v RISC

Past and Future Trends in
Architecture and Hardware

David Patterson
pattrsn@eecs.berkeley.edu

SOSP History Day October 3, 2015

Outline

Part | - Past Part Il — Future

50 years of Computer HW Technology
Architecture History: * End of Moore’s Law

* 1960s: * Flash vs. Disks
Computer Families / * Fast DRAM
Microprogramming * Crosspoint NVRAM

« 1970s: CISC Open ISA & RISC-V

« 1980s: RISC » Case for Open ISAs

« 1990s: VLIW * Tour of RISC-V ISA

« 2000s: NUMA vs. * RISC-V Software Stack

Clusters * RISC-V Chips

L' 4 IBM Compatibility Problem in early 1960s

RISC

By early 1960’s, IBM had

4 incompatible lines of computers!
701 - 7094

650 — /7074
/702 — /7080
1401 — /7010

Each system had its own

e Instruction set

e [/O system and Secondary Storage:
magnetic tapes, drums and disks

e Assemblers, compilers, libraries,...

e Market niche: business, scientific, real time, ...

= [BM System/360 — one ISA to rule them all
3

L4 IBM 360: A Computer Family

Model 30 . Model 70
Storage 8K - 64 KB 256K - 512 KB
Datapath 8-bit 64-bit
Circuit Delay 30 nsec/level 5 nsec/level
Registers Main Store Transistor Registers

The IBM 360 is why bytes are 8-bits long today!

IBM 360 instruction set architecture (ISA) completely hid the
underlying technological differences between various models.

Milestone: The first true ISA designed as portable hardware-
software interface!

With minor modifications it still survives today!

:’ IBM System/360 Reference Card
e (“Green card”

|
e e

</ Control versus Datapath

RISC

*Processor designs can be split between datapath, where
numbers are stored and arithmetic operations computed,
and control, which sequences operations on datapath
*Biggest challenge for early computer designers was getting
control circuitry correct

Control = Maurice Wilkes invented the
idea of microprogramming to
design the control unit of a

processor, 1958
— Logic expensive compared to
ROM or RAM
— ROM cheaper than RAM
— ROM much faster than RAM

\
Instruction Cértrol Lines | Condition?
/ /VVVVV\

Datapath
PC
Inst. Reg.

alu /

\
Busy? Afdress Data

Main Memory

N4

Microprogramming in IBM 360

RISC

Model M30 M40 M50 M65
Datapath width 8 bits 16 bits 32 bits 64 bits
Microcode size 4k x 50 4k x 52 | 2.75k x 85 | 2.75k x 87
Clock cycle time (ROM) 750 ns 625 ns 500 ns 200 ns
Main memory cycle time 1500 ns | 2500 ns 2000 ns 750 ns
Annual rental fee (1964 5) | S48,000 | $54,000 | $115,000 | $270,000
Annual rental fee (2015 $) | $570,000 | $650,000 | $1,400,000 | $3,200,000

L4 IC technology, Microcode, and CISC

RISC

* Logic, RAM, ROM all implemented using MOS
transistors

» Semiconductor RAM = same speed as ROM

» With Moore’s Law, memory

for control store could grow
= Allowed more complicated
instruction sets (CISC)
» Minicomputer (TTL server)
Example:
Digital Equipment
VAX ISA in 1978

N 4 Microprocessor Evolution

RISC

» Rapid progress in 1970s, fueled by advances in MOS
technology, imitated minicomputers and mainframe ISAs
* Intel 1432

- Most ambitious 1970s micro

- started in 1975 - released 1981

- 32-bit capability-based object-oriented architecture

- Instructions variable number of bits long

- Heavily microcoded

- Severe performance, complexity, and usability problems
= Intel 8086 (1978, 8MHz, 29,000 transistors)

- “Stopgap” 16-bit processor, architected in 10 weeks

- Extended accumulator architecture

- Assembly-compatible with 8080

- 20-bit addressing through segmented addressing scheme

= IBM PC uses Intel 8088 for 8-bit bus

(and Motorola 68000 was late) _
- Estimated sales of 250,000; 100,000,000s sold @’LTW ;

») Analyzing Microcoded Machines

RISC 1980s
= John Cocke and group at IBM

- Working on a simple pipelined processor,
801 minicomputer (ECL server),

and advanced compilers inside IBM
- Ported experimental PL.8 compiler to

IBM 370, only used simple register-register
and load/store instructions similar to 801
- Code ran faster than other existing
compilers that used all 370 instructions!
- Up to 6 MIPS whereas 2 MIPS

considered good before

= Emer and Clark at DEC

- Found 20% of VAX instructions responsible for 60% of
microcode, but only account for 0.2% of execution time!

» Patterson 1979 sabbatical at DEC
- VAX microcode bugs = field repair,
but field-repairable chips don’t make sense

10

</ From CISC to RISC

RISC

» Use fast RAM to build fast instruction cache of user-
visible instructions, not fixed hardware microroutines
- Contents of fast instruction memory change to fit
what application needs right now
« Simple ISA => hardwired pipelined implementation
- Compiled code only used a few CISC instructions
- Simpler encoding allowed pipelined implementations
» Further benefit with integration
- In early ‘80s, could finally fit 32-bit datapath + small
caches on a single chip
- No chip crossings in common case allows faster
operation

11

N4

RISC

Berkeley RISC Chips

RISC-I (1982) Contains 44,420
transistors, fabbed in 5 um

NMOS, with a die area of 77 mm?,

ran at 1 MHz.

) ==

-I-l—l—l—l |

piB 1P L R A S B

= RISC-II (1983) contains 40,760
A transistors, was fabbed in 3

~ 3\ um NMOS, ran at 3 MHz, and
- 4 the size is 60 mm?

Stanford built some too...
12

UcC m,.!a\‘u‘\ s~;'1

instruction-set
RISC-I reduce

4% - i \‘\ e 4 é £l &«
Wthh etiabled a fl

and pipelined ¢
operating Sys

today, includi;

CTRICAL ENGINEERING
MPUTING

t Computing) Microprocessor

‘,"!(')/'
19682

built the first VLSI reduced
The ,Jmphﬁed instructions of
struction decode and control,
r;;mm a large set of registers,
itch to C programs and the Unix

,mtmctmn sets widely used
ymsoles, smartphones and tablets,

</ CISC vs. RISC Today

RISC

e PC Era e PostPC Era: Client/Cloud
e Hardware translates e IP in SoC vs. MPU

Xx86 instructions into e \/alue die area, energy as
internal RISC much as performance
iInstructions e > 16B / year in 2014!

e Then use any RISC e 98% RISC Processors:
technique inside MPU 12.0B ARM (Advanced

e > 350M / year! RISC Machine)

e x86 ISA eventually 2.0B Tensilica

dominates servers as 1.5B ARC (Argonaut

well as desktops RISC Core)
0.8B MIPS

14

</ VLIW: Very Long Instruction Word

IntOp 1 Int Op 2 Mem Op 1 Mem Op 2 FPOp 1l FP Op 2

v v v v v v

Two Integer Units,
Single Cycle Latency

Two Load/Store Units,
Three Cycle Latency Two Floating-Point Units,
Four Cycle Latency

Multiple operations packed into one instruction
Each operation slot is for a fixed function
Constant operation latencies are specified

Architecture requires guarantee of:
- Parallelism within an instruction => no cross-operation RAW check
- No data use before data ready => no data interlocks

</ VLIW Compiler Responsibilities

RISC
= Schedule operations to

maximize parallel execution

= Guarantees intra-instruction
parallelism

» Schedule to avoid data hazards

(no interlocks)

- Typically separates operations
with explicit NOPs

16

Loop Unrolling
for (i=0; i<N; i++)
B[i] = A[i] + C;

l Unroll inner loop to perform 4

iterations at once

for (i=0; i<N; i+=4)

{
Bl[i] = A[i] +C;
Bl[i+1] = A[i+1] + C;
Bl[i+2] = A[i+2] + C;
B[i+3] = A[i+3] + C;

by

17

N4

RISC

Scheduling Loop Unrolled Code

Unroll 4 ways

loop:

fid f1, 0(x1)
fild 2, 8(x1)
fid 3, 16(x1)
fid f4, 24(x1)
add x1, 32
fadd 5, f0, f1
fadd f6, f0, f2
fadd f7, 0, f3
fadd f8, f0, f4
fsd f5, 0(x2)
fsd f6, 8(x2)
fsd 7, 16(x2)
fsd f8, 24(x2)
add x2, 32
bne x1, x3, loop

loop:

Schedule
>

How many FLOPS/cycle?
4 fadds / 11 cycles = 0.36

Int1 Int2 M1 M2 FP+ FPx
fid 1,
fid 2 [\.
fidf3 | |
add x1 fld 4 |fadd f5
/ |fadd f6
/ lfadd 7
/___fadd f8
fsd 5
fsd 16
fsd f7
add x2 bne [fsd f8

18

</ Intel Itanium, EPIC I1A-64

RISC
= EPIC is the style of architecture
- “Explicitly Parallel Instruction Computing”
- A binary object-code-compatible VLIW
- Developed jointly with HP

= |A-64 was Intel’s chosen 64b ISA

successor to 32b x86
- |A-64 = Intel Architecture 64-bit
- AMD wouldn’t be able to make, unlike x86

= Intel Merced was first [tanium implementation
- 15t customer shipment expected 1997 (actually 2001)
- McKinley, 2" implementation, 180 nm, shipped in 2002
- Poulson, most recent, 8 cores, 32 nm, shipped in 2012

19

</ VLIW Issues and an “EPIC Failure”

RISC
= Unpredictable branches

= Variable memory latency (unpredictable cache misses)

= Code size explosion

= Compiler complexity: “The Itanium approach...was
supposed to be so terrific—until it turned out that the
wished-for compilers were basically lmp0551ble to write.”
- Donald Knuth, Stanford | ‘

= Columnist Ashlee Vance
noted delays and under
performance of ltanium
“turned the product into a
joke in the chip industry”

ltanimum => “ltanic” (like infamous ship Titanic) 20

» 2000s: How Should We Build Scalable
A Multiprocessors?

1. Shared Memory with "Non Uniform Memory
Access" time (NUMA) using loads and stores
- Distributed directory remembers sharing for
coherency and consistency
- DASH/FLASH projects at Stanford
(1992-2000)
2. Message passing Cluster with separate address
space per processor using RPC (or MPI)
- Collection of independent computers
connected by LAN switches to provide a
common service

- Network of Workstations project at Berkeley
(1993-1998)

») SGI Origin 2000 NUMA vs.

RISC Sun Enterprise 10000 SMP
e A pure NUMA e A pure UMA
e Scales up to 2048 e Up to 64 CPUs
CPUs e $4.7M = 64 CPUs,
e Scalable bandwidth 64 GB SDRAM
Is crucial to Origin memory, 868 18GB
e Designed for disk, 12X CD, 1yr
scientific computation service
e Designed for
commercial

processing

N4
~ee NUMA Advantages

» Ease of programming when communication patterns are
complex or vary dynamically during execution

= Ability to develop apps using familiar SMP model

* Lower communication overhead, better use of BW for
small items due to implicit communication

 HW-controlled caching to reduce remote communication
by caching of all data

Cluster Drawbacks

= Cost of administering a cluster of N machines

~ administering N independent machines

vs. cost of administering a shared address space N
processors multiprocessor ~ administering 1 big machine

= Clusters usually connected using I/O bus, whereas
multiprocessors usually connected on memory bus

= Cluster of N machines has N independent memories
and N copies of OS and code, but a shared address
multi-processor allows 1 program to use almost all
memory

</ Cluster Advantages

= Error isolation: separate address space limits
contamination of error

» Repair: Easier to replace a machine without bringing
down the system

= Scale: easier to expand the system

= Cost: Large scale machine has low volume => fewer
machines to spread development costs vs. leverage high
volume off-the-shelf switches and computers

 Inktomi first then Amazon, AOL, Google, Hotmaill,
WebTV, Yahoo ... relied on clusters of PCs to provide

services used by millions of people every day

26

Outline

Part || — Future

HW Technology
 End of Moore’s Law
* Flash vs. Disks
 Fast DRAM

* Crosspoint NVRAM
Open ISA / RISC-V

» Case for Open ISAs
* Tour of RISC-V ISA
« RISC-V Software Stack
* RISC-V Chips

27

</ Moore’s Law Slowing Down

Stated 50 years ago by
Gordon Moore
-Number of
transistors on
microchip double
every
-Today

Number of transistors

28

Y4 CPU Performance Improvement

RISC

*Number of cores: +18-20%
Per core performance: +10%

*Aggregate improvement:

29

</ Memory Price/Byte Evolution

RISC

=1990-2000: -54% per year
=2000-2010: -51% per year

«2010-2015: -32% per year

=(http://www.jcmit.com/memoryprice.htm)

30

N4

RISC

High Bandwidth Memory

31

d

“Tape is dead, Disk is tape, Flash is disk.”
SSD Jim Gray, 2007

Cost
Cross over!

Disk /

</ 3D XPoint Technology

RISC

*Developed by Intel and Micron
- Announced July 28, 2015!

*Exceptional characteristics:
- Non-volatile memory
- 1000x more resilient than SSDs
- 8-10x density of DRAM
- Performance in DRAM ballpark!
- 2-3x slower reads, 4x-6x slower writes

33

Future Memory Hierarchy Deeper

»Storage hierarchy gets more and more complex:

1 cac
| 2 cac

| 3 cac

ne
ne

ne

- Fast DRAM (on interposer with CPU)

- 3D XPoint based storage

- SSD

- (HDD)
* Need to design software to take advantage of this
hierarchy

34

</ Consensus on ISAs Today

= Not CISC: no new commercial CISC ISAs in 30+ years
= Not VLIW: Despite several attempts,

VLIW has failed in general-purpose computing arena
- Complex VLIW architectures close to in-order superscalar in
complexity, no real advantage on large complex apps
- Although some VLIWs successful in embedded DSP market
(Simpler VLIWSs, more constrained, friendlier code)

= RISC! Widespread agreement (still) that RISC principles
are best for general purpose ISA

35

</ So...

RISC

If there is widespread agreement on
ISA principles ...

Why isn’t there a free, open, industry-
standard ISA?

36

N 4 ISAs Should Be Free and Open

RISC

While ISAs may be proprietary for historical or
business reasons, there is no good technical

reason for the lack of free, open ISAs:

= It’s not an error of omission

= Nor is it because the companies do most of the
software development

= Neither do companies exclusively have the experience
needed to desigh a competent ISA

= Nor are the most popular ISAs wonderful ISAs

= Neither can only companies verify ISA compatibility

= Nor does it protect you from patent lawsuits

= Finally, proprietary ISAs are not guaranteed to last,
and many actually disappear 37

N 4 Why Open ISA Now?

1. Switch from microprocessors of PC Era
to IP in SoC of PostPC Era

= Can offer designs (as ARM does)
without offering chips (as Intel does)

2. Ending of Moore’s Law

= Cost/performance/energy advance via
architectural innovation vs. semiconductor
process improvements

= Renaissance for domain specific coprocessor

(e.g., image processor, DSP, GPU, ...)
= Want a minimal, open ISA to run standard
software with domain specific coprocessors

38

RISC-V Origin Story

= In 2010, after many years and many projects using
MIPS, SPARC, and x86 as basis of research, time to
look at ISA for next set of projects

= x86 and ARM obvious choices, but complex ISAs and
serious IP issues

= MIPS64 — not enough opcodes left if try to extend

= So we started “3-month project” in summer 2010 to
develop our own clean-slate ISA

= Four years later, we released frozen base user spec

o Also many tape outs and research publications
= Why are Outsiders complaining about changes to
RISC-V in Berkeley classes???

39

</ Modest RISC-V Goal

RISC

Become an industry-standard ISA for
all computing devices

40

: 4 RISC-V Base Plus Standard Extensions

RISC
= Three base integer ISAs, one per address width
- RV32l, Rv64l, RV128I
- Minimal: <50 hardware instructions needed
= Modular: Standard extensions
- M: Integer multiply/divide
- A: Atomic memory operations (AMOs + LR/SC)
- F: Single-precision floating-point
- D: Double-precision floating-point
- Q: Quad-precision floating-point
- C: Compressed instruction encoding (16b and 32b)
= Reserved opcode space for SoC unique instructions

= All the above in fairly standard RISC encoding

41

N4

RISC

RV32]

Base Integer Instructions: RV32I, RV

Load Byte Unsigned
Load Half Unsigned

Category Name | Fmt RV32I Base
Loads Load Byte| I |LB rd,rsl,imm
Load Halfword LH rd,rsl,imm
Load Word LW rd,rsl,imm

LBU rd,rsl,imm
LHU rd,rsl,imm

Shift Right Immediate
Shift Right Arithmetic
Shift Right Arith Imm

Stores Store Byte SB rsl,rs2,imm
Store Halfword SH rsl,rs2,imm
Store Word SW rsl,rs2,imm
Shifts Shift Left SLL rd,rsl,rs2
Shift Left Immediate SLLI rd,rsl,shamt
Shift Right SRL rd,rsl,rs2

SRA rd,rsl,rs2

Arithmetic ADD
ADD Immediate
SUBtract

Load Upper Imm
Add Upper Imm to PC

ADD rd,rsl,rs2
ADDI rd,rsl,imm
SUB rd,rsl,rs2
LUI rd, imm
AUIPC rd,imm

SRLI rd,rsl,shamt

SRAI rd,rsl,shamt

Set < Immediate
Set < Unsigned
Set < Imm Unsigned

Logical XOR XOR rd,rsl,rs2
XOR Immediate XORI rd,rsl,imm

OR OR rd,rsl,rs2

OR Immediate ORI rd,rsl,imm

AND AND rd,rsl,rs2

AND Immediate ANDI rd,rsl,imm
Compare Set < SLT rd,rsl,rs2

SLTI rd,rsl,imm
SLTU rd,rsl,rs2
SLTIU rd,rsl,imm

H O D= D=0 = ICC =D D =T —=0NWUV N

Branches Branch =
Branch #

Branch <

Branch >

Branch < Unsigned
Branch > Unsigned

SB [BEQ rsl,rs2,imm
SB |BNE rsl,rs2,imm
SB |BLT rsl,rs2,imm
SB [BGE rsl,rs2,imm
SB |BLTU rsl,rs2,imm
SB |[BGEU rsl,rs2,imm

Jump & Link J&L
Jump & Link Register

Ul |JaL rd, imm
UJ) |JALR rd,rsl,imm

Synch Synch thread
Synch Instr & Data

FENCE
FENCE.I

System System CALL
System BREAK

SCALL
SBREAK

Counters ReaD CYCLE
ReaD CYCLE upper Half
ReaD TIME

ReaD TIME upper Half
ReaD INSTR RETired
ReaD INSTR upper Half

RDCYCLEH rd
RDTIME rd
RDTIMEH rd
RDINSTRET rd

I
1
I
I
I |RDCYCLE rd
I
I
I
I
I [RDINSTRETH rd

32-bit Instruction Formats

+ 12

for
04|
/128

14
Privileged

+ 11 for A

+ 8 for M

+ 30 for C

31 30 25 24 A 0 19 15 14 12 11
R funct? 1s2 1s1 funetd rd opeode
I Imm(11:0] s functd rd opeode
s imm[11:5] 1s2 sl functd imm[4:(0] opeode
SB[imm[12] [imm[10:3] 1s2 sl funct3 | imm[4:1] | imm[11] | opeode
u imm[31:12) rd opeode
UJ | imm]20]| imm[10:1] [imm[II] imm{19:12] rd opcode

34
for F, D,

+ 4 for
64M
[128M
+ 11 for
64A
[128A

+ 6 for
64F/
128F,
64D/
128D,
64Q/

1250

RV32l/ RV64l /| RV1281+ C, M, A, F, D.& Q
RISC-V “Green Card”

RISC

Base Integer Instructions: RV32I, RV641, and RV128I RV Privileged Instructions Optional Multiply-Divide Instruction Extension: RVM
Category Name | Fmt RV32I Base +RV{64,128} Category Name RV mnemonic Category Name | Fmt RV32M (Multiply-Divide) +RV{64,128}
Loads Load Byte| I |LB rd,rsl,imm CSR Access Atomic R/W [CSRRW rd,csr,rsl Multiply MULtiply| R |MUL rd,rsl,rs2 MUL{W|D} rd,rsl,rs2
Load Halfword| I |[LH rd,rsl,imm Atomic Read & Set Bit|CSRRS rd,csr,rsl MULtiply upper Half| R [MULH rd,rsl,rs2
Load Word| I |[Lw rd,rsl,imm L{D|Q} rd,rsl,imm Atomic Read & Clear Bit|CSRRC rd,csr,rsl MULtiply Half Sign/Uns| R [MULHSU rd,rsl,rs2
Load Byte Unsigned| I |LBU rd,rsl,imm Atomic R/W Imm [CSRRWI rd,csr,imm MULtiply upper Half Uns| R |MULHU rd,rsl,rs2
Load Half Unsigned| I |LHU rd,rsl,imm L{W|D}U rd,rsl,imm Atomic Read & Set Bit Imm|CSRRSI rd,csr,imm Divide DIlvide| R [DIV rd,rsl,rs2 DIV{W|D} rd,rsl,rs2
Stores Store Byte| S |[SB rsl,rs2,imm Atomic Read & Clear Bit Imm|CSRRCI rd,csr,imm DIVide Unsigned| R |DIVU rd,rsl,rs2
Store Halfword| S [SH rsl,rs2,imm Change Level Env. Call |ECALL Remainder REMainder| R |REM rd,rsl,rs2 REM{W|D} rd,rsl,rs2
Store Word| S [sw rsl,rs2,imm |s{D|o} rsl.rs2.imm Environment Breakpoint (EBREAK REMainder Unsigned| R |REMU rd,rsl,rs2 REMU{W[D} rd.rsl.rs2
Shifts Shift Left| R |SLL rd,rsl,rs2 SLL{W|D} rd,rsl,rs2 Environment Return|ERET Optional Atomic Instruction Extension: RVA
Shift Left Immediate| I |SLLI rd,rsl,shamt [SLLI{W|D} rd,rsl,shamt|Trap Redirect to Superviso|MRTS Category Name | Fmt RV32A (Atomic) +RV{64,128}
Shift Right| R [SRL rd,rsl,rs2 SRL{W|D} rd,rsl,rs2 Redirect Trap to Hypervisor |MRTH Load Load Reserved| R [LR.W rd,rsl LR.{D|Q} rd,rsl
Shift Right Immediate| I |SRLI rd,rsl,shamt |SRLI{W|D} rd,rsl,shamt|Hypervisor Trap to Supervisor|HRTS Store Store Conditionall R |sc.w rd,rsl,rs2 sc.{D|Q} rd,rsl,rs2
Shift Right Arithmetic| R |SRA rd,rsl,rs2 SRA{W|D} rd,rsl,rs2 |Interrupt Wait for Interrup|WFI Swap SWAP| R [AMOSWAP.W rd,rsl,rs2 AMOSWAP. {D|Q} rd,rsl,rs2
Shift Right Arith Imm| I [SRAI rd,rsl,shamt |SRAI{W|D} rd,rsl,shamt|[MMU Supervisor FENCE|SFENCE.VM rsl Add ADD| R [AMOADD.W rd,rsl,rs2 AMOADD.{D|Q} rd,rsl,rs2
Arithmetic ADD| R (ADD rd,rsl,rs2 ADD{W|D} «rd,rsl,rs2 Logical XOR R |AMOXOR.W rd,rsl,rs2 AMOXOR.{D|Q} rd,rsl,rs2
ADD Immediate| I |ADDI rd,rsl,imm ADDI{W|D} rd,rsl,imm AND| R [AMOAND.W rd,rsl,rs2 AMOAND.{D|Q} rd,rsl,rs2
SUBtract| R |SUB rd,rsl,rs2 SUB{WID} rd.rsl.rs2 OR| R |AMOOR.W rd,rsl,rs2 AMOOR. {D|0} rd.rsl.rs2
Load Upper Imm| U [LUI rd,imm Optional Compressed (16-bit) Instruction Extension: RVC Min/Max MINimun| R |AMOMIN.W rd,rsl,rs2 AMOMIN.{D|Q} rd,rsl,rs2
Add Upper Imm to PC| U |AUIPC rd,imm Category Name | Fmt RVC RVI equivalent MAXimum| R |AMOMAX.W rd,rsl,rs2 AMOMAX.{D|Q} rd,rsl,rs2
Logical XOR | R |XOR rd,rsl,rs2 Loads Load Word | CL |C.LW rd’,rsl’,imm LW rd’,rsl’,imm*4 MINimum Unsigned| R [AMOMINU.W rd,rsl,rs2 AMOMINU. {D|Q} rd,rsl,rs2
XOR Immediate| I |XORI rd,rsl,imm Load Word SP| CI [C.LWSP rd,imm LW rd,sp,imm*4 MAXimum Unsigned| R |AMOMAXU.W rd,rsl,rs2 AMOMAXU.{D|O} rd.rsl.rs2
OR [R |OR rd,rsl,rs2 Load Double| CL [c.LD rd’,rsl’,imm [LD rd’,rsl’,imm*8 Three Optional Floating-Point Instruction Extensions: RVF, RVD, & RVQ
OR Immediate| I [ORI rd,rsl,imm Load Double SP| CI [C.LDSP rd,imm LD rd,sp,imm*8 Category Name | Fmt| RV32{F|D|Q} (HP/SP,DP,QP Fl Pt) +RV{64,128}
AND| R [AND rd,rsl,rs2 Load Quad| CL |c.LQ rd’,rsl’,imm LQ rd’,rsl’,imm*16 Move Move from Integer | R |FMV.{H|S}.X rd,rsl FMV.{D|Q}.X rd,rsl
AND Immediate| I [ANDI rd,rsl,imm Load Quad SP| CI [C.LQSP rd,imm LQ rd,sp,imm*16 Move to Integer| R |FMV.X.{H|S} rd,rsl FMV.X.{D|0Q} rd,rsl
Compare Set<| R |SLT rd,rsl,rs2 Stores Store Word [CS |c.sw rsl’,rs2’,imm |[SW rsl’,rs2’,imm*4 Convert Convert from Int| R |FCVT.{H|S|D|Q}.W =rd,rsl FCVT.{H|S|D|Q}.{L|T} rd,rsl
Set < Immediate| I |SLTI rd,rsl,imm Store Word SP| CSS [c.swsP rs2,imm SW rs2,sp, imm*4 Convert from Int Unsigned| R |FCVT.{H|S|D|Q}.WU rd,rsl FCVT.{H|S|D|Q}.{L|T}U rd,rsl
Set < Unsigned| R [SLTU rd,rsl,rs2 Store Double| CS [c.sD rsl’,rs2’,imm |SD rsl’,rs2’,imm*8 Convert to Int| R |FCVT.W.{H|S|D|Q} =rd,rsl FCVT.{L|T}.{H[S|D|Q} =rd,rsl
Set < Imm Unsigned| I [SLTIU rd,rsl,imm Store Double SP| CSS [C.SDSP rs2,imm SD rs2,sp,imm*8 Convert to Int Unsigned| R |FCVT.WU.{H|S|D|Q} rd,rsl FCVT.{L|T}U.{H|S|D|Q} rd,rsl
Branches Branch =| SB |BEQ rsl,rs2,imm Store Quad| CS |c.so rsl’,rs2’,imm |[SQ rsl’,rs2’,imm*16 |Load Load| I |FL{W,D,Q} rd,rsl,imm
Branch #| SB [BNE rsl,rs2,imm Store Quad SP| CSS |C.SQSP rs2,imm SQ rs2,sp,imm*16 Store Store| S |FS{w,D,Q} rsl,rs2,imm
Branch <| SB |BLT rsl,rs2,imm [Arithmetic ADD| CR [c.ADD rd,rsl ADD rd,rd,rsl Arithmetic ADD| R |[FADD.{S|D|Q} rd,rsl,rs2
Branch =| SB |BGE rsl,rs2,imm ADD Word| CR |c.ADDW rd,rsl ADDW rd,rd,imm SUBtract| R [FSUB.{S|D|Q} rd,rsl,rs2
Branch < Unsigned| SB |BLTU rsl,rs2,imm ADD Immediate| CI |C.ADDI rd, imm ADDI rd,rd,imm MULtiply| R [FMUL.{S|D|Q} rd,rsl,rs2
Branch > Unsigned| SB [BGEU rsl,rs2,imm ADD Word Imm| CI |C.ADDIW rd, imm ADDIW rd,rd,imm DIVide| R |FDIV.{s|D|Q} rd,rsl,rs2
Jump & Link J&L| UJ |[JAL rd,imm ADD SP Imm * 16 CI [C.ADDI16SP x0,imm ADDI sp,sp,imm*16 SQuare RooT| R |FSQRT.{S[D|Q} rd,rsl
Jump & Link Register| U] |JALR rd,rsl,imm ADD SP Imm * 4| CIW [C.ADDI4SPN rd',imm ADDI rd',sp,imm*4 Mul-Add Multiply-ADD| R |FMADD.{S|D|Q} «rd,rsl,rs2,rs3
Synch Synchthread| I |FENCE Load Immediate| CI (c.LI rd, imm ADDI rd,x0,imm Multiply-SUBtract| R |FMSUB.{sS|D|Q} rd,rsl,rs2,rs3
Synch Instr & Data| I |FENCE.I Load Upper Imm| CI |c.LUI rd,imm LUI rd,imm Negative Multiply-SUBtract| R |FNMSUB.{S|D|Q} rd,rsl,rs2,rs3
System System CALL| I [scALL MoVve| CR |Cc.MV rd,rsl ADD rd,rsl,x0 Negative Multiply-ADD| R |FNMADD.{S|D|Q} rd,rsl,rs2,rs3
System BREAK| I |SBREAK suB| CR [c.suB rd,rsl SUB _ rd,rd,rsl Sign Inject SiGN source | R |FSGNJ.{s|D|Q} «rd,rsl,rs2
Counters ReaD CYCLE| I [RDCYCLE rd Shifts Shift Left Imm| CI |C.SLLI rd,imm SLLI rd,rd,imm Negative SiGN source| R |FSGNJN.{S|D|Q} rd,rsl,rs2
ReaD CYCLE upper Half| I |RDCYCLEH rd Branches Branch=0| CB |C.BEQZ rsl’,imm BEQ rsl',x0,imm Xor SiGN source| R |FSGNJX.{S[D|Q} rd,rsl,rs2
ReaD TIME| I |RDTIME rd Branch#0| CB |C.BNEZ rsl’,imm BNE rsl',x0,imm Min/Max MINimum| R [FMIN.{S|D|Q} =rd,rsl,rs2
ReaD TIME upper Half| I |RDTIMEH rd Jump Jump| CJ |c.J imm JAL x0,imm MAXimum| R |FMAX.{S|D|Q} rd,rsl,rs2
ReaD INSTR RETired| I |RDINSTRET rd Jump Register| CR |Cc.JR rd,rsl JALR _x0,rs1,0 Compare Compare Float = | R |FEQ.{S|D|Q} rd,rsl,rs2
ReaD INSTR upper Half{ I |RDINSTRETH rd Jump & Link J&L| CJ [c.JAL imm JAL ra,imm Compare Float <| R [FLT.{s|D|Q} rd,rsl,rs2
Jump & Link Register| CR |C.JALR rsl JALR ra,rsl,0 Compare Float <[R [FLE.{s|D|Q} rd,rsl,rs2
System Env. BREAK| CI |C.EBREAK EBREAK Categorization Classify Type| R |FCLASS.{S|D|Q} rd,rsl
32-bit Instruction Formats 16-bit (RVC) Instruction Formats Configuration Read Status| R |FRCSR rd
31 30 %24 A N 19 14 121 8 7 6 0 CR Read Rounding Mode| R |FRRM rd
R funct? 1s2 sl funct3 rd opcode | CI Read Flags| R |FRFLAGS rd
I imm[T1:0] rs1 | functd rd opcode | CSS Swap Status Reg| R |FSCSR rd,rsl
S imm[11:5] 152 sl functd imm[4:(0] opcode | CIW Swap Rounding Mode| R |FSRM rd,rsl
SB | imm(12] [imm[10:5] 1s2 rs1 | functd |imm[&1] [imm(11]] opcode| CL Swap Flags| R |FSFLAGS rd,rsl
u imm[31:12] rd opeode | CS Swap Rounding Mode Imm| I |FSRMI rd, imm
UJ [20] | imm[10:1] [T imm(19:12] rd opcode | CB Swap Flags Imm| I |FSFLAGSI rd, imm 43
cl

>y RISC-V Ecosystem [/ RISC

RISC WWW.ri1sSCvV.org
= Documentation = Hardware Tools
- User-Level ISA Spec v2.0 - Zynqg FPGA Infrastructure
(Released 5/6/14) - Chisel
- Privileged ISA Spec v1.7 - Interfaces to ARM buses
(Released 5/9/15) - Debugger interface (underway)
- Compressed Instr.v1.7 « Hardware Implementations
(Released 5/29/15) - Rocket Chip Generator
» Software Tools - RV64G single-issue in-order pipe
- GCC/glibc/GDB - Zscale Chip Generator
- LLVM/Clang - Zscale core also in Verilog
- Linux - Sodor Processor Collection
- Yocto = Software Implementations
- Verification Suite - ANGEL, JavaScript ISA Sim.

- Spike, In-house ISA Sim.
- QEMU ISA Sim. 44

» RISC-V as Customizable Computer
e using FPGAs

= $250 Zed FPGA board = working computer with
full SW stack to customize as desired in =1 hour
@ 50 — 100 MHz

» =1 minute on real hardware processor =
=1 hour of FPGA vs =1 month on SW simulator
= 32 node FPGA cluster for =$10,000

45

» Four 28nm & Six 45nm
A RISC-V Chips taped out so far

Raven-3

Raven-2 =g 1 core + vector coprocessor

T || 1.0 GHz (adaptive-clocking)
| g 34 DP GFLOPS / Watt

Raven-3.5

TAl TARMAN

Sep Mar Nov Mar }
2011 2014 2015 T

EOS22 EOS24
2 cores, 1.7 GHz,
15 DP GFLOPS / Watt

Ht Raven: ST 28nm FDSOI
i v EOS: IBM 45nm SOl

EOS16 EOS20 46

Y4 Costfor 100 2x2mm 28 nm dies?

$30,000!

Any project can
afford to build

hardware!

See “Is Agile
Development Feasible
for Hardware? Part Il,”
by David Patterson and
Borivoje Nikoli¢, EE
Times, 8/1/2015

47

R 4 RISC-V Beyond Berkeley

RISC

= Adopted as “standard ISA” for India
-lIT-Madras building 6 different open-source cores,
from microcontrollers to servers (SS80M)
= LowRISC project based in Cambridge, UK producing
open-source RISC-V based SoCs
- Led by a founder of Raspberry Pi, privately funded
- Adding capability-based security
- Make and distribute =200,000 LowRISC SoCs
= U. Maryland research: Privacy preserving processor*

*Liu, Chang, Austin Harris, Martin Maas, Michael Hicks, Mohit Tiwari,

and Elaine Shi. "GhostRider: A hardware-software system for

memory trace oblivious computation." In Proc. Int’l Conf. on

Architectural Support for Programming Languages and Operating
Systems (ASPLOS). 2015. Best paper award. 48

L4 RISC-V Big Ideas: An ISA for SoCs

RISC

» Base of <50 RISC instrs run can full SW stack
- Just need to get simple ISA working
= Optional standard extensions to include or omit
- Save area/energy by using only what needed
» Reserved opcodes to tailor SoC to apps
- Secret sauce per SoC yet run SW stack
* Free ISA: $0, 0 paperwork, anyone can use
- vs. if lucky, 6+ months negotiation + royalty
* Foundation will evolve RISC-V slowly for
technical reasons determined by votes
- vs. fast for business & technical reasons

49

N 4 Learning More about RISC-V

RISC
= Sign up for mailing lists/twitter at riscv.org to get
announcements

= 1st RISC-V workshop was January 14-15 in Monterey
-Slides & videos: riscv.org/workshop-jan2015.html
-Sold out: 144 (33 companies & 14 universities)

= 2nd RISC-V workshop was June 29-30 at UC Berkeley
-Slides & videos: riscv.org/workshop-jun2015.html
-Sold out: 120 (30 companies & 20 universities)

= 3rd RISC-V workshop Jan 5-6 at Oracle Redwood City
-Free to academics & RISC-V sponsors; $149 others

-Will likely sell out too, so sign up soon

-Sign up www.regonline.com/riscvworkshop3

50

Outline

Part | - Past Part Il — Future
50 years of Computer HW Technology
Architecture History: * End of Moore’s Law
* 1960s: * Flash vs. Disks
Computer Families / * Fast DRAM
Microprogramming * Crosspoint NVRAM
« 1970s: CISC Open ISA & RISC-V
« 1980s: RISC » Case for Open ISAs
« 1990s: VLIW * Tour of RISC-V ISA
« 2000s: NUMA vs. * RISC-V Software Stack
Clusters * RISC-V Chips

Questions? _

BACKUP SLIDES

52

</ RISC-V ISA vs. ARMvS ISA

Category RISC-V ARMv8 ARM/RISC
Year announced 2011 2011 -~
Address sizes 321/2(;4/ 32 / 64 B
Instruction formats 6/121 53 4X-8X
Data addressing modes 1 8 8X
Instructions 1771 1,070 6X
Min n ' '
Linux,usr;rlti’eilc\ﬁ\r/luctlons to run 57 359 6X
Backend gcc compiler size 10K LOC 47K LOC oX
Backend LLVM compiler size 10K LOC 22K LOC 2X
ISA manual size 181 pages 5,428 pages 30X

MIPS manual 700 pages
80x86 manual 3,600 pages

Twith optional Compressed RISC-V ISA extension

53

L4 And it’s still growing! ARM v8.1

RISC

* “The ARM architecture, in line with other
processor architectures, is evolving with time.

ARMvV8.1 is the first set of changes ...™

= Add a set of atomic read-write instructions
= Add a set of load & store instruction

limited to configurable address regions
* More SIMD and scalar Multiply-Add

Instructions
- “Signed Saturating Rounding Doubling Multiply
Accumulate/Subtract, Returning High Half”

= Add a new protection mode

= Add a dirty bit for virtual address translation

= Expand Virtual Machine ID register

**The ARMv8-A architecture and its ongoing development,” by David Bash, 12/2/2014

54

R 4 RISC-V Privileged Architecture

RISC
Application Application| |Application Application| |Application| |Application| [Application
AEE OS OS 0S
SEE Hypervisor
HEE

= Application communicates with Application Execution
Environment (AEE) via Application Binary Interface (ABI)

-ABI: user ISA + calls to AEE

« OS communicates via Supervisor Execution Environment
(SEE) via System Binary Interface (SBI)

-SBI: user ISA + privileged ISA + calls to SEE
= Hypervisor communicates via Hypervisor Binary Interface

(HBI) to Hypervisor Execution Environment (HEE)
= All levels of ISA designed to support virtualization

55

: 4 RISC-V Foundation

RISC

- Mission statement
“to standardize, protect, and promote the free and
open RISC-V instruction set architecture and its
hardware and software ecosystem for use in all
computing devices.”

= Established 7/31/2015 as a 501(c)(6) foundation

= Rick O’Connor is Executive Director

= Currently recruiting “founding” member companies
- 7 signed up so far; to be revealed at workshop

56

</ SSDs vs. HDDs

RISC

= SSDs will soon become cheaper than HDDs

= Transition from HDDs to SSDs will accelerate
-Already most instances in Amazon Web
Service have SSDs

» Going forward we can assume SSD-only clusters

“Tape is dead, Disk is tape, Flash is disk.”
Jim Gray, 2007

57

p) Evolution of Proprietary ISAs by company

x86 Instructions

RISC for business & technical reasons
1600 1600
(7))
1200 S 1200
- []
(8}
o
800 2800
=
s o
400 (14
x 400 ®
o
0 0 o ¢
1975 1985 1995 2005 2015 1985 1995 2005 2015

2 new ARM instructions
per month for 28 years

2 new x86 instructions
per month for 38 years

58

R 4 RISC-V Hardware Abstraction Layer

= HW requires more features beyond system ISA to
support execution environments
= Separate features for HW platform from EE in HAL
-Execution environments communicate with HW
platforms via Hardware Abstraction Layer (HAL)
-Details of execution environment and hardware

platforms isolated from OS/Hypervisor ports
59

: y Four Supervisor Architectures

RISC

= Mbare
- Bare metal, no translation or protection

= Mbb

- Base and bounds protection

= Sv32
- Demand-paged 32-bit VA space

= Sv39
-Demand-paged 39-bit VA space

Sv48
- Demand-paged 48-bit VA space

Page sizes: 4 KB, 2 MB, 1 GB
Designed to support current popular operating systems
Draft spec released May 7, 2015 for feedback

60

“Iron Law” of Processor Performance

Time = Instructions Clock cycles Time
Program Program * Instruction * Clock cycle

» Instructions per program depends on source
code, compiler technology, and ISA

» Clock cycles per instructions (CPI) depends
on ISA and underlying microarchitecture

» Time per clock cycle depends upon the
microarchitecture and base technology

» RISC executes more instructions per
program, but many fewer clock cycles per
instruction (CPIl) = RISC faster than CISC

61

P, RISC-VISA
~=="and Patents?

e Patents last 20 years,
ISAs since 1950s

= patent ISA quirks

e MIPS sued Lexra ISA
clone for load/store word
left/right (unaligned data)
e US patent 4,814,976

(expired 2006)

e =35 RISC ISAs <1995

e 100 expired RISC patents
o =25 expire in 2016 ...

e 100% coverage RISC-V?
o (Genealogy poster?

Year
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994

1995

Research / Commercial RISC ISA

IBM 801

Berkeley RISC-I, RISC-II

Stanford MIPS

Pyramid Technology 90X

Berkeley SOAR (“RISC-III")

ARMv1, MIPS I, Alliant FX(vector), Convex C1(vector)
Sun SPARC v7, HP PA-RISC, IBM RT-PC
Berkeley SPUR (SMP) (“RISC-IV”)

AMD 29000, Intel i960, Motorola 88000

Intel i860 (SIMD), National CompactRISC

DLX, IBM POWER, Sun SPARC v8, MIPS I
MIPS Il (64b address), Hitachi SH-1

IBM PowerPC, ARMv6, DEC Alpha (64b), SH-2
IBM POWER2, Sun SPARC Vv9 (64b), SH-3
ARM Thumb (16b instr), HP PA-RISC (SIMD)

MIPS16e (16b instr)

vu RISC

Instruction Set Lineage

LHI STHI LUl LUl
AUIPC ADD?

DAL CALL BAL BL lump/CALL DAL [mPL AL BL DAL
JALR CALL BAL BL {JUMP_REGISTER [JALR JMPL JALR BLR JALR
BEQ MPR SKIP+CALL BE BEQ CMP_BRANCH_LIKELY BEQ BICC BEQ BEQ BEQ BEQ
BNE |JMPR SKIP+CALL BNE BNE CMP_BRANCH_LIKELY BNE BICC BNE BNE BNE BNE
BLT |JMPR SKIP+CALL BL BLT CMP_BRANCH_LIKELY BICC BLT BLT

BGE [JMPR SKIP+CALL BGE BGE CMP_BRANCH_LIKELY BICC BGE BGE

BLTU [JMPR SKIP+CALL CMP_BRANCH_LIKELY BLT

BGEU |JMPR SKIP+CALL CMP_BRANCH_LIKELY BGE

LB LDBS LDIB LDRB LB LDSB LB LBZ LB

LH LDS LOADC LDIS LH LDSH LDL LH LHZ LH
W LDL LOAD LD LDRB LOAD_32 W LD LDQ w wz W
LBU LDBU LDOB LBU LDUB LBU LBU
LHU LDSU LDOS LHU LDUH LHU LHA LHU
SB STB STIB STRB SB STB SB STB SB

SH STS STIS SH STH STL SH STH SH
SW STL STORE ST STR STORE_32 SW ST STQ SW STW SW
ADDI ADD! ADD ADD ADD ADDI ADD ADD ADDI ADDI ADDI
SLTI SLTI SLTI SLTI
SLTIU SLTIU SLTIU
XORI XOR XOR EOR XOR XORI XOR XOR XORI XORI XORI
ORI OR OR OR OR ORI OR BIS ORI ORI ORI
ANDI AND AND AND AND ANDI AND AND ANDI ANDI ANDI
SLUI SLL SLA LSL SLL SLLI SLL SLW

SRLI SRL SRL LSR SRL SRLI SRL SRW

SRAI SRA SRA ASR SRA SRAI SRA SRAWI

ADD ADD ADD ADDI ADD ADD ADD ADD ADD ADD ADDI ADD
SuB SUB/SUBR SUB SUBI SUB SUBTRACT SUB SUB SUB SUB SUB SUB
SLL SLL SLA SHLI LsL SLL SLL SLL SLL SLL SLW SLL
SLT SLT SLT SLT
SLTU SLTU SLTU
XOR XOR XOR XOR EOR XOR XOR XOR XOR XOR XORI XOR
SRL SRL SRL SHRO LSR SRL SRL SRL SRL SRL SRW SRL
SRA SRA SRA SHRI ASR SRA SRA SRA SRA SRA SRAW SRA
OR OR OR OR ORR OR OR OR BIS ORI ORI ORI
AND AND AND AND AND AND AND AND AND AND ANDI AND
FENCE MB SYNC SYNC SYNC
FENCE.I CALL_PAL IMB ISYNC

SCALL ' TRAP CALLS CALL_KERNEL ' TRAP TRAP SYSCALL sC SYSCALL
SBREAK RET RETURN_KERNEL RFE RETT RFI

RDCYCLE RDASR RPCC

RDCYCLEH

RDTIME RDASR

RDTIMEH

RDINSTRET RDASR

RDINSTRETH

MUL MULI MUL MULT SMUL MUL MULT® MULLW MULT®
MULH SMUL MULT MULHW MULT
MULHSU

MULHU UMUL UMULH MULTU MULHWU MULTU
DIV DIVI DIV SDIV DIV DIivw DIV
DIVU DIVO DIVU ubIv DIVU DIVWU DIVU
REMU REMO

LRW LDSTUB LDL_L L LWARX L
sc.w LDSTUB STLC sC STWCX sC
AMOSWAP.W SWAP

AMOADD.W ATADD

AMOXOR.W

AMOAND.W

AMOOR.W

AMOMIN.W

AMOMAX.W

AMOMINU.W

AMOMAXU.W

FLW LDF LOAD_SINGLE LF LDF LDS LwC1 LFS LwC1
FSW STF STORE_SINGLE SF STF STS SWC1 STFS SWC1
FMADD.S FMADDS MADD.S
FMSUB.S FMSUBS MSUB.S
FNMSUB.S FNMSUBS NMSUB.S
FNMADD.S FNMADDS NMADD.S
FADD.S ADDR ADF FADD ADDF FADDs ADDS ADD.S FADDS ADD.S
FSUB.S SUF FSUB SUBF FSUBs SUBS SUB.S FSUBS SUB.S
FMUL.S MULR MUF FMUL MULTF FMULs MULS MUL.S FMULS MUL.S
FDIV.S DIVR DVF FDIV DIVF FDIVs DIVS DIV.S FDIVS DIV.S
FSQRT.S SQRTR SQT FSQRTs SQRT.S SQRT.S
FSGNJ.S CPYSRE® CPYS

FSGNUN.S CPYRSRE® FNEGATE CPYSN

FSGNIX.S

63

