
In Support of Domain Structure for Operating Systems

Douglas Cook,
Computer Science Department,

University of Exeter,
England.

Abstract

One approach advocated in the search for better
designed and more reliable operating systems is
to base the design on the use of small protection
domains. This paper presents empirical evidence
to show that, with a suitable architecture, the
overheads associated with using small protection
domains do not make this an impractical approach.

Introduction

Using small protection domains as the basic
building blocks for the construction of an
operating system is not a new idea. For example,
Linden [I] advocated this approach for the
design of secure and reliable computer systems.
From the design point of view it is aesthetically
pleasing to be able to describe a complex soft-
ware system in terms of a number of modules,
each of a size which makes it easy to understand,
which can interact only in a well-defined way.
An architecture which implements these modules
as separate protection domains, each with its
own fully encapsulated address space, both en-
courages such modularisation and constrains the
interaction of the modules. But the world of
operating systems is a pragmatic one with no
place for "elephants in best Carrara marble"
[2~. Thus, despite Linden's optimistic and so
far unfulfilled hope that "with appropriate hard-
ware support, the overhead to switch protection
domains could be comparable to that of a simple
procedure call", the case for domain structured
operating systems requires the support of em-
pirical evidence from an actual implementation
to show that the design does not impose an un-
acceptable loss of performance. This paper
presents such evidence.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed
for direct commercial advantage, the ACM copyright notice
and the title of the publication and its date appear, and notice
is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

© 1979 ACM 0-89791-009-5/79/1200/0128 $00.75

Most of the evidence was obtained in ex-
periments carried out as part of an evaluation of
the CAP project at Cambridge University ~3]. An
interim evaluation of the project is given in
Needham [4] and the basic architecture of the CAP
computer is described in Needham & Walker [5].
For the purposes of this paper we are concerned
only with the features of the CAP computer which
support the use of program modules which have
their own fully encapsulated address spaces. Such
modules are known as protected procedures and are
the basic building blocks of the CAP Operating
System. A protected procedure can only be entered
on presentation of an ENTER capability for that
procedure. The switching from one protection
domain to another, by entering a protected pro-
cedure, is effected by microprogram, the instruc-
tion concerned being the ENTER instruction.

In the CAL system [6, 7] and in Hydra 18]
protection domain switching is implemented
entirely in software and consequently the over-
heads incurred by switching domains are high.
This was one reason for the premature termination
of the CAL project. In the case of Hydra the high
overheads, for example 51 ms for the switch to the
filing system domainS9], have meant that protec-
tion domains have in practice been much larger
than would have been ideal from the design point
of view [I0].

The experience of the CAL and Hydra projects
suggests that an operating system built from small
protection domains will be unacceptably inefficient
if domain switching is not implemented by hardware
or microp~ogram. What can we conclude from pro-
jects where there is such support for domain
switching? There are two considerations which
warrant attention: (a) how long does it take to
switch protection domains, and (b) how often is
this done? Table i gives the time taken to switch
from one protection domain to another and back
again for the CAP system [3] which implements pro-
tection domain switching by microprogram. The
time taken for a simple procedure call is also
given.

128

time, tl, for time, t2, for simple ratio
domain switch procedure call t1:t2

0.24 ms 12 Us 20:1

Table I: CAP instruction timings

These figures seem to lead us to the con-
clusion that the overheads are still uncomfortably
high: they are certainly a good deal higher
than those incurred by a simple procedure call.
However, much less checking needs to be done to
validate arguments than with a conventional system
and this goes a good way to redressing the
balance.

We now turn to the question of how often
domain switching takes place in practice. It
would be a simple matter to count the number of
domain switches there are in a given time inter-
val. However, it is of greater interest to
assess how much extra work is being done Because
the operating system is composed of small pro-
tection domains by comparison with a more con-
ventional design. Experiments were carried out
with the CAP Operating System to investigate this
question.

A simple 2-state machine, operating in one
state when running ordinary programs and in the
other when running so-called privileged programs,
was taken as the basis for comparison. This was
chosen in preference to a more modern segmented
architecture such as Multics [ii] because the
author wished to compare the CAP operating system
with one which was at the opposite extreme from
the segmentation point of view. With such a
comparison it is easier to see the benefits which
come from the use of small protection domains.
In this paper the two states are referred to as
problem state and supervisor, state respectively.
When the computer is in supervisor state it runs
without protection. Typically, when an ordinary
program calls for one of the services provided
by the operating system, the computer switches to
supervisor state, executes the code to perform
the desired service, and then reverts to problem
state. Thus, the operating system runs in the
same protection domain irrespective of which
service it is performing. There is no protec-
tion while the computer is in supervisor state
so the operating system's privilege is maximised
rather than minimised: this is in marked con-
trast to the situation with the CAP Operating
System [12, 13]. In the 2-state computer only a
single protection barrier is provided whereas
with a domaln-structured system there are many,
each corresponding to a switch from one protec-
tion domain to another.

In the CAP Operating System a user requests
an operating system service by entering the
appropriate protected procedure. This protected
procedure may, in turn, call another, and so on.
Although a protection domain switch is more com-
plicated than the switch to supervisor state in
a 2-state machine, the first domain switch in
response to a call for an operating system
service and the change to supervisor state both
represent the first protection barrier encountered

in providing the service. The difference between
the protection provided in the operating systems
of the CAP and a 2-state computer are that in the
CAP Operating System (a) the first domain switch
is not always to the same protected procedure,
and (b) more than one domain switch may take
place during the performance of an operating
system service. Experiments were done in which
each time an operating system service was called
the number of domain switches which took place
during the performance of that service was
counted. Results were collected from the running
of two programs, the Algol 68C compiler [14] and
Genesis, the program used to generate the CAP
Operating System and to initialise its protection
environment. These two programs were selected
because (a) they were much used, (b) they were
substantial programs, and (c) one, the compiler,
was compute-heavy whereas the other handled very
large volumes of data.

Details of experiments

The structure of the CAP Operating System is
such that there is no clear dividing line between
what is part of the operating system and what is
not, so a more-or-less arbitrary decision had to
be made as to which protected procedures were
considered to be included in the operating system.
When a user logs in he is allocated one of a stock
of USER processes and that USER process is able
to call a number of protected procedures as soon
as it is allocated. Those protected procedures
were considered to be in the operating system.
The operating system services available in a USER
process are referred to as primary services.

Monitoring code was inserted into the micro-
program and operating system to detect when a
USER process requested a primary service and to
count the number of ENTER instructions obeyed
until that service had been completed, referred
to as the consequential ENTERs for that primary
service. ~ ~is-~re given in Cook [3].
The results are summarised in Table 2 and show
that, although the CAP Operating System is built
from small protection domains, the source of a
typical protected procedure being only about 200
lines of Algol 68C, use of the operating system
does not involve many moreswitches between pro-
tection states than the single switch per call of
the simple 2-state design.

Algol 68C Genesis

Number of primary service
calls 11786 1733

Number of consequential
ENTERs 2810 6135

Consequential ENTERs/primary
service call 0.24 3.54

Table 2: CAP Operating System-consequential ENTERs

Both programs made use of primary services
provided by the five protected procedures which
look after file directory management, store
management, allocation of i/o devices, interac-

129

rive i/o, and spooled i/o. In addition Genesis
made one call to the protected procedure which
provides the interface to the central coordinating
process. The main difference between the two
programs is that, because the Algol 68C compiler
is engaged in processing the information stored
in segments, it generates a lot of input and out-
put activity whereas Genesis is concerned mainly
with manipulating complete segments and con-
sequently makes more use of directory and store
management services.

Evaluating the benefits which accrue from
the use of small protection domains is more
difficult than assessing the costs. One advan-
tage is the ability to separate logically distinct
operating system services into separate domains.
As already mentioned, the Algol 68C compilation
called for primary services from five different
protected procedures and in running Genesis
primary services were called from six protected
procedures.

Conclusion

The subjective reaction of those involved in
developing the CAP Operating System has been that
their work was made easier and more effectiye by
the underlying domain structure. This paper has
presented empirical evidence to support the claim
that, with appropriate hardware or microprogram
support, the costs associated with switching pro-
tection domains are low enough for domain struc-
ture to be a realistic basis for the design of
an operating system. The evidence suggests that
in deciding on the number and size of domains
to use, the designer need not be unduly con-
strained by the cost of switching from one
domain to another. However, the results are
based on a limited experiment with a single
implementation and additional results from
other systems are needed to add weight to the
case. It is hoped that the results presented
here will encourage such further experimentation.

6.

7.

8.

9.

I0.

II,

12.

13.

14.

Principles, Purdue University, 16 - 18
November 1977, pp. I-I0.

Sturgis, H.E. "A postmortem for a time
sharing system", Ph.D. Thesis, University
of California, Berkeley, 1973.

Lampson, B.W., Sturgis, H.E. "Reflections
on an operating system design", CACM, Vol.
19, No.5, May 1976, pp. 251-265.

Wulf, W., Cohen, E., Corwin, W., Jones, A.,
Levin, R., Pierson, C., Pollack, F. "HYDRA:
the kernel of a multi-processor operating
system", CACM Vol.17, No.6, June 1974, pp.
337-345.

Almes, G., Robertson, G. "An Extensible
File System for Hydra", Proc. 3rd Inter-
national Conference on Software Engineering,
Atlanta, Georgia, May 1978, pp. 288-294.

Cohen, E., Jefferson, D. "Protection in the
Hydra Operating System", Proc. 5th Symposium
on Operating Systems Principles, Nov. 1975,
pp. 141-160.

Schroeder, M.D., Saltzer, J.H. "A Hardware
Architecture for Implementing Protection
Rings", CACM, Vol.15, No.3, March 1972,
pp. 157-170.

Cook, D.J. "Measuring memory protection",
Proceedings 3rd International Conference on
Software Engineering, Atlanta, Georgia,
May 1978, pp. 281-287.

Cook. D.J. "Measuring memory protection in
the CAP Computer", Proc. 2nd International
Symposium on Operating Systems, IRIA, France,
October 1978.

Bourne, S.R., Birrell, A.D., Walker, I.
"ALGOL 68C Reference Manual", Cambridge
University Computer Laboratory, July 1975.

References

i. Linden, T.A. "Operating Systems Structures
to Support Security and Reliable Software",
Computing Surveys, ~oi.8, No.4, December
1976, pp. 409-445.

2. Needham, R.M., Hartley, D.F. "Theory and
Practice in Operating System Design",
Proc. 2nd Symposium on Operating Systems
Principles, Princeton, October 1969,pp.8-12.

3. Cook, D.J. "The Evaluation of a Protection
System", Ph.D. Thesis, Cambridge University
Computer Laboratory, April 1978.

4. Needham, R.M. "The CAP Project: an interim
evaluation", Proc. 6th Symposium on Operat-
ing Systems Principles, Purdue University,
16 - 18 November 1977, pp. 17-22.

5. Needham, R.M., Walker, R.D.H. "The Cambridge
CAP computer and its protection system",
Proc. 6th Symposium on Operating Systems

130

