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Many contemporary operating systems utilize a system

call inter-ace between the operating system and its clients.

[ncreasing numbers of systems are providing low-level

mechanisms for intercepting and handling system calls in

user code. Nonetheless, they typically provide no higher-

level tools or abstractions for effectively utilizing these

mechanisms. Using them has typically required

reimplementation of a substantial portion of the system

interface from scratch, making the use of such facilities

unwieldy at best.

This paper presents a toolkit that substantially increases

the ease of interposing user code between clients and

instances of the system interface by allowing such code to

be written in terms of the high-level objects provided by

this interface, rather than in terms of the intercepted system

calls themselves. This toolkit helps enable new

interposition agents to be written, many of which would not

otherwise have been attempted.

This toolkit has also been used to construct several

agents including.” system call tracing tools, file reference

tracing tools, and customizable jdesystem views. Examples

of other agents that could be built include.” protected

environments for running untrusted binaries, iogical

devices implemented entirely in user space, transparent

data compression andlor encryption agents, transactional

software environments, and emulators for other operating

system environments.
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1. Introduction

1.1. Terminology

Many contempomry operating systems provide an

interface between user code and the operating system

services based on special “system calls”. One can view

the system interface as simply a special form of structured

communication channel on which messages are sent,

allowing such operations as interposing programs that

record or modify the communications that take place on

this channel. In this paper, such a program that both uses

and provides the system interface will be referred to as a

“system interface interposition agent” or simply as an

“agent” for short.

1.2. Overview
This paper presents a toolkit that substantially increases

the ease of interposing user code between clients and

instances of the system interface by allowing such code to

be written in terms of the high-level objects provided by

this interface. rather than in terms of the intercepted system

calls themselves. Providing an object-oriented toolkit

exposing the multiple layers of abstraction present in the

system interface provides a useful set of tools and
interfaces at each level. Different agents can thus exploit

the toolkit objects best suited to their individual needs.

Consequently, substantial amounts of toolkit code are able

to be reused when constructing different agents.

Furthermore, having such a toolkit enables new system

interface implementations to be written, many of which

would not otherwise have been attempted.

Just as interposition is successfully used today to extend

operating system interfaces based on such communication-

based facilities as pipes, sockets, and inter-process

communication channels, interposition can also be

successfully used to extend the system interface. In this

way, the known benefits of interposition can also be

extended to the domain of the system interface.

1.3. Examples

The following figures should

system interface and interposition.
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Figure 1-1 depicts uses



of the system interface without interposition. In this view,

the kernell provides all instances of the operating system

interface. Figure 1-2 depicts the ability to transparently

interpose user code that both uses and implements the

operating system interface between an unmodified

application program and the operating system kernel.

Figure 1-3 depicts uses of the system interface with

interposition. Here, both the kernel and interposition

agents provide instances of the operating system interface.

Figure 1-4 depicts more uses of the system interface with

interposition. In this view agents, like the kernel, can share

state and provide multiple instances of the operating system

interface.

I Operating System Kernel II
Operating System /nterface J

~openo, r-eado, state, forko,
kilio, _exi to, signals, . . . )

Figure 1-1: Kernel provides instances of system interface
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Figure 1-2 User code interposed at system interface

1A. Motivation

Today, agents are regularly written to be interposed on

simple communication-based interfaces such as pipes and

sockets. Similarly, the toolkit makes it possible to easily

write agents to be interposed on the system interface.

Interposition can be used to provide programming

facilities that would otherwise not be available. In

‘The term ““kernel” is used throughout this paper to refer to the default
or lowest-level implementation of the operating system in qresti on. While

this implementation is often run in processor kernel space, this need not be

the case, as in the Mach 3.0 Unix Semer/Emulator [ 16].
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Figure 1-3: Kernel and agents provide
instances of system interface
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Figure 1-4: Agents can share state and provide
multiple instances of system interface

particular, it can allow for a multiplicity of simultaneously

coexisting implementations of the system call services,

which in turn may utilize one another without requiring

changes to existing client binaries and without modifying

the underlying kernel to support each implementation.

Alternate system call implementations can be used to

provide a number of services not typically available on

system call-based operating systems. Some examples

include:
. System Call Tracing and Monitoring Facilities:

Debuggers and program trace facilities can be
constructed that allow monitoring of a program’s use
of system services in a easily customizable manner.

. Emulation of Other Operating Systems: Alternate
system call implementations can be used to
concurrently run binaries from variant operating
systems on the same platform. For instance, it could
be used to run ULTRIX [13], HP-UX [10], or UNIX
System V [3] binaries in a Mach/BSD environment.

● Protected Environments for Running Untrusted
Binaries: A wrapper environment can be
constructed that allows untmsted, possibly malicious,
binaries to be run within a restricted environment that
monitors and emulates the actions they fake, possibly
without actually performing them, and limits the
resources they can use in such a way that the
untrusted binaries are unaware of the restrictions. A
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wide variety of monitoring and emulating schemes
are possible from simple automatic resource
restriction environments to heuristic evaluations of
the target program’s behavior, possibly including
interactive decisions made by human beings during
the protected execution. This is particulady timely in
today’s environments of increased software sharing
with the potential for viruses and Trojan horses.

● Transactional Software Environments:
Applications can be constructed that provide an
environment in which changes to persistent state
made by unmodified programs can be emulated and
performed transactionally. For instance, a simple
“run transaction” command could be constructed

that runs arbitrm-y unmodified programs (e.g.,

/bin / csh) such that all persistent execution side
effects (e.g., filesystem writes) are remembered and
appem within the transactional environment to have
been performed normally, but where in actuality the
user is presented with a “commit” or “abort”
choice at the end of such a session. Indeed, one such
transactional program invocation could occur within
another, transparently providing nested transactions.

● Alternate or Enhanced Semantics: Environments
can be constructed that provide alternate or enhanced
semantics for unmodified binaries. One such

enhancement in which people have expressed interest
is the ability to “mount” a search list of directories
in the filesystem name space such that the union of
their contents appears to reside in a single directory.
This could be used in a software development
environment to allow distinct source and object
directories to appear as a single directory when
running make.

1.5. Problems with Existing Systems

Increasing numbers of operating systems are providing

low-level mechanisms for intercepting system calls.

Having these low-level mechanisms makes writing

interposition agents possible. For instance, Mach [1, 16]

provides the interception facilities used for this work,

SunOS version 4 [44] provides new pt race ( ) operations

used by the trace utility, and UNIX System V.4 [4]

provides new /proc operations used by the truss utility,

Nonetheless, they typically provide no higher-level tools or

abstractions for effectively utilizing these mechanisms,

making the use of such facilities unwieldy at best.

Part of the difficulty with writing system call

interposition agents in the past has been that no one set of
interfaces is appropriate across a range of such agents other

ihan the lowest level system call interception services.

Different agents interact with different subsets of the

operating system interface in widely different ways to do

different things. Building an agent often requires

implementation of a substantial portion of the system

interface. Yet, only the bare minimum interception

facilities have been available,

common denominator that

providing only the lowest

is minimally necessary.

Consequently, each agent has typically been constructed

completely from scratch. No leverage was gained from the

work done on other agents.

1.6. Key Insight

The key insight that enabled me to gain leverage on the

problem of writing system interface interposition agents for

the 4.3BSD [25] interface is as follows: while the 4.3BSD

system interface contains a large number of different

system calls, it contains a relatively small number of

abstractions whose behavior is largely independent. (In

4.3BSD, the primary system interface abstractions are

pathnames, descriptors, processes, process groups, files,

directories, symbolic links, pipes, sockets, signals, devices,

users, groups, permissions, and time.) Furthermore, most

calls manipulate only a few of these abstractions.

Thus, it should be possible to construct a toolkit that

presents these abstractions as objects in an object-oriented

programming language. Such a toolkit would then be able

to support the substantial commodities present in

different agents through code reuse, while also supporting

the diversity of different kinds of agents through

inheritance.

2. Research Overview

2.1. Design Goals

The four main goals of the toolkit were:
1. Unmodified System: Unmodified applications

should be able to be run under agents. Similarly,
the underlying kernel should not require changes to
support each different agent (although the kernel
may have to be modified once in order to provide

support for system call interception, etc. so that
agents can be written at all).

2. Completeness: Agents should be able to both use
and provide the entire system interface. This
includes not only the set of requests from
applications to the system (i.e., the system calls) but
also the set of upcalls that the system can make
upon the applications (i.e.. the signals).

3. Appropriate Code Size: The amount of new code
necessary to implement an agent using the toolkit
should only be proportional to the new functionality
to be implemented by the agent — not to the size of
the system interface. The toolkit should provide
whatever boilerplate and tools are necessary to
write agents at levels of abstraction that are
appropriate for the agent functionality. rather than
having to write each agent at the raw system call
level.

4. Performance: The performance impact of running
an application under an agent should be negligible.

2.2. Design and Structure of the Toolkit

I have designed and built a toolkit on top of the Mach

2.5 system call interception mechanism [1, 5, 16] that can

be used to interpose user code on the 4.3BSD [25] system

call interface. The toolkit currently runs on the Intel
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386/486 and the VAX. The toolldt is implemented in C++

with small amounts of C and assembly language as

necessary. Multi-threaded hybrid 4,3BSD/Mach 2.5

programs are not currently supported.

As a consequence of using the Mach 2.5 system call

interception mechanism, which redirects system calls to

handler routines in the same address space, interposition

agents reside in the same address spaces as their client

processes. The lowest layers of the toolkit hides this Mach-

specific choice, allowing agents to be constructed that

could be located either in the same or different addresses

spaces as their clients.

This toolkit is structured in an object-oriented manner,

allowing agents to be written in terms of several different

layers of objects by utilizing inheritance. Abstractions

exposed at different toolkit layers currently include the

filesystem name space, pathnames, directories, file

descriptors and the associated descriptor name space, open

objects referenced by descriptors, and signals, as well as

the system calls themselves. (These abstractions are

discussed further in Section 2.3.) Support for additional

abstractions can be incrementally added as needed by

writing new toolkit objects that represent the new

abstractions and by using derived versions of the existing

toolkit objects that reference the new abstractions through

the new objects. Indeed, the current toolkit was

constructed via exactly this kind of stepwise refinement,

with useful toolkit objects being produced at each step.

The structure of the toolkit permits agents to be written in

terms of whatever system interface abstractions are

appropriate to the tasks they perform. Just as derived

objects are used to introduce new toolkit functionality,

interposition agents change the behavior of particular

system abstractions by using agent-specific derived

versions of the toolkit objects representing those

abstractions.

Different interposition agents need to affect different

components of the system call interface in substantially

different ways and at different levels of abstraction. For

instance, a system call monitoring/profding agent needs to

manipulate the system calls themselves, whereas an agent

providing alternate user filesystem views needs to

manipulate higher-level objects such as pathnames and

possibly file descriptors. The agent writer decides what

layers of toolkit objects are appropriate to the particular

task and includes only those toolkit objects. Default

implementations of the included objects provide the normal

behavior of the abstractions they represent. This allows

derived agent-specific versions of toolkit objects to inherit

this behavior, while adding new behavior in the

implementations of the derived objects. I believe that the

failure to provide such multi-layer interfaces by past system
call interception mechanisms has made them less useful

than they might otherwise have been.

2.3. Toolkit Layers
Figure 2-1 presents a diagmm of the primary classes

currently provided with the interposition toolklt. Indented

classes are subclasses of the classes above. Arrows

indicate the use of one class by another. Many of these

classes are explained in more detail in this section.

numeric_syscall

bsd_numeric_syscall

symbol ic_syscall

desc_symbol ic_syscall
/

/

path_ symbol ic_syscall

\

descriptor_ set pathname_set

I
open_descript or_set

descriptor
t

pathname

open_descriptor

open_object

directory

Figure 2-1: Primary interposition toolkit classes

The lowest layers of the toolkit perform such functions

as agent invocation, system call interception, incoming

signal handling, performing system calls on behalf of the

agent, and delivering signals to applications running under

agent code. Unlike the higher levels of the toolkit, these

layers are sometimes highly operating system specific and

also contain machine specific code. These layers hide the

mechanisms used to intercept system calls and signals,

those that are used to call down from an agent to the next

level system interface, and those that are used to send a

signal from an agent up to the application program. These

layers also hide such details as whether the agent resides in

the same address space as the application program or

whether it resides in a separate address space, These layers

are referred to as the boilerplate layers. These layers are

not normally used directly by interposition agents.

The lowest (or zeroth) layer of the toolkit which is

directly used by any interposition agents presents the

system interface as a single entry point accepting vectors of

untyped numeric arguments. It provides the ability to

register for specific numeric system calls to be intercepted

and for incoming signal handlers to be registered. This

layer is referred to as the numeric system call layer.
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Example interfaces provided by the numeric system call

layer are as follows:

ciass numeric_ syscail {

public:

virtual int syscall (int number, int args[l ,

int rv[2], void *regs);

virtual void init(char ‘agentargv[] );
virtual void signal_handler(int sig, int

code, struct sigcontext *context!;
void register_interest (inc rLUMber) ;
void register_interest_range (int low, int

high) ;
};

Forinstance,using just the numeric system calllayer,by

using a derived version of the numeric_ syscall class

with an agent-specific syscallo method, an agent

writer could trivially write an agent that printed the

arguments ofa chosen set of system calls as uninterpreted

numeric vahres. As another example, one range of system

call numbers could be remapped to calls on a different

rangeatthis level.

The first layer of the toolkit intended for direct use by

most interposition agents presents the system interfaces a

set of system call methods on a system interface object.

When this layer is used by an agent, application system

calls are mapped into invocations on the system call

methods of this object. (This mapping is itself done by a

toolkh-supplied derived version of the

numeric_syscall object.) This layerisreferred toas

the symbolic system call layer.

Example interfaces provided by the symbolic system

call layer are as follows:

class symbol ic_syscall {

public:

virtual void init(char ‘agentargv[ 1 ) ;
virtual void init_childo;

virtual int sys_exit(int status, int

rv[2]);

virtual int sys_fork(int rv[21) ;
virtual int sys_read(int fd, void ‘buf, int

cnt, int rv[2]);

. . entries forallother4.3BSD rytemcalls. ..

virtual int unknown_syscall (int number, int

‘args, int rv[2], struct emul_regs

*regs) ;
virtual void signal_handler(int sig, int

code, struct sigcontext *context);

};

Agents can interpose on individual system calls by using

a derived version of the symbolic_syscall object

with agent-specific methods corresponding to the system

calls to be intercepted. For instance, the timex agent,

which is described in Section 3.3.1, changes the apparent

time of day by using a derived symbolic_syscall

object with anew gettimeofday () method. Likewise,

the trace agent, described in Section 3.3.2, prints the

arguments to each executed system call in a human-
readable from individual system call methods in a derived
symbolic_sysca llobject.

The second layer of the toolkit isstnrctured around the

primary abstractions provided by the system call interface.

In 4.3BSD, these include pathnames, file descriptors,

processes, and process groups. This layer presents the

system interface assets of methods on objects representing

these abstractions. Toolkit objects currently provided at

this level are the filesystem name space

(pathname_set), resolved pathnarnes (pathname), the

file descriptor name space (descriptor_set), active

file descriptors (descriptor), and reference counted

open objects (open_object). Such operations as

filesystem name space transformations and filesystem

usage monitoring are done at this level.

For example, agents can interpose on pathname

operations by using derived versions of two classes:

pathname_set and pathname. Thepathname_set

class provides operations that affect the set of pathnames,

i.e., those that create or remove pathnames. The

pathname class provides operations on the objects

referenced by the pathnames.

Example interfaces provided by the pathname_set

class are as follows:

class pathname_set : public descriptor_ set {

protected:

virtual int getpn (char *path, int flags,
pathname “pn);

public :

virtual void init (char *agent argv[l , class

PATH_SYMBOLIC_BASE *path_sym);

j/ System calls with knowledge of pathnames

virtual int open(char *path, int flags, int

mc]de, int rv[2]);

virtual int link(char *path, char ‘newpath,

int rv[2]);
virtual int unlink(char *path, int rv[2));

... entries for other 4.3BSD system calls asing pathnames ...
};

Example interfaces provided by the pathname class

areas follows:

class pathname {
public:

virtuai int open(int flags, int mode, int

rv[2j , OPEN_OBJECT_CLASS **oo) ;

virtual int link(pathname ‘newpn, int
rv[2]);

virtual int unlink(lnt rv12j ) ;

... entries forother4.3BSD system calls referencing objecls via

pathnames...
};

The key to both of these interrelated classes is the

getpno operation, which looksupapathname string and

resolves it to a reference to a pathname object. The

default implementation ofallthepathname_s et system

call methods simply resolves their pathname strings to

pathname objects using getpn () and then invokes the

corresponding pathname method on the resulting object.

The pathname method is responsible for actually

performing therequested operation onthe objectreferenced

bythepalhname.



With the getpn ( ) operation to encapsulate pathname

lookup, it is possible for agents to supply derived versions

of the pathname_set object with a new getpn ( )

implementation that modifies the treatment of all

pathnames. For instance, this can be used to logically

rearrange the pathname space, as was done by the union

agent (described in Section 3.3.3). Likewise, it provides a

central point for name reference data collection, as was
done by the df s_t race agent (described in Section

3.5.3).

A third set of toolkit layers focuses on secondary objects

provided by the system call interface, which are normally

accessed via primary objects. Such objects include files,

directories, symbolic links, devices, pipes, and sockets.

These layers present the system interface as sets of methods

on objects, with specialized operations for particular classes

of objects. The only toolkit object currently provided at

this level is the open directory directory object.

Operations that are specific to these secondary objects such

as directory content transformations are done at this level.

For example, agents can interpose on directory

operations by using derived versions of the directory

class. The directory class is itself a derived version of the

open_ob j e c t class (one of the second layer classes for

file descriptor operations), since directory operations are a

special case of operations that can be performed on file

descriptors.

Example interfaces provided by the directory class

are as follows:
C:aSS directory : public OPEN__OBJECT_CLASS (

pu~lic:
virtual int next_ direntry ( ) ;

struct direct *direntry; II Set by

next_ direntry ( )

public:

virtual int read (void ‘buf, int cnt, int
rv [2]);

virtual int lseek(off_t offset, int whence,

int rv [2]);

virtual int getdirentries (vc]id *buf, int
cnt, long ‘basep, int rv[2] ) ;

1;

Just as the get pn ( ) method encapsulated pathname

resolution, the next_direntry ( ) method encapsulates

the iteration of individual directory entries implicit in

reading the contents of a directory. This allows the union

agent (described in Section 3.3.3) to make it appear that the

full contents of a set of directories is actually present in a

single directory by providing a new next_di rent ry ( )

function that iterates over the contents of each member

directory. (And yes, that iteration itself is accomplished via

the underlying next_dirent ry implementations.)

2.4. Using the Toolkit to Build Agents

As I built the toolkit, I also used it to implement several
interposition agenta. These agents provide:

o System Call and Resource Usage Monitoring:
This demonstrates the ability to intercept the full
system catl interface.

● User Configurable Filesystem Views: This

demonsmates the ability to transparently assign new
interpretations to filesystem pathnames.

● File Reference Tracing Toots that are compatible
with existing tools [30] originally implemented for
use by the Coda [38, 23] filesystem project: this
provides a basis for comparing a best available

equivalent implementation to a facility provided by
an agent.

3. Results

3.1. Goal: Unmodified System

3.1.1. Unmodified Applications

Agents constructed using the system interface

interposition tootkit can load and run unmodified 4.3BSD

binaries. No recompilation or relinking is necessary. Thus,

agents can be used for all progmm binaries — not just

those for which sources or object files are available.

Applications do not have to be adapted to or modified

for particular agents. Indeed, the presence of agents should

be transparent to applications.2

3.1.2. Unmodified Kernel

Agents constructed using the system interface

interposition toolkit do not require any agent-specific

kernel motilcations. Instead, they use general system call

handling facilities that are provided by the kernel in order

to implement all agent-specific system call behavior. Also,

a general agent loader program is used to invoke arbitrwy

agents, which are compiled separately from the agent

loader.

The Mach 2.5 kernel used for this work contains a

primitive, task_ set_emulation ( ) , that allows

4.3BSD system calls to be redirected for execution in user

space. Another primitive, htg_unix_syscall ( ) ,

permits calls to be made on the underlying 4.3BSD system

call implementation even though those calls are being

redirected.

3.2. Goal: Completeness
Agents constructed using the system interface

interposition toolkit can both use and provide the entire

4.3BSD system interface. This includes not only the

system calls, but also the signals. Thus, both the downward

path (from applications to agents and from agents to the

underlying system implementation) and the upward path

(from the underlying implementation to agents and from

agents to applications) are fully supported.

Completeness gives two desirable results:
1. All programs can potentially be run under agents.

By contrast, if completeness did not hold, there
would have been two classes of programs: those

‘Of course, an application that is intent on determining if it is running

under an agent probably can, if only by probing memory or performing
precise performance measurements.
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that used a restricted set of features that agents
could handle, and those that used features that
agents could not handle. The interposition toolkit
avoids these problems.

2. Agents can potentially modify all aspects of the

system interface. Agents are not restricted to
modifying only subsets of the system behavior. For

instance, it would have been easy to envision
similar systems in which agents could modify the
behavior of system calls, but not incoming signals.

3.3. Goal: Appropriate Code Size

Table 3-1 lists the source code sizes of three different

agents, broken down into statements of toolkit code used,

and statements of agent specific code. 3 These agents were

chosen to provide a cross section of different interposition

agents, ranging from the very simple to the fairly complex

and using different portions of the interposition toolkit.

Each of these agents is discussed in turn.

~ Name Statements Statements Statements

I tirnex 2467 35 2502 I

~trace 246’7 1348 3815 I

I union 3977 166 4143 I

Table 3-1: Sizes of agents, measured in semicolons

3.3.1. Size of the Timex Agent

The t imex agent changes the apparent time of day. It

is built upon the symbolic system call and lower levels of

the toolkit (see Section 2.3). The toolkit code used for this

agent contains 2467 statements. The code specific to this

agent consists of only two routines: a new derived

implementation of the get t imeo f day ( ) system call and

an initialization routine to accept the desired effective time

of day from the command line. This code contains only 35

statements.

The core of the t imex agent is as follows:
class timex_symbo lic_syscall : public

symbol ic_syscall {

public:
virtual void init (char ‘agent argv[] ) ;
virtual int sys_gettimeofday (struct timeval

*tp, struct timezone ‘tzp, int rv [2] ) ;
private:

int offset; // Difference between real
and funky time

};

int t imex_symbol ic_syscal 1:: sys_gettimeof day (

struct timeval *tp, struct timezone *tzp,

int I-V[2])

3Note: me ~cm~ metric used was to count semicolons. For C and

C++, tlus gives a better measure of the aetuat number of statements
preseut m the code than counting tines in the source fdes.

{
int ret;

ret =
sytiolic_syscall : : sys_gettimeofciay (tp,

tzp, rv);

if (ret >= O && tp) {

tp->tv_sec += offset;

}
return ret;

J

The new code necessary to construct the t imex agent

using the toolkit consists only of the implementation of the

new functionality. Inheritance from toolkit objects is used

to obtain implementations of all system interface behaviors

that remain unchanged.

3.3.2. Size of the Trace Agent

The trace agent traces the execution of client

processes, printing each system call made and signal

received. Like the t imex agent, it is built upon the

symbolic system call and lower levels of the toolkit, which
contain 2467 statements. However, the code specific to

this agent is much larger, containing 1348 statements. The

reason for this is simple: unlike the t imex agent, the new

work of the trace agent is proportional to the size of the

entire system interface. Derived versions of each of the

114 4.3BSD system calls plus the signat handler are needed

to print each call name and arguments, since each call has a

different name and typically takes different parameters.

Even so, the new code contains less than 12 statements per

system call, 10 of which typically are of the form:

virtual int sys_read(int fd, void *buf, int

cnt, int rv [2]);
(linefiom TRACE_SYMBOL I C_ CLASS class declaration)

int TRACE_ SYMBOL IC_CLASS: : sys_read( int fd,

{

}

void *buf, int cnt, int rv [2] )

register int ret;

print_ start ( ) ;

fprintf (f, “read(%d, Ox%x, Ox%x) . . . l\II”,
fd, buf, cnt) ;

fflush (f) ;
ret . TRAcE_SYMBOLI C_BASE: : sys_read ( fd,

buf, cnt, rv) ;
print_ start ( ) ;

fprintf (f, “ . . . read(%d, Ox%x, Ox%x) -~”,

fd, buf, cnt) ;

print_ retx( ret, rv) ;
return ret;

As with the t imex agent, the new code necessary to

construct the trace agent using the toolkit consists only

of the implementation of the new functionality. Inheritance

from toolkit objects is used to obtain implementations of all

system interface behaviors that remain unchanged.

3.3.3. Size of the Union Agent

The union agent implements union directories, which

provide the ability to view the contents of lists of actual

directories as if their contents were merged into single

“union” directories. It is built using toolkit objects for

pathnames, directories, and descriptors, as welt as the
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symbolic system call and lower levels of the toolkit. The

toolkit code used for this agent contains 3977 statements.

The code specific to this agent consists of three things: a

derived form of the toolkit pathname object that maps

operations using names of union directories to operations

on the underlying objects, a derived form of the toolkit

directory object that makes it possible to list the logical

contents of a union directory via getdirentries ( ) and

related calls, and an initialization routine that accepts

specifications of the desired union directories from the

command line. Yet, this new code contains only 166

statements.

The new code necessary to constmct the union agent

using the toolkit consists only of the implementation of the

new functionality. As with the other agents, inheritance

from toolkit objects is used to obtain implementations of all

system interface behaviors that remain unchanged.

3.3.4. Size Results

‘l’he above examples demonstmte several results

pertaining the code size of agents written using the

interposition toolkit. One result is that the size of the

toolkit code dominates the size of agent code for simple

agents. Using the toolkit, the amount of new code to

perform useful modifications of the system interface

semantics can be small.

Furthermore, the amount of agent specific code can be

proportional to the new functionality being implemented by

the agent, rather than proportional to the number of system

calls affected. For instance, even though the union

dwectory agent needs to change the behavior of all 30 calls

that use pathnames, and all 48 calls that use descriptors, or

70 calls in all (eight of which use both), it is written in

terms of toolkit objects that encapsulate the behavior of

these abstractions, rather than in terms of the system calls

that use them. Thus, the agent specific code need only

implement the new functionality since the toolkit provides

sufficient underpinnings to make this possible.

Finally, there can be substantial code reuse between

different agents. All the agents listed above were able to

use the symbolic system call and lower levels of the toolkit,

consisting of 2467 statements. Both the union agent and

df s_t race agent4 are also able to use the descriptor,

open object, and pathname levels of the toolkit, reusing a

total of 3977 statements. Rather than modifying an

implementation of the system interface in order to augment

its behavior, the toolkit makes it possible to implement

derived versions of the base toolkit objects, allowing the

base toolkit objects that implement the system interface to

be reused.

4Tlre d f s_t ra c e agent unplements file reference tracrng tools that are
compatible with exlstmg tools [30] onginatly Implemented for use by tbe

Coda [38, 23] filesystem project. This agent IS discussed further m
SectIon 3.5.3.

3.4. Goal: Performance

3.4.1. Application Performance Data

This section presents the performance of running two

applications under several different agents. The two

applications chosen differ both in their system call usage

and their structure: One makes moderate use of system

calls and is structured as a single process; the other makes

heavy use of system calls and is structured as a collection

of related processes. Likewise, the agents chosen range

from very simple to fairly complex. The results are

discussed in Section 3.4.2.

3.4.1.1. Performance of Formatting a Document

Table 3-2 presents the elapsed time that it takes to

format a preliminary draft of my dissertation with

Scribe [36] on a VAX 6250 both using no agent and when

run under three different agents. In each case, the time

presented is the average of nine successive runs done after

an initial run from which the time was discarded.

This task requires 716 system calls. When run without

any agents, it takes 131.5 seconds of elapsed time.

k==%Agent Name Seconds % Slowdown

It imex 132.0 0.5% 1

I trace 135.0 2.5% I

union 136.5 3.5%

Table 3-2: Time to format my dissertation

When run under the simplest agent, t imex, an

additional half second of overhead is added, giving an

effective additional cost of under one half percent of the

base run time. When run under trace, an extra 3.5

seconds of overhead are introduced. Furthermore, when

run under un i on, the most complex agent considered,

there is only an additional 5.0 seconds, giving an effective

agent cost of 3.590 of the base run time.

It comes as no surprise that trace, while conceptually

simple, incurs perceptible overheads. Each system call

made by the application to the trace agent results in at

least an additional two write ( ) system calls in order to

write the trace output.5

3.4.1.2. Performance of Compiling C Programs

Table 3-3 presents the elapsed time that it takes to

compile eight small C programs using Make [15] and the

GNU C compiler [40] on a 25 MHz Intel 486. In each case,

the time presented is the average of nine successive runs

done after an initial run from which the time was discarded.

STrace output, ~ not buffered across system calls sIJ It WI1l nOt be 10st ‘f

the process IS kdled.
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To do this, Make runs the GNU C compiler, which in

turn runs the C preprocessor, the C code generator, the

assembler, and the linker for each program. This task

requires a total of 11877 system calls, inchtding 64

fork ( ) /execve ( ) pairs. When run without any agents,

it takes 16.0 seconds of elapsed time.

Make 8 programs

Agent Name Seconds Y. Slowdown

None 16.0

~t imex 19.0 19% I

I trace 33.0 107% I

Iunion 29.0 82% I

Table 3-3: Time to make 8 programs

When run under the simplest agent, t imex, an

additional three seconds of overhead are added, giving an

effective additional cost of 19% of the base runtime. When

run under union, which interposes on most of the system

calls and which uses several additional layers of toolkit

abstractions, the additional overhead beyond the no agent

case is 13.0 seconds, giving an effective additional cost of

82% of the base runtime. When run under trace, an

additional 17.0 seconds of run time are incurred, yielding a

slowdown of 1079ZO.

Again, it comes as no surprise that union introduces

more overhead than t imex. It interposes on the vast

majority of the system calls, unlike t imex, which

interposes on only the bare minimum plus

get t imeo f day ( ) . Also, union uses several additional

layers of implementation abstractions not used by t imex.

As with the previous application, the larger slowdown

for trace is unsurprising. Given the large number of

system calls made by this application and the additional

two writ e ( ) operations performed per application

system call for writing the trace log, the log output time

constitutes a significant portion of the slowdown.

An analysis of low-level performance characteristics is

presented in Sections 3.5.1.1 and 3.5.1.2.

3.4.2. Application Performance Results

The application performance data demonstrates that the

performance impact of running an application under an

agent is very agent and application specific. The

performance impact of the example agents upon formatting
my dissertation was practically negligible, ranging from

0.5% for the timex agent to 2.5% for the trace agent.

However, the performance impact of the example agents

upon making the eight smaII C programs was significant,

ranging 19% for timex to 10790 for trace.

Unsurprisingly, different programs place different demands

upon the system interface, and different agents add
different overheads.

The good news is that the additional overhead of using

an agent can be small relative to the time spent by

applications doing actuat work. Even though no

performance tuning has been done on the current toolkit

implementation, the overheads already appear to be

acceptable for certain classes of applications and agents.

Furthermore, the agent overheads are of a pay-per-use

nature. Calls not intercepted by interposition agents go

directly to the underlying system and result in no additiomd

overhead.

Finally, even though some performance impact is clearly

inevitable, presumedly the agent will have been used

because it provides some benefit. For instance, agents may

provide features not otherwise available, or they may

provide a more cost-effective means of implementing a

desired set of features than is otherwise available. The

performance “lost” by using an interposition agent can

bring other types of gains.b

3.5. Other Results

3.5.1. Low-level Performance Measurements

3.5.1.1. Micro Performance Data

This section presents the performance of several low-

level operations used to implement interposition and of

several commonly used system calls both without and with

interposition.

Table 3-4 presents the performance of several low-level

operations used to implement interposition. All

measurements were taken on a 25 MHz Intel 486 running

Mach 2.5 version X144. The code measured was compiled

with gcc or g++ version 1.37 with debugging ( –g) symbols

present.

Performance of Low Level Operations I

Operation ~ psec ~

C procedure call with 1 arg, result 1.22 I

C++ virtual procedure call with 1 arg, result 1.94 I

Intercept and return from system call 30

ht g_unix_sys ca 11 ( ) overhead 37

Table 3-4: Performance measurements of
individual low-level operations

Table 3-5 presents the performance of several
commonly used system caIls both without interposition and
when a simple interposition agent is used. The
interposition agent, t ime_symbo 1 ic, intercepts each

system call, decodes each call and arguments. and calls

C++ virtual procedures corresponding to each system call.

These procedures just take the default action for each

6For a discussion on the tradeoffs of using interposition agents, see
Section 5.3.
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system cal~ they make the same system call on the next

level of the system (the instance of the system interface on

which the agent is being run). This allows the minimum

toolkit overhead for each intercepted system call to be

easily measured. Measured pathnames are in a UFS [27]

fdesystem and contain 6 pathname components.

1 Performance of System Calls I
Operation psec psec psec

without with toolkit
agent agent over-

head

~getpid ( ) 25 170 145 ~

I gettirneofday ( ) 47 214 167 I

~ fstato 54 220 166 I

read ( ) lK of data 370 579 209

stat () 892 1101 209

forko, wait (). _exit () 10350 22350 12000

1execve ( ) 9720 20000 10280 ~

Table 3-5: Performance measurements of
individual system calls

3.5.1.2. Micro Performance Results

Two times from Table 3-4 are particularly significant.

First, it takes 30psec. to intercept a system call, save the

register state, call a system call dispatching routine, return

from the dispatching routine, load a new register state, and

return from the intercepted system call. This provides a

lower bound on the totat cost of any system call

implemented by an interposition agent.

Second, using htg_unix_syscall ( ) 7 to make a

system call adds 37psec. of overhead beyond the normal

cost of the system call. This provides a lower bound on the

additional cost for an agent to make a system call that

otherwise would be intercepted by the agent.

Thus, any system call intercepted by an agent that then

makes the same system call as part of the intercepted

system call’s implementation will take at least 67~sec.
longer than the same system call would have if made with

no agent present. Comparing the 67~sec. overhead to the

normal costs of some commonly used system calls (found

in Table 3-5) helps puts this cost in perspective.

The 67~sec. overhead is quite sign~lcant when

compared to the execution times of simple calls such as

getpid ( ) or get t imeof day ( ) , which take 25~sec.

and 47psec., respectively, without an agent. It becomes

less so when compared to read ( ) or stat ( ) , which take

711re htg_unix_syscal 1 ( 1 facdity pernnts calls to be made on the

underlying 4.3 BSD system call Implementation even though those calls

are being intercepted.

370psec. and 892psec. to execute in the cases measured

without an agent. Hence, the impact will always be

significant on small calls that do very little work; it can at

least potentially be insignificant for calls that do real work.

In practice, of course, the overheads of actual

interposition agents are higher than the 67j,tsec. theoretical

minimum. The actual overheads for most system calls

implemented using the symbolic system call toolkit level

(see Section 2.3) range from about 140 to 210~sec.. as per

Table 3-5. Overheads for fork ( ) and execve ( ) are

significantly greater, adding approximately 10 milliseconds

to both, roughly doubling their costs.

The execve ( ) call is more expensive than most

because it must be completely reimplemented by the toolkit

from lower-level primitives, unlike most calls where the

version provided by the underlying implementation can be

used. The underlying implementation’s execve ( ) catl

can not be used because it clears its caller’s address space.

While the application must be reloaded, the agent needs to

be preserved. Thus, the extra expense of execve ( ) is

due to having to individually perform such operations as

clearing the caller’s address space, closing a subset of the

descriptors, resetting signat handlers, reading the program

ffle, loading the executable image into the address space,

loading the arguments onto the stack, setting the registers,

and transferring control into the loaded image, all of which

are normally done by a single execve ( ) call. Likewise,
fork ( ) and _exit ( ) are more expensive due to the

number of additional bookkeeping operations required.

While the current overheads certainly leave room for

optimization (starting with compiling the agents with

optimization on), they are already low enough to be

unimportant for many applications and agents, as discussed

in Section 3.4.2.

Finally, it should be stressed that these performance

numbers are highly dependent upon the specific

interposition mechanism used. In particular, they are

strongly shaped by agents residing in the address spaces of

their clients.

3.5.2. Portability

The interposition toolkit should port to similar systems

such as SunOS and UNIX System V. Despite toolkit

dependencies on such Mach facilities as the particular

system call interception mechanism used, all such

dependencies were carefully encapsulated within the lowest

(boilerplate) layers of the toolkit. None of the toolkit layers

above the boilerplate directly depends on Mach-specific

services. Higher toolkit layers, while being intentionally

4.3BSD specific, contain no such dependencies. This

4.3BSD dependency imposes at most minor portability

concerns to other Urm-derived systems, given their

common lineage and resulting substantial similarity. Thus,
it should be possible to port the toolkit by replacing the

Mach-dependent portions of the boilerplate layers with

equivalent services provided by the target environment,
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Likewise, interposition agents written for the toolkit

should also readily port. Even if there are differences

between the system interfaces. the toolkit port should be

able to shield the agents from these differences, unless. of

course, the agents are directly using the facilities which

differ.

One caveat, however, is probably in order. While a port

of the toolkit could shield interposition agents from low-

level system interface differences, it certainly can not

shield them from system performance differences. If the

toolkit is ported to systems that provide significantly slower

system call interception mechanisms (as, for instance,

mechanisms based on UNIX signals are likely to be), then

some agents which previously exhibited acceptable

slowdown might exhibit unacceptable slowdown when

ported.

3.5.3. Comparison to a Best Available Implementation

As an element of this research, an interposition agent

(df s_t race) was constructed that implements tile

reference tracing tools that are compatible with the existing

kernel-based DFSTrace [30] tracing tools originally

implemented for use by the Coda [38, 23] filesystem

project. This was done to provide a realistic basis for

comparing a best available implementation of a task that

was implemented without benefit of the tootkit with an

equivalent interposition agent constructed using the tootkit.

While this comparison is not presented in detail here8

several of the resulting conclusions are worth noting. Two

key points made evident by the comparison are:
● Agents can be easy to construct. It appears that

constructing an interposition agent that provides an
enhanced implementation of the system interface can
beat least as easy and possibly easier than modifying
an existing operating system implementation to
perform the equivalent functions.

● Agents may not perform as well as monolithic
implementations. Agents that need to access
resources maintained by the underlying operating

system implementation will be limited in their
performance by the overhead involved in crossing
the system interface boundary in order to access
those resources. Hence, the best monolithic
implementation of a given facility needing access to
system resources will atways perform better than the
best interposition-based implementation of the same
facility. For instance, the kernel-based DFSTrace
tools in the default mode caused a 3.0% slowdown
while executing the AFS filesystem performance
benchmarks [19]. The agent-based implementation
caused a 64% slowdown under the same workload.

Other points also made evident by the comparison are:
● Agents can be as small as the equivalent changes to a

monolithic implementation. Interposition agents
built using the interposition toolkit can contain no

more new code than the amount of code changed or
added to a monolithic system implementation to
implement equivalent facilities. For instance, the
original DFSTrace kernel and user data collection
code contains 1627 statements, compared to 1584
statements for the agent-based implementation.

e Agents can be better structured than monolithic
implementations. Interposition agents built using the
interposition toolkit can be more logically structured

and be more portable than a monolithic
implementation of equivalent facilities.

. Agents require no system modifications. Unlike
monolithic implementations, where providing an
enhanced implementation of a system often requires
modifying the code implementing the system,
interposition agents can provide enhanced
implementations as an independent layer requiring no
modifications to the underlying system. For
instance, the original DFSTrace implementation
required the modification of 26 kernel files in order

to insert data collection code under conditional
compilation switches; the agent-based
implementation required no modifications to existing

code since inheritance was used to add functionality.
Also, the kernel-based implementation uses four
machine-dependent tiles per machine type; the agent-
based implementation is machine independent.

In summary, the interposition agent was more logically

structured. was probably simpler to write and modify, and

required no system modifications to implement or run. The

kernel-based tracing tools were more efficient.

4. Related Work
This section presents a brief survey of past work

providing the ability to interpose user code at the system

interface or to otherwise extend the functionality available

through the system interface. This topic does not appear to

be well described in the literature; despite intensive

research into past systems I have been unable to find a

comprehensive meatment of the subject.

In particular, no general techniques for building or

structuring system interface interposition agents appem to

have been in use, and so none are described. Even though a

number of systems provided mechanisms by which

interposition agents could be built, the agents that were

built appem to have shared little or no common ground. No

widely applicable techniques appear to have been

developed; no literature appeatx to have been published
describing those ad hoc techniques that were used.

Thus, the following treatment is necessarily somewhat

anecdotal in nature, with some past interposition agents and

other system extensions described only by personal

communications. Nonetheless, this section attempts to

provide a representative, if not comprehensive, overview of

the related work.

‘See [21] for a detaited presentation of this comparison
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4.1. Overview of Past Agents

A large number of systems have provided low-level

facilities sufficient to interpose user code at the system

interface. Both the number and types of interposition

agents that have been built using these facilities have varied

widely between the different systems. Those agents that

have been built can be broken down into five somewhat

overlapping categories:
1. Complete operating system emulations such as

VM [33] emulating 0S/360 or TSO, TENEX [7, 48]
emulating TOPS- 10, and RSEXEC [47] emulating
an Arpanet-wide TENEX.

2. Debuggers and debugging facilities, such as those

for CAL TSS [43], DTSS [24], ITS [14], and
SunOS [44].

3. System call trace facilities, such as the $‘SET

TRAP JSYS” facility under the
TENEXflops-20 [12] EXEC, the truss program

under UNIX System V.4 [4], and the trace
program under SunOS version 4.

4. Adding new facilities to the operating system

interface, as was done in 0S6 [41, 42], CAL TSS,
and the MS-DOS [29]/Windows [28] environment.

5. Providing enhanced implementations of the existing
operating system interface (often enhanced
filesystem implementations), as was done in CAL
TSS. TENEX, the Newcastle Connection [8],
NFS [50], ITOSS [34], Watchdogs [6], Taos [26],

and particularly in the Macintosh [2] and MS-DOS.

Stackable interfaces are known to be useful in other

domains as welt. For instance, communication protocols

are composed horn stackable layers in the x-Kernel [20].

Streams are regularly stacked under UNIX System V [4].

Stackable layers are used for constructing flexible

filesystems in Ficus [18, 17] and with an enhanced Vnode

interface [11].

Finally, interposition is certainly commonly used on

communication channels in message-based systems. For

instance, interposition was regularly used in the

Accent [35] and V [9] systems.

4.2. Analysis of Past Agents
Each of these interposition agents was constructed by

hand; almost no code was reused. In particular, whatever

boilerplate code was necessary in order to intercept, decode

and interpret calls made to the raw system interface

typically had to be constructed for each agent. Whatever

levels of abstraction that were necessary in order to build

each agent were typicatt y constructed from scratch.

Nonetheless, despite these difficulties, a number of

applications of interposition have been built, taking

advantage of the apparent flexibility and configurability

provided by utilizing a layered approach to system

implementation. In particular, the fact that today people

pay real money for interposition agents that provide

enhanced implementations of operating system interfaces

(see [31, 37,32,45,28,39,46, 49] to name just a few)

appears to validate the claim that interposition can be a

useful and effective system building paradigm.

5. Conclusions

5.1. Summary of Results
This research has demonstrated that the system interface

can be added to the set of extensible operating system

interfaces that can be extended through interposition. Just

as interposition is successfully used today with such

communication-based facilities as pipes, sockets, and inter-

process communication channels. this work has

demonstrated that interposition can be successfully applied

to the system interface. This work extends the known

benefits of interposition to a new domain.

It achieves this result through the use of an interposition

toolkit that substantially increases the ease of interposing

user code between clients and instances of the system

interface. It does so by allowing such code to be written in

terms of the high-level objects provided by this interface,

rather than in terms of the intercepted system calls

themselves.

The following achievements demonstrate this result
● an implementation of a system call interposition

toolkit for the 4.3BSD interface has been built under
Mach,

● the toolkit has been used to construct the agents
previously described,

● major portions of the toolkit have been reused in
multiple agents,

● the agents have gained leverage by utilizing
additional functionality provided by the toolkit,
substantially simplifying their construction, and

● the performance cost of using the toolkit can be small
relative to the cost of the system call interception
mechanism and the operations being emulated.

A more detailed presentation of these results can be

found in [21].

5.2. Contribution
This research has demonstrated both the feasibility and

the appropriateness of extending the system interface via

interposition. It has shown that while the 4.3BSD system

interface is large, it actually contains a small number of

abstractions whose behavior is largely independent.

Furthermore, it has demonstrated that an interposition

toolkit can exploit this property of the system interface.

Interposition agents can both achieve acceptable

performance and gain substantial implementation leverage

through use of an interposition toolkit.

These results should be applicable beyond the initiat

scope of this research. The interposition toolkit should port

to similar systems such as SunOS and UNtX System V.

Agents written for the toolkit should also port. The lessons
learned in building this interposition tootkit should be

applicable to building similar toolkits for dissimilar

systems, as explored in [22]. For instance, interposition
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toolkits could be constructed for such interfaces as the MS-

DOS system interface, the Macintosh system interface, and

the X Window System interface.

Today, agents are regularly written to be interposed on

simple communication-based interfaces such as pipes and

sockets. Similarly, the toolkit makes it possible to easily

write agents to be interposed on the system interface.

Indeed, it is anticipated that the existence of this toolkit will

encourage the writing of such agents, many of which would

not otherwise have been attempted.

5.3. Applicability and Tradeoffs
Interposition is one of many techniques available. As in

other domains such as pipes, filters, IPC intermediaries,

and network interposition agents, sometimes its use will

yield a substantial benefit, while sometimes its use would

be inappropriate. As with other layered techniques, peak

achievable performance will usually not be achieved.

Nonetheless, interposition provides a flexibility and ease of

implementation that would not otherwise be available.

5.4. Vision and Potential
The potential opened up by interposition is enormous.

Agents can be as easy to use as filters. They can be as easy

to construct as normal application programs. The system

interface can be dynamically customized. Interface

changes can be selectively applied. Indeed, interposition

provides a powerful addition to the suite of application and

system building techniques.
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