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Abstract -- We take the view that operating 
systems should not be written in assembly language. 
Alternatives are machine oriented high-level lan- 
guages and "safe" languages in the style of Con- 
current Pascal and MODULA. A serious drawback of 
the Concurrent Pascal approach is the fact that 
those very language features that pertain to op- 
erating systems must be implemented separately, 
using some other language. A technique is present- 
ed which solves this problem. This technique is 
based on user-defined trap handling. It is exhi- 
bited by demonstrating how virtual memory systems 
can be constructed using Concurrent Pascal and how 
process management can be moved from the kernel to 
the Concurrent Pascal program. We demonstrate that 
a fundamental solution of the difficulties with 
Concurrent Pascal, MODULA, and similar languages 
cannot be found in going back to classical implemen- 
tation languages, but in designing languages that 
are not rich with special features, but powerful 
with respect to extension and shrinkage. 

Keywords: System implementation languages, 
system kernels, traps, language reliability. 

1. Introduction: High-Level Languages for 
Operating System Construction 

1.1 Most operating system designers agree, at 
least in principle, that operating systems should 
not be implemented using assembly language. How- 
ever, there is still a controversy between two dif- 
ferent attitudes: should we use a medium-level sys- 
tems implementation language with some unsafe fea- 
tures (like explicit use of memory addresses and 
machine instructions), or can we do better, if at 
all, with a really safe high-level language? 

Like assembly language, implementation lan- 
guages are often advocated for their run-time and 
memory efficiency. But this is not the real issue. 
Careful design and an optimizing compiler can make 
a language both safe and efficient. Moreover, the 
use of a safe language simplifies system design, 
although it may prohibit some tricky fine-grain 
programming. An unsafe l~nguage, which has no 
strong type checking and allows treating pointers 
as integers, necessitates firewalls to guarantee 
the integrity of the system against programming 
errors of system progranmners and users (not to 

mention penetration efforts). A safe language 
makes these firewalls unnecessary, reduces the 
need for run-time checks, and thus considerably 
improves efficiency. 

This observation clarifies one aspect of 
what is meant by "the choice of the implementation 
language has a considerable impact on system 
desk". It is the very issue of efficiency plus 
reliability that calls for the use of safe lan- 
guages. 

1.2 The real benefits of implementation lan- 
guages in operating systems programming come from 
their ability to explicitly deal with the hard- 
ware, by accessing processor and device registers 
and by executing special instructions. 

Classical implementation languages are of 
different degrees of insecurity. Some represen- 
tatives are (in order of ascending security): 
BLISS [Wulf et al. 71] for the DEC I0 and DEC PDP- 
II, used in the implementation of the HYDRA system 
[Wulf et al. 74]; C [Ritchie 75] for the PDP-II, 
used in the implementation of the UNIX time-sharing 
system [Ritchie/Thompson 74]; SUE [Clark/Horning 
71] for the IBM 360, used in a (not completed) 
operating system implementation in Toronto [Atwood 
et al. 72]; ESPOL [Burroughs 70a] for the Burroughs 
B 6700, used for the Master Control Program for 
that machine [Burroughs 7Ob]; EUCLID [Lampson et 
al. 77]. The higher a language ranks in this or- 
dering, the more it deserves to be called a "ma- 
chine-oriented high-level language" (MOHLL, [IFIP 
74!). This term stands for a language which is 
safe "in principle" but is augmented with a few 
unsafe, machine-dependent features. A very clean 
solution has been adopted in EUCLID: the unsafe, 
machine-dependent language features are confined 
to so-called "machine-dependent modules". - The 
merits of MOHLL's are obvious, and an efficient 
implementation of a MOHLL is certainly superior to 
an efficient implementation of a low- or medium- 
level implementation language. 

Note, however, that we still need an assembly 
language interface to the hardware if the language 
has no special features suited to solve typical 
low-level operating system problems. E.g. if there 
is no feature like an interrupt procedure, an 
assembly language interface must take care of the 
first level interrupt handling. Likewise, if the 
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language does not provide coroutines, special as- 
sembly code is required for stack switching. Thus, 
the loss in security does not pay in coherent 
high-level coding of the system, because the men- 
tioned features must nevertheless be added to most 
implementation languages through run-time support. 

1.3 With the increasing demand for special pur- 
pose system software on small computers, the need 
for simple and reliable production of this soft- 
ware becomes obvious. Since safe languages exist 
that allow well-structured implementation of pro- 
grams, it is possible to design such languages for 
the special purpose of writing a whole operating 
system as one program. An operating system is ad- 
mittedly a fairly large program, but promising 
techniques are emerging for the treatment of large 
programs. Their implementation requires languages 
with sound structuring aids and the possibility 
of separate compilation in an advanced fashion, 
most notably with syntactic checks at linking 
time. 

Turning our attention from implementation to 
design, we observe that operating system design 
problems are also not much different from those 
encountered in design of other software. According- 
ly, the programming language used for operating 
system construction should at the same time be a 
design language, i.e. should assist the designer 
and encourage a proper "programming-in-the-large" 
by supplying language constructs that reflect ge- 
nerally acknowledged design principles. 

The use of such a language facilitates the 
construction and maintenance of an operating sys- 
tem considerably. The problemofinterfacing such 
a language with the hardware is solved in the fol- 
lowing way. For the sake of security, there is no 
explicit access to memory locations and registers, 
nor is it possible to insert machine instructions 
into the high-level code; a small interface, serv- 
ing as a run-time system for the language, builds 
a convenient abstract machine on top of the con- 
crete hardware. The run-tlme system can be con- 
ceived as the lowest level or kernel for all oper- 
ating systems expressible in the language. 

The relevance of this approach has been de- 
monstrated by the widely acclaimed success of the 
programming language Concurrent Pascal (subsequent- 
ly abbreviated CPASCAL) [Brinch Hansen 75a]. We 
can write non-trivial operating systems in CPASCAL 
within a few man-months. The implementation distri- 
buted by the authors also demonstrates the possibi- 
lity of a limited portability of small operating 
systems. Another recent example of such a language 
is MODULA [Wirth 77] which is superior to CPASCAL 
mainly due to the flexible structuring aid of the 
"module" and the tight control over input/output. 

CPASCAL approach is characterized by 4 or 5 essen- 
tials: 

I. The language is high-leyel, with the ex- 
ception of some tiny security leaks (this looks 
inevitable at the present state of the art). 

2. A complete operating system (not includ- 
ing files on backing store) can be written as one 
compilation unit if desired. 

3. The language incorporates features con- 
sidered fundamental for writing operating systems, 
namely pro___cesses and synchronization. 

4. A medium-size run-time system supports 
these language features as well as input/output. 
Operation of the run-time system is triggered 
both by traps/interrupts and by explicit program 
action through language features or standard pro- 
cedures. The run-time system serves as an invariant 
kernel for all operating systems written in the 
language. 

(5. Portability of the operating systems 
written in the language is achieved by making the 
compiler generate virtual codewhich is executed 
by an interpreter incorporated in the kernel. - 
This characteristic is not essential for the pur- 
pose of this paper.) 

2.2 There is no doubt about the usefulness of 
the language as a design tool, but this usefulness 
is limited by the fact that processes and synchro- 
nization constructs are predefined in the lan- 
guage (essential no. 3). This forces the designer 
to use monitors for mutual exclusion and synchro- 
nization, whether he likes them or not. We take 
the view that using monitors, with the inherent 
rule that any shared data object must be realized 
as a monitor, is not just a matter of taste, but 
is a serious design decision. E.g. we may be wil- 
ling to live with the strict exclusion provided 
by monitors running on an uniprocessor system, 
whereas in a multiprocessor configuration time- 
critical tasks might suffer from the strict ex- 
clusion principle which imposes unnecessary timing 
constraints on co-operating processes. Taking the 
CPASCAL approach, the language designer has al- 
ready made design decisions for you, and you are 
forced to build on top of those. 

Worse than that, we have to live not only 
with given design decisions but also with a given 
i mplementatio ~ of these (essential no. 4). The de- 
signer who wants to implement process management 
and device drivers (in MODULA process management 
only) by himself, must re-program the system ker- 
nel, which is written in another language. This 
additional language is not necessarily assembly 

language (a) . Anyway, the goals stated in 1.3 are 
not achieved because we now have two languagepro- 
cessors to work with. 

2. Limitations of the Concurrent Pascal Approach 

2.1 We do not want to discuss here CPASCAL as a 
programming language. As in any language there are 
strengths and flaws. At issue is the CPASCAL 
approach to operating system construction. The 

(a)At the Technical University of Berlin a CPASCAL 
kernel has been implemented on an IBM 370/158 
under VM 370 using SUE-360 [Clark/Horning 71] 
and a small assembly language interface as 
mentioned in 1.2 
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2.3 Adopting the CPASCAL approach to operating 
system construction requires a choice from some- 
where between two extremes: 

- A relatively o~ language leads to a small 
kernel, but is hard to program a "real" operating 
system in. Example: (Sequential) PASCAL with a 
run-time system that runs on the bare hardware. 

- A relatively rich language includes half 
of the operating system in the kernel. Example: 
A hypothetical variant of CPASCAL where the com- 
piled programs are running within a virtual mem- 
ory instead of residing in main memory; in that 
case the kernel must be drastically enlarged for 
the necessary virtual memory management. 

(CPASCAL with its original kernel lies between 
these extremes.) Whatever decision we make, we 
cannot overcome the annoying trade-off between 
small kernels and attractive systems. And making 
our choice, we have lost much freedom of design, 
and freedom of implementation is achieved only at 
the expense of kernel modification. 

3. A Case Study: Virtual Memory Management 
in Concurrent Pascal 

3.1 There is a way out of the previously mention- 
ed dilemma. Let us stick to CPASCAL and try to de- 
vise an operating system that supports virtual 
memory. On the one hand, the security of CPASCAL 
should not be decreased by adding features for the 
realization of the virtual memory management; on 
the other hand, the virtual memory management 
should not be included in the kernel. 

With the PDP-II memory management hardware in 
mind, we can imagine an - admittedly crude - paging 
system in which pages of 4K words are subject to 
swapping. Suppose the kernel contains a virtual 
memory manager, VMM. In that case no harm is done, 
if a CPASCAL program does not fit in main memory. 
The system is loaded and initialized on a swapping 
device; the kernel swaps the necessary pages into 
main memory on a demand basis or using a clever 
working-set oriented scheme. Note that this would 
not require any change in the CPASCAL compiler. 
Now, if we wish to implement the VMM as part of 
the CPASCAL program that constitutes the whole op- 
erating system (except kernel), some interface 
must be added to the kernel that triggers the op- 
eration of VMM upon the occurrence of page fault 
traps and of interrupts from the swapping device. 
What is the nature of these interfaces? 

3.2 Since there is no inherent reason to implement 
a VMM using a demand paging scheme as a process, we 
first think of a monitor implementation. Unfortu- 
nately, it is impossible to simulate a monitor call 
upon occurrence of a trap in CPASCAL. This is main- 
ly due to the fact that the name of an entry pro- 
cedure of an object cannot be passed to the kernel 
(which is necessary for trap indirection). It is 
not possible to remedy this situation by making 
changes in the kernel. 

Next, we try a process implementation for 
VMM. Since the message queue for this process 

cannot be implemented as a monitor either (for the 
reasons just mentioned), it must be implemented as 
part of the kernel. Reading from the queue can be 
accomplished via the standard procedure io. This 
procedure is originally intended for input/output, 
but can in fact be used as a general purpose 
"kernel call". We define a "device" called "swap- 
queue" and provide appropriate "input/output" op- 
erations: 

PROCEDURE io 
(VAR fault: RECORD processno: integer; 

pageno: integer 
END; 

CONST operation: (input,output,lookup); 
CONST device: (swapqueue) ) (a) 

An anonymous operation on swapqueue is simu- 
lated by the kernel upon occurrence of a page 
fault trap. The identity of the process that caused 
the fault is entered into the queue, and with it 
the identity of the page at fault. The trapped 
process is delayed. Next, operation "input" should 
be issued by VMM for removal and delivery of the 
process identity as well as the identity of the 
page that should be swapped in for that process. 
In fact, VMM is delayed upon an input operation 
until swapqueue is nonempty. As soon as the page 
is available, VMM should perform the operation 
"output" which signals the completion of the page 
transfer to the process and allows it to continue(b). 
- Thus, swapqueue serves as a special purpose pro- 
cess communication device which is not programmed 
in CPASCAL as a monitor but is part of the kernel. 

The task of handling the swapping device can 
be performed by applying the procedure io in the 
usual manner just for that device (a slightly dif- 
ferent view will be presented in 4.2). The in- 
security of the io feature (only limited checks 
are performed at compile time) allows any page 
transfer between the device and a selected page 
frame in main memory. 

3.3 Our problem is not solved yet. We have just 
managed to establish VMM within a functional hier- 
archy (see [Parnas 74], [Parnas 76]) using the 
trap detour. However, execution of VMM functions 
does not only require bookkeeping of page frames 
and controlling page transfer, but also includes 
maintenance of a~ descriptors. The latter task 
cannot be performed in a straightforward way, be- 
cause the descriptor must be available to the 
kernel: since any process switch requires changes 
to be made in the address map(C) the kernel must 
have the descriptors at hand and must know about 
their representational details. 

(a)CONST is not standard CPASCAL; it has been 
added for the sake of clarity. 

(b)More elaborate operations on swapqueue could be 
useful if VMM was to operate on the swapping 
device according to some non-FCFS strategy. 
This is omitted here for the sake of simplicity. 

(C)Note that this is implementation dependent. We 
can conceive of CPASCAL implementations on ma- 
chines different from the PDP-II where changing 
the address map is not necessary. 
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This way we get into a situation that has 
been described by different authors as "inter- 
leaving of functional hierarchy and module struc- 
ture" or simply "sandwiching" ([Parnas 76], 
[Habermann et al. 76]). The kernel may be consi- 
dered as consisting of two functional levels, na- 
mely maintenance of address spaces and, above this, 
process management. The latter need not know about 
the representational details of the former, it on- 
ly uses its functions (this structure is neatly re- 
flected in the quasi-PASCAL comments in the orig- 
inal CPASCAL kernel). Now we get a third level, 
VMM, which cannot do without knowledge of the re- 
presentational details of the first level, al- 
though functionally dependent on the second level. 

In the CPASCAL environment there is no way for 
VMM to get at the inner of the kernel - and this 
is alright. A solution ot the problem comes once 
more from the io feature. We are able to provide 
a special io function that reads and manipulates 
descriptors. This io figures as an operation on 
the abstract data type "descriptor" and thus allows 
changing the representation of descriptors with- 
out affecting the operation of VMM. A possible 
way of realizing the io operation is: 

PROCEDURE io 
(VAR descinfo: RECORD base: integer; 

resident: boolean; 
dirty: boolean 

END; 
CONST operation: RECORD op: (read,write); 

descno: integer 
END; 

CONST device: (desctable) ) 

all descriptors reside in a central descrip- 
tor table called "desctable". They are identified 
by their position in that table. The address map 
associated with a process is given by a sub-block 
of 8 entries within the process control block 
which point to descriptor table entries. - Ac- 
cessing desctable through io causes no delay for 
the executing process. 

This is a simplified presentation of the 
facts. In reality VMM needs additional informa- 
tion about the page states when looking for a 
victim to swap out. Also, efficiency can be im- 
proved, if several descriptors can be operated 
upon instead of just one (e.g. the set of descrip- 
tors of all core resident pages). 

The above approach has been taken for design 
and implementation of a small time-sharing .§ystem 
for a PDP-II/4OE at the Technical University of 
Berlin [Gr~f et al. 77]. The system is called 
MUSIC for m_ulti-user ~ystem in Concurrent Pascal 
and is based on SOLO [Brinch Hansen 75b]. It has 
been in operation since March 1977 and has proved 
to be a valuable tool for experimenting with op- 
erating systems, especially with swapping strate- 
gies. 

3.4 What have we achieved? Did we change the lan- 
guage or did we not? - At least we did not make 
any change in the compiler. One may argue that by 
extending the kernel we silently removed the re- 
striction that any program must fit in main memory. 

With the new kernel, we find that the language 
provides for virtual memory in the following sense: 
a program written in the language is compiled for, 
and will be running within, a virtual memory; how- 
ever, the run-time system does not contain a VMM; 
it only contains an interface that allows the con- 
struction of a VMM as part of the program. 

The VMM is not unlike a user-defined trap 
handler. The programmer is not forced to provide 
it, but if he does not, his program may crash. The 
following may happen with our virtual memory ker- 
nel: 

- If the program fits in main memory, a 
page fault will never occur and nobody will ask 
for a VMM. 

- If the program does not fit, page faults 
may occur. These will produce entries in the swap- 
queue. If a process is provided that empties the 
queue, it is supposed to do the swapping as a VMM. 
But: 

- If no such process is provided, the swap- 
queue will never be read, and some (or all) pro- 
cesses may get hung up. This would be the analogon 
to the above mentioned program crash. 

Note that placing the swapqueue in the kernel is 
not essential to the above approach. The real 
problem with CPASCAL is that devices (of which 
the processor is one) are not treated in the same 
way as ordinary objects in the language. MODULA 
could have provided a "device module" for the pro- 
cessor which turns a page fault trap into a send 
message operation for an explicitly programmed 
swapqueue. 

3.5 There is one serious flaw in our considera- 
tions up to this point. Since VMM is an integral 
part of the program which is subject to swapping, 
the necessary functional hierarchy is not en- 
forced. (Compare this with a trap handler that may 
cause traps of the very type it handles.) A clean 
solution requires a language amplification which 
tells the compiler which parts of the system are 
swappable. Appropriate information is then put in- 
to some of the descriptors. These descriptors are 
hidden from the VMM by the desctable io, and VMM 
must ask the kernel which page frames are available 
for swapping. 

In the MUSIC system a pragmatic approach has 
been taken. The programmer of MUSIC has some idea 
of how memory is distributed over the system parts, 
so he can see to it that VMM will never swap out 
parts of itself. 

The most notable aspect of the approach just 
sketched is the fact that it is applicable not on- 
ly for one special system level, namely just VMM. 
We have implicitly presented a seneral principle 
that solves the implementation problem demonstra- 
ted at the end of 2.3 . The answer to the lan- 
guage designer can (need not) be: "provide many 
nice features for operating system design" and 
to the implementor of the run-time system: "don't 
provide ready made implementations of those featu- 
res, but do provide 'links' like swapqueue and 
desctable". We will embark on this principle in 
the next section before radically turning around 
in section 5. 
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4. Generalization: Programming Process Manage- 
ment in A Language that Provides Processes 

4.! The applicability of the general principle 
mentioned above is elucidated by trying it on an- 
other language feature, namely processes/synchroni- 
zation. Taking this very feature has the advantage 
that we can stick to CPASCAL for presentation (al- 
though this is, again, immaterial to the subject). 
Moreover, this may be more convincing than taking 
some feature "above" virtual memory, say files, 
which might be "too familiar" to the reader as a 
language feature. 

So, imagine the process management (PM) is 
removed from the CPASCAL kernel. It should be re- 
placed by an appropriate mechanism that allows to 
implement it as part of any operating system writ- 
ten in CPASCAL. 

The nature of such a mechanism can be derived 
from section 3 if we emphasize that processor and 
memory can both be viewed as resource types. The 
operating system deals with managing the available 
instances of resource type "CPU" as well as those 
of resource type "main memory frame". PM provides 
virtual processors by multiplexing the real CPU 
(or several CPUs). VMM provides virtual address 
spaces by multiplexing main memory frames. Common 
to both is the phenomenon of preemptions. 

Note that if the system fits in main memory, 
no VMM is required. Thus, if the number of processes 
does not exceed the number of processors, it suf- 
fices for PM to provide a simple-minded synchroni- 
zation mechanism based on busy waiting. For these 
cases the kernel could arrange an appropriate allo- 
cation of memory and processors to the system com- 
ponents at initialization time. 

4.2 We continue to discuss the multi-processor 
case for the sake of generality. When a process is 
ready to run, it competes for the resource "proces- 
sor" and has to queue up in what is cormnonly known 
as "ready list". The ready list can be seen as a 
straight analogon to the swapqueue. It is most con- 
veniently thought of as being served by a separate 
"processor management process"which is itself not 
subject to, but part of PM (process management on 
the CD Cyber series comes close to this view since 
a separate processor is used). 

Note that PM consists of two parts, the pro- 
cessor management which serves the ready list, and 
the synchronization management (plus timer) which 
produces arrivals onme ready list. Comparison 
with VMM shows that demand swapping has no analo- 
gon to the latter part of PM; arrivals on the swap- 
queue are caused by hardware traps. 

PM knows about allocation of the processors 
to the processes, just as VMM knows about alloca- 
tion of memory frames to (pages of) processes. As 
VMM becomes active upon a non-empty swapqueue, so 
PM is activated upon arrival of an entry in the 
ready list. PM then decides, according to some 
scheduling strategy, whether a processor should be 
preempted from some selected process and allocated 
to the requesting process. Compare this with the 

activity of a VMM for demand swapping! 

The CPASCAL VMM described in section 3 makes 
use of 

PROCEDURE io 
(CONST pageframe: RECORD pageno: integer; 

frameno : integer 
END; 

CONST operation: (swapin,swapout) ; 
CONST device: (memory) ) 

for preemption and allocation of memory frames to 
pages (a). Accordingly, PM should provide a proce- 
dure for allocation and deallocation of processors 
to and from processes, e.g. 

PROCEDURE io 
(CONST proc: RECORD processno: integer; 

processorno: integer 
END; 

CONST operation: (allocate,deallocate); 
CONST device: (cpus) ) 

Preempting a processor from a process amounts to 
stopping the processor and deallocating it from 
the process; deallocation means copying the pro- 
cessor's state information into the process's 
control block. Allocation means loading the pro- 
cessor with state information from a process con- 
trol block and then starting the processor. 

Now, it is not necessary for the processor 
management part of PM to be implemented as a se- 
parate "meta-process". It can simply figure as a 
system part which is executed by the processes 
themselves. If a process has entered PM, it may 
recognize that it has to relinquish its processors, 
either due to a release of that resource (blocking) 
or to preemption. In both cases, after having per- 
formed the necessary bookkeeping operations (i.e. 
juggling with lists of process control blocks), 
the process should deallocate the processor from 
itself and allocate it to another process which 
is taken from the ready list. Conceptually, this 
is achieved by 

io ( (currentproces s, currentproces sor), 
deallocate, cpus); 

eurrentprocess : = selectprocess ; 
io ( (currentproces s, currentproce s sor), 

allocate, cpus) 

This is not quite correct, though; the above op- 
erations must form a single 

PROCEDURE io (CONST processno : integer ; 
CONST operation: (resume); 
CONST device: (processor) ) 

which essentially is a coroutine exchange .jump and 
is conmlonly known as 

PROCEDURE resume(CONST processno : integer) 

Our first conclusion is: CPASCAL must provide 
a coroutine feature which allows explicitly con- 
trol over the scheduling of processors. Of course, 
this result is not surprising. However, note that 
in our context 

(a)Each page is supposed to have its fixed loca- 
tion on the swapping device for all time. 
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- the exchange jump is just a special case 
of a procedure for resource allocation/dealloca- 
tion offered as an io operation by the kernel, 

- the language proper is not changed in any 
respect. 

4.3 PM must be entered upon occurrence of one of 
the following events: 

- start and completion of an input/output 
operation executed on behalf of an io call; 

- entry to an exit from a monitor, operations 
"delay" and "continue"; 

- time slice end; 

- operation "init" for a process or a moni- 
tor. 

In the original CPASCAL version, these events re- 
suit in activation of the kernel via traps or in- 
terrupts; the kernel will then perform all the 
necessary PM operations. In our version it is also 
the case that the kernel is activated. However, 
the kernel acts only as a first-level interrupt 
handler which passes control to a PM written in 
CPASCAL. This is done by simulating calls of entry 
procedures to an object PM contained in the CPASCAL 
program(a). 

Although shared, this object cannot conven- 
iently be conceived as a monitor, because one of 
its duties is to provide for monitors. Thus PM 
should be implemented as a class object, which al- 
so prevents processes from entering it by explicit 
calls. However, lest PM is entered recursively (or 
by more than one process in a multi-processor sys- 
tem), it must operate in a low-level mutual ex- 
clusion state. It is the task of the PM interface 
in the kernel to establish this state before simu- 
lating the call to PM. The mutual exclusion state 
must be left upon return from PM. This can most 
conveniently be achieved by the following technique: 
the process does not return directly to the inter- 
rupted program but makes a little detour; the PM 
interface adjusts the process' stack in such a way 
that normal return from the class object PM results 
in leaving the mutual exclusion state before re- 
turning to the interrupted program. 

Since the ready list is incorporated in PM, a 
special io operation like the one applied to the 
swapqueue is not required, An io operation for ac- 
cess to data administered by the kernel is not re- 
quired either, for the following reasons: 

1. monitor data are maintained within PM; 

2. process control blocks are maintained 
within PM; 

3. the exchange jump io accomplishes the 
necessary context switching; 

4. if a process issues an io operation, 
PM is informed about this and can book that pro- 
cess as waiting for completion of io; in due time 

(a)More sophisticated structures than a single mo- 
nolithic object would be preferred in practice. 

PM will be informed by the kernel about completion 
and can take appropriate action. 

The only io operation that is required in ad- 
dition to that on device "processor" is an oper- 
ation on device "timer", e,g. 

PROCEDURE io(CONST time: integer; 
CONST operation: (set); 
CONST device: (timer) ) 

Note that the kernel does not know of processes, 
but only of coroutines. Regarding 4 the kernel 
only delivers the identity of a coroutine to PM 
which in turn associates a process control block 
with that coroutine. The correspondence between 
process control blocks and coroutines is estab- 
lished at system initialization time, by execution 
of the "iniD" operations for process objects. 

System initialization proceeds along the same 
lines as in the original CPASCAL kernel. There is 
one additional issue, though; the PM object must 
be initialized, and all its entry procedures must 
be made known to the kernel. This task causes the 
same difficulties that urged us to implement VMM 
as a process instead of a monitor. Without changing 
CPASCAL, these difficulties are insurmountable. - 
We will not remedy this deficiency in our treat- 
ment of the subject because the underlying prob- 
lem seems to be of a very trivial technical na- 
ture. 

One further remarks concerning initialization 
is in order. If not all the PM functions are real- 
ly used in some system, they need not be present 
and will consequently be omitted during initiali- 
zation. E.g. if there are no more processes than 
processors, no processor preemptions and thus no 
time slicing is required; this means that if the 
timer is not used for other purposes, it will 
never be set by PM; in this case it is not neces- 
sary for PM to provide an entry procedure for 
timer interrupt handling. 

4.4 Implementing PM outside the kernel in the way 
just described diminishes the kernel to an extent 
where it is responsible only for truly hardware 
dependent operations, e.g. driving a peripheral 
device or passing the processor to another corou- 
tine. Exceptions only arise with "pseudo-devices" 
like swapqueue for VMM. Here the kernel also acts 
as a general servant which compensates technical 
difficulties. 

This approach of a minimal kernel seems ap- 
pealing not only for aesthetical reasons, but also 
because it effectively overcomes the annoyance 
with given fixed implementations of system parts 
like PM and VMM. The merits of the minimal kernel 
with respect to system portability are obvious, 

If portability is of no concern the compiler 
may generate machine code for the target processor. 
In this case, if the quality of the compiled code 
can compete with that of good assembly code, effi- 
ciency is not notably degraded by removing PM from 
the kernel. 

A look at the language MODULA with the above 
considerations in mind reveals a curiosity. The 

178 



machine specific language feature called "device 
module" allows writing device drivers in the lan- 
guage, whereas process handling and synchroniza- 
tion are predefined (language features called pro- 
cess, interface module) and pre-implemented. This 
is made possible by treating the device drivers as 
special-kind processes. 

5. Conclusion: Towards Really Safe Languages for 
Operating System Design and Implementation 

The technique that has been exhibited in sec- 
tions 3 and 4 is based on the attitude that a rich 
language is available (including a compiler) or 
will be designed and implemented in advance to 
system construction. 

Such an approach is feasible and useful with 
languages like CPASCAL and MODULA for the construc- 
tion of small-scale systems. However, if the con- 
struction of more powerful and versatile systems 
is intended, the language becomes more and more 
complex since it has to reflect all the system 
features. Furthermore, this implies that design 
of the language is tightly connected with system 
design. Since the latter is evolving only gradual- 
ly, there is no point in having available or con- 
structing in advance a super-language for operating 
system construction. 

If we refuse to go back to the MOHLLs, two al- 
ternatives remain. The first one is working with, 
and at the same time designing, a language family 
the members of which are generated during system 
evolution, along with the functional hierarchy. 
The second and probably more attractive one is 
working with only one language that is not rich with 
special features, but powerful with respect to ex- 
tension and shrinkase. 

Extensibility can be achieved starting off 
with well-known data structuring facilities such 
as type and module. The notion of shrinkage means 
the hiding of system features that have been intro- 
duced previously by extension or existed a priori 
by support of a minimal kernel in the sense of 4.4. 
An example for the former features is given by a 
facility for disk access by block number that works 
with a built-in disk scheduling algorithm; this fa- 
cility should be invisible "above" the file system, 
i.e. to all system parts that can use the file sys- 
tem. An example for the latter features is given by 
a "resume" operation for coroutines which must be 
invisible "after" it has been used to implement 
multiprogramming. 

The possibility of shrinkage is absolutely 
necessary if the language is to support system in- 
tegrity, i.e. to prohibit access to "dangerous" 
system features. An ad-hoc technique to establish 
programmer-controlled scopes is the use of ex- 
ported/imported names ([Koster 76], [Wirth 77], 
[Lampson et al. 77]). - Another desideratum, se- 
lective access rights to system objects, can be 
enforced by simple technique as well [Jones/Liskov 
76]. 

The notion of safe language encompasses a 
large spectrum of safeguards against inadvertant 

access to objects, calls of procedures, use of 
types etc., that are conceptually not available 
to the respective programs. CPASCAL sets an exam- 
ple for restrictive scopes but is poor with re- 
spect to hiding of low-level features. The worst 
concept of all is the use of standard procedures 
(notably "io") that are available throughout the 
programs. 

Most desirable however, for operating system 
construction - and least considered by language 
designers until now - is the possibility of treat- 
ing the hardware devices as objects in the lan- 
guage. The attraction of such an approach is due 
to language economy and true hardware independence. 
The programmer builds his operating system on top 
of a "standard prelude" which reflects a slightly 
embellished hardware. This embellishment is ac- 
complished by a minimal run-time system that does 
not even contain device drivers but only machine 
dependent realizations of operations like "startio". 
This operation is one of the set of operations 
that apply to an abstract data type, say "printer". 
Hiding of this "real" printer from higher system 
levels will then be achieved by no other techniques 
than are used for any "normal" type. 
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