
Pilot: An ope ra t ing sys tem for a pe rsona l c o m p u t e r

(summary)

David 1). Redell, Yogen K. Dalai, Thomas R. Horsley,
Hugh C. I.auer, William C. l.ynch, Paul R. McJones,

llal G. Murray, and Stcphcn C. Purcell

Xerox Corporation
Systems Development Department

Pale Alto, CA

Overl)iew

The Pilot operating system is designed for the personal
computing environment. It provides a basic set of services
within which higher-level programs can more easily serve the
user and/or communicate with other programs on other
machines. Pilot omits certain functions sometimes associated
with "complete" operating systems, such as character-string
naming or user-command interpretation; higher-level software
provides such facilities as needed. On the other hand, Pilot
provides a higher level of service than that normally associated
with the "kernel" or "nucleus" of an operating system. Pilot is
closely coupled to the Mesa programming language and runs on
a rather powerful personal computer, which would have been
thought sufficient to support a substantial timesharing system of
a few ycal~ ago. The primary user interface is a high resolution
bit-map display, with a keyboard and a pointing device.
Secondary storage generally takes the form of a sizable local
disk. A local packet network provides a high bandwidth
connection to other personal computers, and to server systems
offering such remote services as printing and sbared file storage,

Much of the design of Pilot stems from an initial set of
assunlptions and goals rather different flom those underlying
most timesharing systems. Pilot is a single-language, single-user
system, with only limited features for protection and resource
allocation. Pilot's protection mechanisms are defensive, rather
than absolute, since in a single user system, errors are a more
scrious problem than maliciousness. Similarly, Pilot's resource
allocation features are not oriented toward enfnrcing fair
distribution of scarce resources among contending parties.

The close coupling between Pilot and Mesa is based on mutual
interdependence; Pilot is written in Mesa, and Mesa depends
on Pilot for much of its runtime support. Since other
languages are not supported, many of the language-
independence arguments that tend to maintain distance between
an operating system and a programming language are not
relevant. In a sense, all of Pilot can be thought of as a very
powerfill rnntime support package for the Mesa language.
Naturally, none of these considerations eliminate the need for
careful structuring of the combined Pilot/Mesa system to avoid
accidental circular dependencies.

Files

Files and volumc~ u~line the basic facilities for permanent
storage of data in Pilot. Files are the standard containers for
information storage; volumes represent the media oil which
files are stored. Higher level software can superimpose further
structure on files and volumes as necessary. The emphasis at
the Pilot level is oil simple but pnwerful priniitives for accessing
large bodies of infimnation. The fundamental design of Pilot
allows files containing the equivalent of a million pages of
English text, and vohimes larger than any currently conceivable
storage device, qlle total number of files and volumes that can
exist is essentially unbounded. The space of files provided is
"flat," in the sense that files have no recognized relationships
among them (e.g. no directory hierarchy). Pilot files are named
by capabilities, which provide defensive protection against
errors, and contain 64-bit universal identifiers, which are
guaranteed unique in both space and time. This guarantee is
crucial, since files are expected to migrate from one Pilot
system to another.

The contents of a file are accessed by mapping one or more of
its pages into a section of virtual memory. Pilot attempts to
optimize the frequent ease of sequential access to a file, but the
general mechanism is designed to make random access as
efficient as possible, by minimizing file system mapping
overhead.

As with files, Pilot treats volumes in a relatively simple fashion;
Pilot distinguishes physical and logical volumes, and is fairly
flexible about the correspondence between the two. As tile
system runs, Pilot recognizes the comings and goings of
physical volumes (e.g mounting a disk pack) and makes
accessible to client programs those logical volumes all of whose
pages are on-line.

One of the most important properties of tile Pilot file system is
robusmess. This is achieved primarily through the use of
reconslructable hints. Many previotts systems have demonstrated
the value of a file scavenger, a utility program which can repair
a damaged file system, often oil a more or less ad hoc basis. In
Pilot, the scavenger is given first-class citizenship, in the sense
that the file structures were all designed from the beginning
with the scavenger in mind. Each file page is self-identifying,
by virtue of its label, wi'itten as a separate physical record
adjacent to the one holding the actual page contents; the intent
is that damage to a single page does not damage data outside
that page. All global structures of the Pilot file system can be
reconstructed by the scavenger; it is intended that higher level
,scavengers repair damage to higher level structures in an
analogous fashion.

106

Virtual memory

The machine architecture on which Pilot runs defines a single,
fairly conventional linear virtual memory of up to 232 16-bit
words, which Pilot structures into contiguous runs of pages
called spaces. The space abstraction superimposed by Pilot is
somewhat novel in its design and rather more powert\fl than
one would expect given its simplicity. A space is capable of
playing three fundamental roles:

Allocation entity: to allocate a region of virtual
memory, a client creates a space of appropriate size.

Mapping entity: to associate information content and
backing store with a region of ritual memory, a client
maps a space to a region of some file.

Swapping emit3,: the transfer of pages between primary
memory and backing store is performed in units of
spaces.

Any given space may play any or all of these roles, largely
because of their multifunctional nattn'e, it is often useful to nest
spaces. A new space is always created as a subspace of some
previously existing space, so that the set of all spaces forms a
tree by containment, the root of wbich is a prcdefined space
covering all of virtual memory.

There is an intrinsic close coupling between Pilot's file and
virtual memory features: virtual memory is the only access path
to the contents of files, and files are the only backing store for
virtual memory.

The Pilot virtaal memory also provides several advice-taking
nperatim~; to allow client programs to express their intentions
in ways which help optimize swapping traffic.

Streams attd I / 0 Devices

A Pilot client can access an 1/O device in three different ways:

hnplicitly, via some feature of Pilot (e.g. a Pilot file
accessed via virtual memory),

Directly, via a low-level device driver interface exported
from Pilot, or

Indirectly, via the Pilot stream facility.

Since typical applications need only simple sequential access to
a device, direct access via the device driver is generally both
unnecessary and inconvenient. Pilot tberefore provides a stream
facility, comprising:

The basic stream abstraction, which defines device
independent operations for full-duplex
sequential access to a source/sink of data.

A standard for stream components, which connect
streams to various devices and/or implement
"on-the-fly" transformations of the data flowing
through them.

A means for cascading a number of primitive stream
components to provide a compound stream.

Communications

Mesa supports a shared-memory style of interprocess
communication for tigJll[y coupled processes, hneraction
between loosely coupled processes (e.g. suitable to reside on
different machines) is provided by the Pilot communications
facility. This facility allows client processes to communicate
with each other via a family of hierarchically structored packet
communication protocols. Communication software is an
integral part of Pilot, rather than an optional addition, because
Pilot is intended to be a suitable foundation for network-based
distributed systems.

'lqae protocols are designed to provide communication across
multiple interconnected networks, typically comprising local,
high bandwidth networks, and public or private long-distance
data networks. The networks are interconnected by
internetwork routers which store and forward packets to their
destination using distributed routing algorithms. Pilot clients
identify one another by means of network addresses when they
wish to communicate, and need not know anything about the
internet toplogy, or each other's locations, or even the structure
of a network address.

Network streams provide the principal means by which Pilot
clients can communicate reliably. They provides access to the
implementation of the sequenced packet protocol. This protocol
provides sequenced, duplicate-suppressed, error-free, flow-
controlled packet communication over arbitrarily interconnected
communication networks. The most typical case is the
asymmetric one of a stream with a server at one end, and a
client of that server at the other. Special facilities are provided
to ease the creation of server/client network streams, without
cnmpmmising the generality of tbe underlying mechanism.

The communication facilities of Pik)t provide clients several
degrees of service. In keeping with the overall design of Pilot,
the communication facility attempts to provide a standard set of
features meeting tbe most common needs, while still allowing
clients to custom tailor their own solutions to their
communications requirements if that proves necessary.

Mesa language support

'lhe Mesa language provides a number of features which
require a non-trivial amount of run-time support. These are
primarily involved with the control structures of the language,
wbich allow not only recursive procedure calls, but also
coroutines, dynamic creation of concurrent processes, and
synchronization via monitors and conditiml variables.

The Mesa control structure facilities, including processes, are
light-weight enough to be used in the fine-scale structuring of
normal Mesa programs. A typical Pilot client program consists
of a variable number of processes, any of which may at any
time invoke Pilot facilities. It is Pilot's responsibility to
maintain the semantic integrity of its abstractions in the face of
such client-level concurrency. Naturally, any higher level
consistency constraints invented by the client must be
guaranteed by client-level synchronization, using the facilities
provided in the Mesa language and supported by Pilot,

107

