses not currently in the MPS. The Scheduler 

must ensure that system responsiveness is adequate, 

while the Paging Manager is primarily concerned 

with throughput. This paper studies possible 

strategies for the Paging Manager. A strategy for 

the Scheduler is proposed in (2). 

In order to evaluate various strategies for the 

resource managers, i t  was necessary to construct 

a model of a time-sharing system. Our model is 

analytical in nature but is not based on queueing 

theory. 

MODELLING THE USER LOAD 

In an earl ier paper ( I ) ,  Belady and Kuehner intro- 

duced the concept of a "l i fe-t ime function" which 

relates e i ,  the expected execution time between 

page faults for a given process, to Pi' the number 

of page frames allocated to the process. (In this 

paper, we assume that the page frame allocation 

to a given process is constant for the short term, 

and that a process can fetch a new page only by 

relinquishing a page i t  currently possesses in 

main storage. In the long term, by monitoring the 

behavior of a process, the Paging Manager may 

choose to change i ts page frame allocation). 

Belady and Kuehner cited evidence that the l i f e -  

time function has two regions: a concave upward 

region, followed by a concave downward region, as 

shown in Figure I .  
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Lifetime Function for Process l 

For the present paper, we f i t  the lifetime function 
curve with the simple equation 

2 B i 
e l "  1~Ci~2 

(I) 

This equation enables us to describe a process by 
the following two parameters: 

C i (pages) A relative measure of the 

number of page frames needed 

to enable the process to 

execute eff ic ient ly.  More 

precisely, the number of page 

frames which provides the 

process with half of i ts 

largest possible "l i fet ime." 

B i (sec) The expected execution time 
between page faults for pro- 

cess i when i t  is allocated 

C i page frames. 

Like Belady and Kuehner, we assume that the para- 

meters B i and C i are invariant during the period 

'of interest. Also, we assume that, during the 

period of interest, processes neither arrive nor 

terminate. Therefore, we can completely describe 

the load on the system by specifying, for each 

process, the parameters B i and C i .  Experience has 

shown that, on the IBM 360/67 system, appropriate 

values for Ci's are in the low tens of pages, and 

for Bi's are in the low tens of milliseconds. 

(4)(6) 

MODELLING THE PAGING DRUM 

Whenever a process sustains a page fault,  i t  goes 

into a wait state until the required page can be 

fetched from the paging drum. The length of the 

waiting period depends on the capabilities of the 

drum and on the length of the queue of requests 

for pages to be fetched. In this paper, we assume 

that the circumference of the drum is divided 

into sectors. When a drum request is made, the 

request is placed in the appropriate sector queue. 

As the drum rotates, i ts read-write heads reach 

each sector in turn and service the requests on 

each sector queue in f i r s t - i n ,  f i rst-out order. 

Simulation experiments were performed to investi- 

gate the relationship between the average time to 

service a page fetch request (W) and the total 

load on the paging drum in requests per second (U). 

A total of N M processes were assumed to be in the 

system. Each process was assumed to execute for 

a random (exponentially distributed) period of 

time, then make a page request which was placed on 

one of N s sector queues with equal probability. 

The drum was assumed to rotate with period T, 

servicing one request from each sector in turn. 

Consistent with our assumption of a non-CPU-bound 

system, we assumed that no process ever waits 

for a CPU after i ts page request has been satis- 

fied. By adjusting the mean execution interval, 

we varied the total drum load (U) and observed 

the effect on the average wait time (W). 

As expected, the results were dependent on the 

degree of multiprogramming, N M. When N M = l ,  the 

single process always sees an empty drum queue, 
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and the average wait time to service a fault  is 

the "no load" wait: 

WNL consists of one-half revolution average latency, 

plus one sector-read-time to transmit the page. 

I f  there are many processes in the system, W varies 

from WNL to in f in i t y ,  depending on the load U. W 

approaches in f in i ty  as U approaches the maximum 

transmission capacity M of the drum, which is 

given by: 
N s M=-- 

(3) 
Simulat ion experiments produced a fami ly  of  curves 

which give W as a funct ion of  U fo r  various values 

of N M, as shown in Figure 2 
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Figure 2 

Drum Wait as a Function of Load 

The following equation was found to f i t  the simu- 

lation data very closely: 

2K M 2I.~ (4) 
W= 'M-U + WNL M 

where M and WNL are defined by equations (2) and 

(3) and K M is a factor determined by the degree of 

multiprogramming, defined as follows: 

NM-1 

The total drum load U consists of the sum of the 

real-time page fault rates of a11 the processes in 

the multiprogramming set: 

~" (6) 
U = ~ u i 

i=l 

where 

i (7) 
Ul = e.-i-W 

I 

DEFINITION OF VALUE 

We now wish to make a reasonable definition of the 

"value" of a particular allocation of pages to a 

particular set of processes. First, we note that 

the "rate of progress" r i of process i (in virtual 

seconds per real second) is given by the equation: 

e i 

q e.+w (8) 
1 

We wish to take into account the fact that some 

processes are more "demanding" than others in the 

sense that they require more page frames in order 

to execute efficiently, and that it is more 

d i f f i cu l t  (and hence more valuable) to execute an 

instruction for a more demanding process than for 

a less demanding process. We wi l l  define the "rate 

of accrual of value" (v i )  of process i to be the 

product of i ts  "demand" (Di) and i ts  rate of pro- 

gress ( r i ) :  

~i : D±~i (9) 

We proceed to define the rate of accrual of value 

for the system as a whole (V) as the sum of the 

value rates of al l  the processes in the system: 

" j  (I0) 
V= Z v i 

i=l 

We are now le f t  with the task of defining the "de- 

mand" (Di) of a process. What we really want is a 

measure of the relative cost to the system (in 

page-seconds) of executing an instruction for pro- 

cess i .  To gain such a measure, weconsider a 

hypothetical experiment in which process i runs 

alone on a virtual-memory computer. We allocate 
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to the process various numbers of page frames Pi '  

allowing the other page frames to stand id le ,  and 

observe i ts  behavior. 

From equations ( l )  and (8) ,  we can f ind the average 

"cost" in system page-seconds required to give one 

v i r tua l  second to the process, as a function of Pi" 

There is some optimal page frame allocation Pi* 

which minimizes the system's cost to execute the 

process. The "demand" of process i is defined as 

the actual cost at this minimum point: 

= ( ~ )  , ( I I )  D i 
Pi = Pi 

From equations ( l )  and (8), D i may be expressed in 

terms of the characteristics B i and C i of the pro- 

cess : 
C] 

,~N22L + 2BiWNL Di = ~ (12) 

This def in i t ion of "demand" has the feature that 

i t ' i s  a property only of the characteristics of 

the individual process, and does not depend on the 

other processes which may be running concurrently. 

Equations (4), (6), and (7) can be combined to give 

an impl ic i t  equation for W in terms of the e i 's  of 

the processes. I f  we know B i ,  C i ,  and Pi for a l l  

processes, we can find the e i 's  from equ. (1) and 

then solve for W. Once W is known, equ. (8) gives 

us r i for each process, and equs. ( 9 )  and (lO) 

give us V, the value of the given page al location. 

An interactive PL/I program was writ ten to execute 

the above procedure. Given B i and C i for a l l  pro- 

cesses, and N S and T for the drum, the program can 

f ind the value of any given page al locat ion, or 

f ind the optimal al location of any given number of 

pages. 

EXPERIMENTS 

The f i r s t  experiments done with the program were 

studies of page allocation in a simple system con- 

taining only two processes. The system drum was 

given parameters T = lO msec, N S = 5, correspond- 

ing to an IBM 2305 drum with page size = 2K bytes 

(5). Figures 5 and 6 show equal-value contours on 

the space of possible page allocations. In Ex- 

periment l (Figure 3), the two processes were 

ident ical :  B i = 20 msec., C i = 50 pages. In ex- 

periment 2 (Figure 4), process l was the same as 

above but process 2 was less demanding (B i = 20 

msec., C. = 25 pages). The locus of optimal a l lo -  1 
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cations of various numbers of pages is shown as 

a heavy line. The value contours are discontinuous 

on the axes (axis intercepts for the contours are 
represented by X's). 

In addition to allocating pages, the Paging Manager 

must control the size of the multiprogramming set. 

Experiment 4 gives us insight into the nature of 

this task. We keep the 2305 drum characteristics 

as above, and assume the user load consists of many 

identical processes, all with B i = 30 msec, C i = 

50 pages. For various numbers of pages in the system, 

and for various degrees of multiprogramming, we 

find the optimal-value page allocation and record 

U (total drum load) and V (total system value) for 

this allocation. A family of curves showing drum 

load as a function of total pages for various 

degrees of multiprogramming is shown in Figure 5. 
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Figure 5: Experiment 4 

Superimposed on these curves is a locus which 

shows the degree of multiprogramming which yields 

optimum value for any given number of pages. 

Note that as the number of pages increases, the 

optimal degree of multiprogramming increases, 

tending to keep the drum load U within a certain 
band of values. 

In addition to the above experiments, a number of 

other experiments (described in the ful l  paper) 

were performed to investigate page allocations in 

more complex environments of many nonidentical 

processes. The objective was to find heuristics 

which would enable the Paging Manager to choose 

an MPS and allocate pages on the basis of measure- 

ments which can be easily made on real systems. 

The results of our experimentation are the follow- 

ing two heuristics, which depend only on the 

real-time page-fault rates of the various processes, 

u i ,  and the total system page-fault rate U: 

Heuristic I: Control the size of the MPS in such a 

way that U is kept between limits Umi n and Uma x, 

which are defined as properties of a particular 

system. 

Implementation: I f  U <Umi n, promote another pro- 

cess into the MPS; the process to be promoted wil l  

be chosen by the system scheduler (2). I f  U > Umax, 

demote the process which has been longest in the 

MPS. Umi n and Uma x are chosen far enough apart that 

the probability of jumping from U < Umi n to U >Uma x 
is negligible. 

Heuristic 2: Allocate page frames to the processes 

in the MPS in such a way that all their page fault 

rates are equal (u i = ~). 

Implementation: I f  process i has u i< ~ and pro- 

cess j has uj > ~, take a page frame away from 

process i and give i t  to process j .  (Note: 

Heuristic 2 is similar in concept to the Page Fault 

Frequency Replacement Algorithm proposed by Chu 

and Opderbeck (3)). 

In order to evaluate the two heuristics, experi- 

ments were performed to compare the system value 

V produced by the heuristics with the best possible 

value realizable under the same conditions. In 

Experiment 7, for example, a system with 50 pages 

and a 2305 drum was loaded with the eight processes 

described below: 
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Process Bi(msec. ) Ci(pages ) 

l I0 50 

2 lO 50 

3 50 lO 

4 50 lO 

5 I0 I0 

6 lO ]0 

7 50 50 

8 50 50 

The f i r s t  part of the experiment was to find the 

best page allocation for each of the 256 possible 

MPS's, and to measure i ts value. The highest value 

realizable by any possible MPS, with optimal page 

allocation, is denoted by V*; i t  was found to have 

the value V* = 46.02 pages. The next part of the 

experiment consisted in allocating page frames 

according to Heuristic 2 (u i = u) for each of the 

256 possible MPS's. For each such allocation, the 

system paging rate U and the system value V were 

found. These measurements are plotted on a 

U-V plane in Figure 6, in which each point repre- 

sents a possible MPS. (Note: This Figure was 

produced by a computer printout. The appearance 

of a number such as "8" denotes the clustering of 

8 points in the same print position. An asterisk 

(*) denotes clustering of more than 9 points). 

I f  we employ Heuristic l with Umi n = 150 faults/sec 

and Uma x = 250 faults/sec, we are confined to some 

MPS in the center region of the graph. The mean 

value of all points in the center region is 40.I 

pages, 87% of V*. So we see that the two heuristics 

used in conjunction wil l  result in an average sys- 

tem value of 87% of the best possible value under 

the conditions of the experiment. Other experiments 

were performed with similar results. 

CONCLUSIONS 

We have proposed an analytic model for the behavior 

of processes in a non-CPU-bound virtual-memory 

system, and for the performance of the paging drum. 

Our model is unusual in that i t  takes into account 

the tradeoff between two scarce resources of the 

system: main memory page frames and paging 

channel capacity. Combining our definition for 

"value" with the model, we have developed methods 

of measuring the value of a given page-frame 

allocation, and of finding the optimal allocation 

of a given number of pages among a given set of 

processes. We have tested our methods on simple 

systems and found the results to be intuit ively 
reasonable. 

We have proposed a pair of simple, low overhead 

heuristics for page management, and evaluated them 

by means of the model. Under the conditions of our 

experiments, the heuristics provide an inexpensive 

means for dynamically tuning a system for near- 

optimal throughput. 
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