
Proceedings of Sixth ACM Symposium on Operating Systems Principles (November 1977) 173-180.

BEYOND CONCURRENT PASCAL

Klaus-Peter LShr
Technische Universitgt Berlin

Abstract -- We take the view that operating
systems should not be written in assembly language.
Alternatives are machine oriented high-level lan-
guages and "safe" languages in the style of Con-
current Pascal and MODULA. A serious drawback of
the Concurrent Pascal approach is the fact that
those very language features that pertain to op-
erating systems must be implemented separately,
using some other language. A technique is present-
ed which solves this problem. This technique is
based on user-defined trap handling. It is exhi-
bited by demonstrating how virtual memory systems
can be constructed using Concurrent Pascal and how
process management can be moved from the kernel to
the Concurrent Pascal program. We demonstrate that
a fundamental solution of the difficulties with
Concurrent Pascal, MODULA, and similar languages
cannot be found in going back to classical implemen-
tation languages, but in designing languages that
are not rich with special features, but powerful
with respect to extension and shrinkage.

Keywords: System implementation languages,
system kernels, traps, language reliability.

1. Introduction: High-Level Languages for
Operating System Construction

1.1 Most operating system designers agree, at
least in principle, that operating systems should
not be implemented using assembly language. How-
ever, there is still a controversy between two dif-
ferent attitudes: should we use a medium-level sys-
tems implementation language with some unsafe fea-
tures (like explicit use of memory addresses and
machine instructions), or can we do better, if at
all, with a really safe high-level language?

Like assembly language, implementation lan-
guages are often advocated for their run-time and
memory efficiency. But this is not the real issue.
Careful design and an optimizing compiler can make
a language both safe and efficient. Moreover, the
use of a safe language simplifies system design,
although it may prohibit some tricky fine-grain
programming. An unsafe l~nguage, which has no
strong type checking and allows treating pointers
as integers, necessitates firewalls to guarantee
the integrity of the system against programming
errors of system progranmners and users (not to

mention penetration efforts). A safe language
makes these firewalls unnecessary, reduces the
need for run-time checks, and thus considerably
improves efficiency.

This observation clarifies one aspect of
what is meant by "the choice of the implementation
language has a considerable impact on system
desk". It is the very issue of efficiency plus
reliability that calls for the use of safe lan-
guages.

1.2 The real benefits of implementation lan-
guages in operating systems programming come from
their ability to explicitly deal with the hard-
ware, by accessing processor and device registers
and by executing special instructions.

Classical implementation languages are of
different degrees of insecurity. Some represen-
tatives are (in order of ascending security):
BLISS [Wulf et al. 71] for the DEC I0 and DEC PDP-
II, used in the implementation of the HYDRA system
[Wulf et al. 74]; C [Ritchie 75] for the PDP-II,
used in the implementation of the UNIX time-sharing
system [Ritchie/Thompson 74]; SUE [Clark/Horning
71] for the IBM 360, used in a (not completed)
operating system implementation in Toronto [Atwood
et al. 72]; ESPOL [Burroughs 70a] for the Burroughs
B 6700, used for the Master Control Program for
that machine [Burroughs 7Ob]; EUCLID [Lampson et
al. 77]. The higher a language ranks in this or-
dering, the more it deserves to be called a "ma-
chine-oriented high-level language" (MOHLL, [IFIP
74!). This term stands for a language which is
safe "in principle" but is augmented with a few
unsafe, machine-dependent features. A very clean
solution has been adopted in EUCLID: the unsafe,
machine-dependent language features are confined
to so-called "machine-dependent modules". - The
merits of MOHLL's are obvious, and an efficient
implementation of a MOHLL is certainly superior to
an efficient implementation of a low- or medium-
level implementation language.

Note, however, that we still need an assembly
language interface to the hardware if the language
has no special features suited to solve typical
low-level operating system problems. E.g. if there
is no feature like an interrupt procedure, an
assembly language interface must take care of the
first level interrupt handling. Likewise, if the

173

language does not provide coroutines, special as-
sembly code is required for stack switching. Thus,
the loss in security does not pay in coherent
high-level coding of the system, because the men-
tioned features must nevertheless be added to most
implementation languages through run-time support.

1.3 With the increasing demand for special pur-
pose system software on small computers, the need
for simple and reliable production of this soft-
ware becomes obvious. Since safe languages exist
that allow well-structured implementation of pro-
grams, it is possible to design such languages for
the special purpose of writing a whole operating
system as one program. An operating system is ad-
mittedly a fairly large program, but promising
techniques are emerging for the treatment of large
programs. Their implementation requires languages
with sound structuring aids and the possibility
of separate compilation in an advanced fashion,
most notably with syntactic checks at linking
time.

Turning our attention from implementation to
design, we observe that operating system design
problems are also not much different from those
encountered in design of other software. According-
ly, the programming language used for operating
system construction should at the same time be a
design language, i.e. should assist the designer
and encourage a proper "programming-in-the-large"
by supplying language constructs that reflect ge-
nerally acknowledged design principles.

The use of such a language facilitates the
construction and maintenance of an operating sys-
tem considerably. The problemofinterfacing such
a language with the hardware is solved in the fol-
lowing way. For the sake of security, there is no
explicit access to memory locations and registers,
nor is it possible to insert machine instructions
into the high-level code; a small interface, serv-
ing as a run-time system for the language, builds
a convenient abstract machine on top of the con-
crete hardware. The run-tlme system can be con-
ceived as the lowest level or kernel for all oper-
ating systems expressible in the language.

The relevance of this approach has been de-
monstrated by the widely acclaimed success of the
programming language Concurrent Pascal (subsequent-
ly abbreviated CPASCAL) [Brinch Hansen 75a]. We
can write non-trivial operating systems in CPASCAL
within a few man-months. The implementation distri-
buted by the authors also demonstrates the possibi-
lity of a limited portability of small operating
systems. Another recent example of such a language
is MODULA [Wirth 77] which is superior to CPASCAL
mainly due to the flexible structuring aid of the
"module" and the tight control over input/output.

CPASCAL approach is characterized by 4 or 5 essen-
tials:

I. The language is high-leyel, with the ex-
ception of some tiny security leaks (this looks
inevitable at the present state of the art).

2. A complete operating system (not includ-
ing files on backing store) can be written as one
compilation unit if desired.

3. The language incorporates features con-
sidered fundamental for writing operating systems,
namely pro___cesses and synchronization.

4. A medium-size run-time system supports
these language features as well as input/output.
Operation of the run-time system is triggered
both by traps/interrupts and by explicit program
action through language features or standard pro-
cedures. The run-time system serves as an invariant
kernel for all operating systems written in the
language.

(5. Portability of the operating systems
written in the language is achieved by making the
compiler generate virtual codewhich is executed
by an interpreter incorporated in the kernel. -
This characteristic is not essential for the pur-
pose of this paper.)

2.2 There is no doubt about the usefulness of
the language as a design tool, but this usefulness
is limited by the fact that processes and synchro-
nization constructs are predefined in the lan-
guage (essential no. 3). This forces the designer
to use monitors for mutual exclusion and synchro-
nization, whether he likes them or not. We take
the view that using monitors, with the inherent
rule that any shared data object must be realized
as a monitor, is not just a matter of taste, but
is a serious design decision. E.g. we may be wil-
ling to live with the strict exclusion provided
by monitors running on an uniprocessor system,
whereas in a multiprocessor configuration time-
critical tasks might suffer from the strict ex-
clusion principle which imposes unnecessary timing
constraints on co-operating processes. Taking the
CPASCAL approach, the language designer has al-
ready made design decisions for you, and you are
forced to build on top of those.

Worse than that, we have to live not only
with given design decisions but also with a given
i mplementatio ~ of these (essential no. 4). The de-
signer who wants to implement process management
and device drivers (in MODULA process management
only) by himself, must re-program the system ker-
nel, which is written in another language. This
additional language is not necessarily assembly

language (a) . Anyway, the goals stated in 1.3 are
not achieved because we now have two languagepro-
cessors to work with.

2. Limitations of the Concurrent Pascal Approach

2.1 We do not want to discuss here CPASCAL as a
programming language. As in any language there are
strengths and flaws. At issue is the CPASCAL
approach to operating system construction. The

(a)At the Technical University of Berlin a CPASCAL
kernel has been implemented on an IBM 370/158
under VM 370 using SUE-360 [Clark/Horning 71]
and a small assembly language interface as
mentioned in 1.2

174

2.3 Adopting the CPASCAL approach to operating
system construction requires a choice from some-
where between two extremes:

- A relatively o~ language leads to a small
kernel, but is hard to program a "real" operating
system in. Example: (Sequential) PASCAL with a
run-time system that runs on the bare hardware.

- A relatively rich language includes half
of the operating system in the kernel. Example:
A hypothetical variant of CPASCAL where the com-
piled programs are running within a virtual mem-
ory instead of residing in main memory; in that
case the kernel must be drastically enlarged for
the necessary virtual memory management.

(CPASCAL with its original kernel lies between
these extremes.) Whatever decision we make, we
cannot overcome the annoying trade-off between
small kernels and attractive systems. And making
our choice, we have lost much freedom of design,
and freedom of implementation is achieved only at
the expense of kernel modification.

3. A Case Study: Virtual Memory Management
in Concurrent Pascal

3.1 There is a way out of the previously mention-
ed dilemma. Let us stick to CPASCAL and try to de-
vise an operating system that supports virtual
memory. On the one hand, the security of CPASCAL
should not be decreased by adding features for the
realization of the virtual memory management; on
the other hand, the virtual memory management
should not be included in the kernel.

With the PDP-II memory management hardware in
mind, we can imagine an - admittedly crude - paging
system in which pages of 4K words are subject to
swapping. Suppose the kernel contains a virtual
memory manager, VMM. In that case no harm is done,
if a CPASCAL program does not fit in main memory.
The system is loaded and initialized on a swapping
device; the kernel swaps the necessary pages into
main memory on a demand basis or using a clever
working-set oriented scheme. Note that this would
not require any change in the CPASCAL compiler.
Now, if we wish to implement the VMM as part of
the CPASCAL program that constitutes the whole op-
erating system (except kernel), some interface
must be added to the kernel that triggers the op-
eration of VMM upon the occurrence of page fault
traps and of interrupts from the swapping device.
What is the nature of these interfaces?

3.2 Since there is no inherent reason to implement
a VMM using a demand paging scheme as a process, we
first think of a monitor implementation. Unfortu-
nately, it is impossible to simulate a monitor call
upon occurrence of a trap in CPASCAL. This is main-
ly due to the fact that the name of an entry pro-
cedure of an object cannot be passed to the kernel
(which is necessary for trap indirection). It is
not possible to remedy this situation by making
changes in the kernel.

Next, we try a process implementation for
VMM. Since the message queue for this process

cannot be implemented as a monitor either (for the
reasons just mentioned), it must be implemented as
part of the kernel. Reading from the queue can be
accomplished via the standard procedure io. This
procedure is originally intended for input/output,
but can in fact be used as a general purpose
"kernel call". We define a "device" called "swap-
queue" and provide appropriate "input/output" op-
erations:

PROCEDURE io
(VAR fault: RECORD processno: integer;

pageno: integer
END;

CONST operation: (input,output,lookup);
CONST device: (swapqueue)) (a)

An anonymous operation on swapqueue is simu-
lated by the kernel upon occurrence of a page
fault trap. The identity of the process that caused
the fault is entered into the queue, and with it
the identity of the page at fault. The trapped
process is delayed. Next, operation "input" should
be issued by VMM for removal and delivery of the
process identity as well as the identity of the
page that should be swapped in for that process.
In fact, VMM is delayed upon an input operation
until swapqueue is nonempty. As soon as the page
is available, VMM should perform the operation
"output" which signals the completion of the page
transfer to the process and allows it to continue(b).
- Thus, swapqueue serves as a special purpose pro-
cess communication device which is not programmed
in CPASCAL as a monitor but is part of the kernel.

The task of handling the swapping device can
be performed by applying the procedure io in the
usual manner just for that device (a slightly dif-
ferent view will be presented in 4.2). The in-
security of the io feature (only limited checks
are performed at compile time) allows any page
transfer between the device and a selected page
frame in main memory.

3.3 Our problem is not solved yet. We have just
managed to establish VMM within a functional hier-
archy (see [Parnas 74], [Parnas 76]) using the
trap detour. However, execution of VMM functions
does not only require bookkeeping of page frames
and controlling page transfer, but also includes
maintenance of a~ descriptors. The latter task
cannot be performed in a straightforward way, be-
cause the descriptor must be available to the
kernel: since any process switch requires changes
to be made in the address map(C) the kernel must
have the descriptors at hand and must know about
their representational details.

(a)CONST is not standard CPASCAL; it has been
added for the sake of clarity.

(b)More elaborate operations on swapqueue could be
useful if VMM was to operate on the swapping
device according to some non-FCFS strategy.
This is omitted here for the sake of simplicity.

(C)Note that this is implementation dependent. We
can conceive of CPASCAL implementations on ma-
chines different from the PDP-II where changing
the address map is not necessary.

175

This way we get into a situation that has
been described by different authors as "inter-
leaving of functional hierarchy and module struc-
ture" or simply "sandwiching" ([Parnas 76],
[Habermann et al. 76]). The kernel may be consi-
dered as consisting of two functional levels, na-
mely maintenance of address spaces and, above this,
process management. The latter need not know about
the representational details of the former, it on-
ly uses its functions (this structure is neatly re-
flected in the quasi-PASCAL comments in the orig-
inal CPASCAL kernel). Now we get a third level,
VMM, which cannot do without knowledge of the re-
presentational details of the first level, al-
though functionally dependent on the second level.

In the CPASCAL environment there is no way for
VMM to get at the inner of the kernel - and this
is alright. A solution ot the problem comes once
more from the io feature. We are able to provide
a special io function that reads and manipulates
descriptors. This io figures as an operation on
the abstract data type "descriptor" and thus allows
changing the representation of descriptors with-
out affecting the operation of VMM. A possible
way of realizing the io operation is:

PROCEDURE io
(VAR descinfo: RECORD base: integer;

resident: boolean;
dirty: boolean

END;
CONST operation: RECORD op: (read,write);

descno: integer
END;

CONST device: (desctable))

all descriptors reside in a central descrip-
tor table called "desctable". They are identified
by their position in that table. The address map
associated with a process is given by a sub-block
of 8 entries within the process control block
which point to descriptor table entries. - Ac-
cessing desctable through io causes no delay for
the executing process.

This is a simplified presentation of the
facts. In reality VMM needs additional informa-
tion about the page states when looking for a
victim to swap out. Also, efficiency can be im-
proved, if several descriptors can be operated
upon instead of just one (e.g. the set of descrip-
tors of all core resident pages).

The above approach has been taken for design
and implementation of a small time-sharing .§ystem
for a PDP-II/4OE at the Technical University of
Berlin [Gr~f et al. 77]. The system is called
MUSIC for m_ulti-user ~ystem in Concurrent Pascal
and is based on SOLO [Brinch Hansen 75b]. It has
been in operation since March 1977 and has proved
to be a valuable tool for experimenting with op-
erating systems, especially with swapping strate-
gies.

3.4 What have we achieved? Did we change the lan-
guage or did we not? - At least we did not make
any change in the compiler. One may argue that by
extending the kernel we silently removed the re-
striction that any program must fit in main memory.

With the new kernel, we find that the language
provides for virtual memory in the following sense:
a program written in the language is compiled for,
and will be running within, a virtual memory; how-
ever, the run-time system does not contain a VMM;
it only contains an interface that allows the con-
struction of a VMM as part of the program.

The VMM is not unlike a user-defined trap
handler. The programmer is not forced to provide
it, but if he does not, his program may crash. The
following may happen with our virtual memory ker-
nel:

- If the program fits in main memory, a
page fault will never occur and nobody will ask
for a VMM.

- If the program does not fit, page faults
may occur. These will produce entries in the swap-
queue. If a process is provided that empties the
queue, it is supposed to do the swapping as a VMM.
But:

- If no such process is provided, the swap-
queue will never be read, and some (or all) pro-
cesses may get hung up. This would be the analogon
to the above mentioned program crash.

Note that placing the swapqueue in the kernel is
not essential to the above approach. The real
problem with CPASCAL is that devices (of which
the processor is one) are not treated in the same
way as ordinary objects in the language. MODULA
could have provided a "device module" for the pro-
cessor which turns a page fault trap into a send
message operation for an explicitly programmed
swapqueue.

3.5 There is one serious flaw in our considera-
tions up to this point. Since VMM is an integral
part of the program which is subject to swapping,
the necessary functional hierarchy is not en-
forced. (Compare this with a trap handler that may
cause traps of the very type it handles.) A clean
solution requires a language amplification which
tells the compiler which parts of the system are
swappable. Appropriate information is then put in-
to some of the descriptors. These descriptors are
hidden from the VMM by the desctable io, and VMM
must ask the kernel which page frames are available
for swapping.

In the MUSIC system a pragmatic approach has
been taken. The programmer of MUSIC has some idea
of how memory is distributed over the system parts,
so he can see to it that VMM will never swap out
parts of itself.

The most notable aspect of the approach just
sketched is the fact that it is applicable not on-
ly for one special system level, namely just VMM.
We have implicitly presented a seneral principle
that solves the implementation problem demonstra-
ted at the end of 2.3 . The answer to the lan-
guage designer can (need not) be: "provide many
nice features for operating system design" and
to the implementor of the run-time system: "don't
provide ready made implementations of those featu-
res, but do provide 'links' like swapqueue and
desctable". We will embark on this principle in
the next section before radically turning around
in section 5.

176

4. Generalization: Programming Process Manage-
ment in A Language that Provides Processes

4.! The applicability of the general principle
mentioned above is elucidated by trying it on an-
other language feature, namely processes/synchroni-
zation. Taking this very feature has the advantage
that we can stick to CPASCAL for presentation (al-
though this is, again, immaterial to the subject).
Moreover, this may be more convincing than taking
some feature "above" virtual memory, say files,
which might be "too familiar" to the reader as a
language feature.

So, imagine the process management (PM) is
removed from the CPASCAL kernel. It should be re-
placed by an appropriate mechanism that allows to
implement it as part of any operating system writ-
ten in CPASCAL.

The nature of such a mechanism can be derived
from section 3 if we emphasize that processor and
memory can both be viewed as resource types. The
operating system deals with managing the available
instances of resource type "CPU" as well as those
of resource type "main memory frame". PM provides
virtual processors by multiplexing the real CPU
(or several CPUs). VMM provides virtual address
spaces by multiplexing main memory frames. Common
to both is the phenomenon of preemptions.

Note that if the system fits in main memory,
no VMM is required. Thus, if the number of processes
does not exceed the number of processors, it suf-
fices for PM to provide a simple-minded synchroni-
zation mechanism based on busy waiting. For these
cases the kernel could arrange an appropriate allo-
cation of memory and processors to the system com-
ponents at initialization time.

4.2 We continue to discuss the multi-processor
case for the sake of generality. When a process is
ready to run, it competes for the resource "proces-
sor" and has to queue up in what is cormnonly known
as "ready list". The ready list can be seen as a
straight analogon to the swapqueue. It is most con-
veniently thought of as being served by a separate
"processor management process"which is itself not
subject to, but part of PM (process management on
the CD Cyber series comes close to this view since
a separate processor is used).

Note that PM consists of two parts, the pro-
cessor management which serves the ready list, and
the synchronization management (plus timer) which
produces arrivals onme ready list. Comparison
with VMM shows that demand swapping has no analo-
gon to the latter part of PM; arrivals on the swap-
queue are caused by hardware traps.

PM knows about allocation of the processors
to the processes, just as VMM knows about alloca-
tion of memory frames to (pages of) processes. As
VMM becomes active upon a non-empty swapqueue, so
PM is activated upon arrival of an entry in the
ready list. PM then decides, according to some
scheduling strategy, whether a processor should be
preempted from some selected process and allocated
to the requesting process. Compare this with the

activity of a VMM for demand swapping!

The CPASCAL VMM described in section 3 makes
use of

PROCEDURE io
(CONST pageframe: RECORD pageno: integer;

frameno : integer
END;

CONST operation: (swapin,swapout) ;
CONST device: (memory))

for preemption and allocation of memory frames to
pages (a). Accordingly, PM should provide a proce-
dure for allocation and deallocation of processors
to and from processes, e.g.

PROCEDURE io
(CONST proc: RECORD processno: integer;

processorno: integer
END;

CONST operation: (allocate,deallocate);
CONST device: (cpus))

Preempting a processor from a process amounts to
stopping the processor and deallocating it from
the process; deallocation means copying the pro-
cessor's state information into the process's
control block. Allocation means loading the pro-
cessor with state information from a process con-
trol block and then starting the processor.

Now, it is not necessary for the processor
management part of PM to be implemented as a se-
parate "meta-process". It can simply figure as a
system part which is executed by the processes
themselves. If a process has entered PM, it may
recognize that it has to relinquish its processors,
either due to a release of that resource (blocking)
or to preemption. In both cases, after having per-
formed the necessary bookkeeping operations (i.e.
juggling with lists of process control blocks),
the process should deallocate the processor from
itself and allocate it to another process which
is taken from the ready list. Conceptually, this
is achieved by

io ((currentproces s, currentproces sor),
deallocate, cpus);

eurrentprocess : = selectprocess ;
io ((currentproces s, currentproce s sor),

allocate, cpus)

This is not quite correct, though; the above op-
erations must form a single

PROCEDURE io (CONST processno : integer ;
CONST operation: (resume);
CONST device: (processor))

which essentially is a coroutine exchange .jump and
is conmlonly known as

PROCEDURE resume(CONST processno : integer)

Our first conclusion is: CPASCAL must provide
a coroutine feature which allows explicitly con-
trol over the scheduling of processors. Of course,
this result is not surprising. However, note that
in our context

(a)Each page is supposed to have its fixed loca-
tion on the swapping device for all time.

177

- the exchange jump is just a special case
of a procedure for resource allocation/dealloca-
tion offered as an io operation by the kernel,

- the language proper is not changed in any
respect.

4.3 PM must be entered upon occurrence of one of
the following events:

- start and completion of an input/output
operation executed on behalf of an io call;

- entry to an exit from a monitor, operations
"delay" and "continue";

- time slice end;

- operation "init" for a process or a moni-
tor.

In the original CPASCAL version, these events re-
suit in activation of the kernel via traps or in-
terrupts; the kernel will then perform all the
necessary PM operations. In our version it is also
the case that the kernel is activated. However,
the kernel acts only as a first-level interrupt
handler which passes control to a PM written in
CPASCAL. This is done by simulating calls of entry
procedures to an object PM contained in the CPASCAL
program(a).

Although shared, this object cannot conven-
iently be conceived as a monitor, because one of
its duties is to provide for monitors. Thus PM
should be implemented as a class object, which al-
so prevents processes from entering it by explicit
calls. However, lest PM is entered recursively (or
by more than one process in a multi-processor sys-
tem), it must operate in a low-level mutual ex-
clusion state. It is the task of the PM interface
in the kernel to establish this state before simu-
lating the call to PM. The mutual exclusion state
must be left upon return from PM. This can most
conveniently be achieved by the following technique:
the process does not return directly to the inter-
rupted program but makes a little detour; the PM
interface adjusts the process' stack in such a way
that normal return from the class object PM results
in leaving the mutual exclusion state before re-
turning to the interrupted program.

Since the ready list is incorporated in PM, a
special io operation like the one applied to the
swapqueue is not required, An io operation for ac-
cess to data administered by the kernel is not re-
quired either, for the following reasons:

1. monitor data are maintained within PM;

2. process control blocks are maintained
within PM;

3. the exchange jump io accomplishes the
necessary context switching;

4. if a process issues an io operation,
PM is informed about this and can book that pro-
cess as waiting for completion of io; in due time

(a)More sophisticated structures than a single mo-
nolithic object would be preferred in practice.

PM will be informed by the kernel about completion
and can take appropriate action.

The only io operation that is required in ad-
dition to that on device "processor" is an oper-
ation on device "timer", e,g.

PROCEDURE io(CONST time: integer;
CONST operation: (set);
CONST device: (timer))

Note that the kernel does not know of processes,
but only of coroutines. Regarding 4 the kernel
only delivers the identity of a coroutine to PM
which in turn associates a process control block
with that coroutine. The correspondence between
process control blocks and coroutines is estab-
lished at system initialization time, by execution
of the "iniD" operations for process objects.

System initialization proceeds along the same
lines as in the original CPASCAL kernel. There is
one additional issue, though; the PM object must
be initialized, and all its entry procedures must
be made known to the kernel. This task causes the
same difficulties that urged us to implement VMM
as a process instead of a monitor. Without changing
CPASCAL, these difficulties are insurmountable. -
We will not remedy this deficiency in our treat-
ment of the subject because the underlying prob-
lem seems to be of a very trivial technical na-
ture.

One further remarks concerning initialization
is in order. If not all the PM functions are real-
ly used in some system, they need not be present
and will consequently be omitted during initiali-
zation. E.g. if there are no more processes than
processors, no processor preemptions and thus no
time slicing is required; this means that if the
timer is not used for other purposes, it will
never be set by PM; in this case it is not neces-
sary for PM to provide an entry procedure for
timer interrupt handling.

4.4 Implementing PM outside the kernel in the way
just described diminishes the kernel to an extent
where it is responsible only for truly hardware
dependent operations, e.g. driving a peripheral
device or passing the processor to another corou-
tine. Exceptions only arise with "pseudo-devices"
like swapqueue for VMM. Here the kernel also acts
as a general servant which compensates technical
difficulties.

This approach of a minimal kernel seems ap-
pealing not only for aesthetical reasons, but also
because it effectively overcomes the annoyance
with given fixed implementations of system parts
like PM and VMM. The merits of the minimal kernel
with respect to system portability are obvious,

If portability is of no concern the compiler
may generate machine code for the target processor.
In this case, if the quality of the compiled code
can compete with that of good assembly code, effi-
ciency is not notably degraded by removing PM from
the kernel.

A look at the language MODULA with the above
considerations in mind reveals a curiosity. The

178

machine specific language feature called "device
module" allows writing device drivers in the lan-
guage, whereas process handling and synchroniza-
tion are predefined (language features called pro-
cess, interface module) and pre-implemented. This
is made possible by treating the device drivers as
special-kind processes.

5. Conclusion: Towards Really Safe Languages for
Operating System Design and Implementation

The technique that has been exhibited in sec-
tions 3 and 4 is based on the attitude that a rich
language is available (including a compiler) or
will be designed and implemented in advance to
system construction.

Such an approach is feasible and useful with
languages like CPASCAL and MODULA for the construc-
tion of small-scale systems. However, if the con-
struction of more powerful and versatile systems
is intended, the language becomes more and more
complex since it has to reflect all the system
features. Furthermore, this implies that design
of the language is tightly connected with system
design. Since the latter is evolving only gradual-
ly, there is no point in having available or con-
structing in advance a super-language for operating
system construction.

If we refuse to go back to the MOHLLs, two al-
ternatives remain. The first one is working with,
and at the same time designing, a language family
the members of which are generated during system
evolution, along with the functional hierarchy.
The second and probably more attractive one is
working with only one language that is not rich with
special features, but powerful with respect to ex-
tension and shrinkase.

Extensibility can be achieved starting off
with well-known data structuring facilities such
as type and module. The notion of shrinkage means
the hiding of system features that have been intro-
duced previously by extension or existed a priori
by support of a minimal kernel in the sense of 4.4.
An example for the former features is given by a
facility for disk access by block number that works
with a built-in disk scheduling algorithm; this fa-
cility should be invisible "above" the file system,
i.e. to all system parts that can use the file sys-
tem. An example for the latter features is given by
a "resume" operation for coroutines which must be
invisible "after" it has been used to implement
multiprogramming.

The possibility of shrinkage is absolutely
necessary if the language is to support system in-
tegrity, i.e. to prohibit access to "dangerous"
system features. An ad-hoc technique to establish
programmer-controlled scopes is the use of ex-
ported/imported names ([Koster 76], [Wirth 77],
[Lampson et al. 77]). - Another desideratum, se-
lective access rights to system objects, can be
enforced by simple technique as well [Jones/Liskov
76].

The notion of safe language encompasses a
large spectrum of safeguards against inadvertant

access to objects, calls of procedures, use of
types etc., that are conceptually not available
to the respective programs. CPASCAL sets an exam-
ple for restrictive scopes but is poor with re-
spect to hiding of low-level features. The worst
concept of all is the use of standard procedures
(notably "io") that are available throughout the
programs.

Most desirable however, for operating system
construction - and least considered by language
designers until now - is the possibility of treat-
ing the hardware devices as objects in the lan-
guage. The attraction of such an approach is due
to language economy and true hardware independence.
The programmer builds his operating system on top
of a "standard prelude" which reflects a slightly
embellished hardware. This embellishment is ac-
complished by a minimal run-time system that does
not even contain device drivers but only machine
dependent realizations of operations like "startio".
This operation is one of the set of operations
that apply to an abstract data type, say "printer".
Hiding of this "real" printer from higher system
levels will then be achieved by no other techniques
than are used for any "normal" type.

Acknowledgement: The author owes much to dis-
dussions with the students who realized the MUSIC
system, Norwin Grgf, Horst Kretschmar, and Bernt
Morawetz. Good advice from Peter Neumann and Nico
Habermann helped to polish the paper.

References

[Atwood et al. 72] J.W. Atwood, B.L. Clark, J.J.
Horning, M.S. Grushcow, K.C. Sevcik, R.C.
Holt, D. Tsichritzis: Project SUE Status
Report. TR CSRG-]I, Univ. of Toronto
(]972)

[Brinch Hansen 75a] P. Brinch Hansen: Concurrent
Pascal Report. Calif. Inst. of Techn.
(1975)

[Brinch Hansen 75b] P. Brinch Hansen: The SOLO
Operating System. Calif. Inst. of Techn.
(1975)

[Burroughs 7Oa] Burroughs Corp.: B 6700 ESPOL
Reference Manual. The Burroughs Corpora-
tion, Detroit (1970)

[Burroughs 7Ob] Burroughs Corp.: Master Control
Program Reference Manual. The Burroughs
Corporation, Detroit (1970)

[Clark/Horning] B.L. Clark, J.J. Horning: The
System Language for Project SUE. ACM
SIGPLAN Notices 6,9 (1971)

[Grgf et al. 77] N. Grgf, H. Kretschmar, K.-P.
LShr, B. Morawetz: How to Design and
Implement Small Time-Sharing Systems Using
Concurrent Pascal. TR 77-09, Fachbereich
Informatik, TU Berlin (1977)

[Habermann et al. 76] A.N. Habermann, L. Flon,
L. Cooprider: Modularization and Hierar-
chy in A Family of Operating Systems,
CACM 19,5 (1976)

17.9

[IFIP 74] W.L. van der Poel, L.A. Maarssen (Ed.):
Machine Oriented Higher Level Languages.
North-Holland Publishing Company, Amster-
dam (1974)

[Jones/Liskov 76] A.K. Jones, B.H. Liskov: A Lan-
guage Extension for Controlling Access to
Shared Data. IEEE Trans. Softw. Eng. 2,4
(1976)

[Koster 76] C.H.A. Koster: Visibility and Types.
ACM SIGPLAN Notices Special Issue 8,2
(1976)

[Lampson et al. 77] B.W. Lampson, J.J. Horning,
R.L. London, J.G. Mitchell, G.L. Popek:
Report On The Programming Language
EUCLID. ACM SIGPLAN Notices 12,2 (1977)

[Parnas 74] D.L. Parnas: On A "Buzzword": Hier-
archical Structure. Proc. IFIP Congress
(]974)

[Parnas 76] D.L. Parnas: Some Hypotheses About
the "Uses" Hierarchy for Operating Sys-
tems. Fachbereich Informatik, Techn.
Hochschule Darmstadt (1976)

[Ritchie/Thompson 74] D.M. Ritchie, K. Thompson:
The UNIX Time-Sharing System. CACM]7,7
(]974)

[Ritchie 75] D.M. Ritchie: C Reference Manual.
Bell Telephone Laboratories, Murray Hill
(1975)

[Wirth 77] N. Wirth: MODULA: A Language for
Modular Multiprogramming. Software -
Practice and Experience, Vol. 7 (]977)

[Wulf et al. 7]] W.S. Wulf, D.B. Russell, A.N.
Habermann: BLISS: A Language for Systems
Programming. CACM 14,12 (]971)

[Wulf et al. 74] W.S. Wulf, E. Cohen, W. Corwin,
A. Jones, R. Levin, C. Pierson, F. Pollack:
HYDRA: The Kernel of A Multiprocessor
Operating System. CACM 17,6 (]974)

180

