
An Architecture for Large Scale Information Systems

David K. Gifford, Robert W. Baldwin, Stephen T. Berlin. John M. Lucassen

M rl" Laboratory for Compute r Science

545 Technology Square

Cambridge, MA 02139

A new type of system architecture is described that uses both duplex
ct)mmunication and wide-area simplex commtmication to implement a
single service. A working community inlbrmation system based on this
architecture is discussed fiom a systems perspective, with an emphasis
on the unique way in which processing is distributed among a con-
federation of shared servers and private personal systems.

In the community infimnation system, each personal system maintains
a local, user-defined subset of the databases stored on the shared ser-
vers. I)atabase updates are transnfitted to the personal systems via a
broadcast packet radio system. This design allows many queries to be
processed completely at users' personal machines, and thus reduces the
reliance on shared servers.

A unifying design principle is that the system is seen as a collection of
independent shared and personal databascs, as opposed to a single
monolithic database. Query routing is used to hide the system's divi-
sion into component databases from a user.

CR Categorics and Subject Descriptnrs: C.2.4 Computer Communica-
tion Networks - - Distributed Systems, H.3.4 Information Storage and
Retrieval - - 5),stems and Software, H.4.3 Information Systems Applica-
tions - - Communications Applications, 1).4 Operating Systems.

Additional Key Words and Phrases: Community Information System,
Multi-Database, Predicate Data Model, Broadcast Packet Radio, Query
Routing, Remote Proccdure Call

(This work was supported in part by DARPA/ONR contract number
N00014-83-K-0125)

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1985 A C M - 0 - 8 9 7 9 1 - 174- 1 - 1 2 / 8 5 - 0 1 6 1 $ 0 0 . 7 5

I. Introduct ion

This paper introduces a new architecture ffi)r large scale information
systems. The architecture combines personal compntation, broadcast
digital communication, two-way communication, and centralized mass
storage in a unique way. In this architecture an information system is
seen as a collection of independent shared and personal databases, as
opposed to a single monolithic database, Query routing is used to hide
the division into component databases from the user.

To test our architectural ideas, we have implemented an experimental
large scale community infimnation system that is currently operating at
the I,aboratnry for Computer Science at MIT. Thc system gives our
users throughout the Boston area access tu a w~riety of intbrmation
sources, including the New York Times, the Associated Press News
Sen, ice, and several electronic mailing lists.

Our research anticipates a time when most information will be com-
municated to the home and office by digital means instead of on paper.
Digital delivery will make a wider range of information sources avail-
able to everyone, and computers will provide the necessary power to
filter and process the large volume of intbnnation that will be received.
These future systems may also be used to contribute information to
public databases, as well as for banking, shopping, and other trans-
actions.

Our system design goals include:
• Economy: the system should be able to serve an entire metropolitan

area cost-effectively
• Ease of use: the system should have a high-quality user interface

that is easily mastered by naive users
• Privacy: the privacy of individual users should be safeguarded
•Protcction: the services provided by the system should be available

to authorized users only
• Autonomy: users should be able to process infonnation drawn from

the system in any way they desire
• Scale: the system should make access to very large databases pos-

sible
• Flexibility: i~ should be easy to add new applications to the system's

existing infrastructure.

Our ,approach to these goals has been to utilize personal computers for
most processing tasks, thereby minimizing reliance on centralized ser-
vers. Our Community Infimnation System consists of two major com-
ponents: a set of shared servers, operated at a central location, and a
large number of p'crsonal computers, one tbr each user. The personal
computers help us meet our objectives of economy, case of use, privacy.
protcction, and autonomy, while the shared servcrs provide the tradi-

161

tional advantages of direct access to a large database. To ensure
flexibility, the system has been designed with modularity in mind.

In view of our design goals, we decided that the personal computers
should be capable of processing the most common user requests com-
pletely on their own, without resort to any shared servers. To this end,
we have built a personal database system that runs on a personal com-
puter and is designed to offcr a high-quality user interface, while
operating autonomously as much as possible. Although a personal
computer can not hold all the available information, it may be capable
of holding the information that a particular user is most likely to re-
quest. To help ensure that must user requests can be prtx:essed locally,
each user specifics what intbrmatiou should be kept within his personal
database system. When a request can not be processed by the personal
system alone, shared servers are utilized. This use of shared servers is
invisible to the user.

The integration of personal computers and shared servers into a single
database environment poses a number ofintercsting research issues. To
insulatc our users from the distributed nature of the system, the user is
presented with a "single system image': the system appears to the user as
a single, large database. At the same time, we decided to make every
database autonomous, so that the overall system consists of a large
number of independent databases, l)atabase content descriptions are
used to route each request to an appropriate database or set of
databases.

Our system is designed to be adaptable to technological advances.
Thus, our design is not based on specific communication channel
characteristics or specific personal computer technology. As technology

develops, we expect to be able to upgrade our system accordingly,
thereby improving its functionality and performance.

We decided not to rely upon high bandwidth communication within a
community. This presented us with the challenge of isolating users
from the effects of low to moderate bandwidth communication
(1K-10K bits/sec). Our design for the personal database systems seeks
to minimize the impact of bandwidth limitations by means of a multi-
process structure that enables the system to perform communication
tasks in the background while responding to user requests at the same
time.

An overview of our prototype system is shown in Figure 1. The shared
servers shown in the figure arc located at the MIT l,aboratory for Com-
puter Science. Each server contains one or more independent
databases, unified by a query routing module. Some databases are
replicated on more than one server to improve availability and perfor-
mance. When a shared server receives new infimnation, it is queued
for transmission to the personal systems via a broadcast packet radio
system. The type of each database item determines both the number of
times that the itcm is transmitted and thc key (if any) with which the
transmission is encrypted. The broadcasts are received by the personal
systems, where a background u~sk uses them to update the local
database. The perstmal database system processes queries from the
user; when it does not have the intbrmation needed to process a user
request, it autolnatically establishes a connection to the appropriate
shared server.

Server

I

Server

(Internet)

New York
Times

Associated
Press

System Block Diagram

Figure 1

~ Personal
Computer I

~ Personat [
Compute r J

~ P e r s o n a l
Computer I

~ Personal I
Computer]

~ Personal
Computer I

~ Personal
Computer]

162

.]'he remainder of this paper is organized as follows. Section 2 intro-
duces the predicate data model and query routing, in which our single
system image is based. Section 3 presents the personal database system
in detail, and provides a brief overview of its user interface. Section 4
presents the design of the shared servers. The next two sections review
related work (Section 5), and system performance and project status
(Section 6), and we end with some conclusions about our approach and
directions for future work (Section 7).

2 .The Predicate Data Model

To organize our system, we have developed a new data model which we
call the Predicate Data Model The predicate data model is designed for
information retrieval applications, and incorporates many ideas from
contemporary information retrieval systems. The predicate data model
is less powerful than the relational model in many respects (for example
it does not support join), but it provides full text searching capabilities
that the relational model does not.

A Predicate Database consists of a set of records. Each record consists
of a number of named fields. There are required fields (such as TYPE
and DATE), as well as optional fields. A predicate database can be
mutable (i.e. records can be altered), immutable (Le. the database can
never be altered), or append-only (/.e. records can be added to a
database but existing records are immutable). To date we have imple-
mented append-only and immutable databases.

The fundamental operation on a predicate database is to restrict atten-
tion to a subset of the records in the database. A specification of a
subset of the database is called a query, and the computation of a
database subset is called query processing. Once a subset has been
selected, the records contained in the subset can be retrieved or deleted.

The predicate data model provides users with a great deal of flexibility
in the formulation of queries. This is important in a community infor-
mation system, where users know certain things about the records they
seek, but arc unable to produce a single, unique key that identifies the
information of interest. The predicate data model permits users to
express what they know about the records they are seeking by defining
a predicate that matches each such record.

In the predicate data model, predicates and result sets are defined as
follows. A predicate function, or predicate, returns TRUE or FAI,SE
when applied to a record, depending on the content of the record. A
query is a I k,olean combination of predicates, and is therefore itself a
predicate. A record is said to match a query (and vice versa) iff the
query predicate returns "ntUl~ when applied to the record. A record x is
in the result set of a query Q iff it matches the query Q. In our present
database system, predicates permit selection on the basis of:

• The record type (corresponding roughly to the source of the
information);

• The date and time a record was inserted into the database (range
queries on dates and times are supported);

• The presence of arbitrary words or phrases in the record or in
specific (textual) record fields, such as the SUBJECT, AUTHOR or
PRIORrrY field.

For example, here are some queries that users of our system might
type:

(type: times) & (date: [date sap 17])
(subject: movie review) & (author: smith)
(category: financial) & (ibm I apple)

The predicate data model has two main advantages over traditional data
models. First, it is suitable for dealing with text and other semi-
structured information that can not be easily indexed within the
framework of more traditional approaches. Research suggests that
predicate based approaches may be preferred by novices and ex-
perienced users alike [2].

The second advantage is more relevant to this paper: the predicate data
model provides a framework for reasoning about the content of
databases. Most traditional systems make a 'closed world assumption':
i fa piece of information is not found in a database, then it is assumed
not to exist. This assumptkm is not appropriate in our system, where
there are many databases, and where no single database necessarily
contains all the available information.

To determine where a query can be processed, we must be able to
reason about the content of databases. Figure 2 illustrates the kinds of
problems we arc trying to solve, with two databases and three quedes
expressed as a Venn diagram. Query QI describes a potential result set
that is only partially contained in I)lll, but is contained entirely in I)112.
Thus QI can be processed at I)B2. Query Q2 describes a potential
result set that is only partially contained in I)B2. In this case we can not
guarantee that the result of processing Q2 at I)112 will find all infor-
mation of interest. Our approach is to have the system suggest another
query to the user, Q2', which represents the intersection uf IIBZ and the
potential result .set of Q2. If the user confirms, this query QZ' will be
processed at I)BL The third and final case is represented by query Q3,
which is disjoint from both Dill and I)112. This query can not be
prt~essed using only Dill and I)112, and is thereforc rejected. To sum-
marize, there are three cases:

• If QC_I)I|, the query Q can be processed at a database with predi-
cate I)B.

• If Qf" l l) l l=Z for all database predicates I)B, the query Q is
rejected.

• Otherwise, the modified query Q '=Qf ' l l)B (for one or more ap-

propriate database predicates i)B) is proposed to the user as an
alternative query.

The ability to reason in this manner about the queries presented to our
system is central to our strategy for query processing.] 'he query lan-
guage itself is used to formally describe the content of each database.
Content descriptions and queries are formalized in a first order theory
that has an efficient decision procedure.

Let DB be the description of a database, phrased in terms of predicates.
For example, I)B could be a formalization of the statement that a
database contains all information from the New York Times for the
month of November, 1985. In our query language, this would be ex-
pressed as:

(type: times) & (date: [date nov 1986])

To show that a query Q can be processed at a given database DB, we
must show that QCI)B, where Q denotes the potential result set of the
corresponding query, and I)B denotes a database. To this end, it is
sufficient to show that the statement Q(x)~ l) l l (x) is true for all x , / . e
that Q(x} implies l)B(x) for all x. By chocking the truth of similar
statements, we can determine when there is an intersection between DB
and the potential result set of Q, and when riley are disjoint. When the
potential result set of Q is not contained within I)B, we attempt to add
the minimum number of terms to Q that will make its potential result
set a subset of DB.

The Predicate Data Model allows us to view several "simple' databases
as a single 'composite' database. As we described above, the content of

163

Qr

Database Descriptions and Query Result Sets

Figure 2

a database can be described by a Boolean combination of predicates.
This means that the joint content of a set of databascs is described by
the disjunction (logical OR) of the expressions that describe the com-
ponent databases. Given any query that falls within the scope of a
composite database, the result set can be obtained by submitting the

query to each of the component databases, and taking the union of the

resulLs obtained.

The expresskms that describe the component databases can be used to
determine which uf them contain in formation needed to process a given
query. This gives rise to the concept of queo' routing. Rather than
submitting the query to all the component databases, it suffices to sub-
mit it to any set ufcomponents fur which the disjunction of the content
descriptions is implied by the query.

A similar procedure can be used when adding records to a composite
database. A given append request could be applied to each component
database, but it suffices to apply the request to only those components
whose description predicates match the record being added.

In our system, each server is implemented as a composite database.
Within the server, information is assigned to the component databases
based on its type and on the time of acquisition. Every 24 hours the
currently active databases are converted from append-only to im-
mutable status, and a new set of databases is created. Because each
database has a specific content description, a database can be taken
off-line without affi~cting the system's ability to describe its own con-
tent. The composite database manager must note the change, and up-
date the predicate that describes the server's content. Likewise, new
databases can be added to the system without causing disruption.

From the outside, a composite database is indistinguishable from a
simple database. We will refer to the composite databases stored on the
servers simply as 'databases'.

3. The Personal Database System

The personal database system is an integral part of the Community
Information System. It runs on each user's personal computer, and
implements the user interface to the rest of the system. In this section
we will first describe the functions of the personal data base system, and
second, how these functions are implemented.

3.1. Personal Data Base System Functions

The personal database system performs two tasks concurrently: it

processes user requests, and it applies database updates received over
the digital broadcast channel to the local database. The details of the

transmissiop medium and packet protocol are described in [3].

Figures 3 and 4 illustrate how information from the database is
presented to the user. Figure 3 shows a set of article summaries result-

ing from the processing of a query; Figure 4 shows an article that has
been selected for display.

To meet the goals we outlined in Section l, we have designed the sys-
tem so that a user's most frequent requests can be answered from the
user's pcrsnnal database. To this end a user compilcs a list of routine
queries into what is known as thef i l ter list. 'llle queries in the filter list
are disjunctively combined (OR'ed together) to create a predicate called
FI, (for filter list) that describes the information that will be retained at
the user's personal computer. The personal database that results is
precisely the set of records necessary to process any query in FL.

The predicate FL may describe more information than can be stored on
the user's personal system. When this occurs, the system must make a
choice among the records that match FL, deciding which records to
keep and which tu discard. To deal with this, we let the user list the
component queries of FL in order of importance, and ask him to
specify a 'budget' for each query in FI,. This 'budget' indicates how
many records matching the query should be retained. Each record in
the personal database is associated with the most important query in FL
that matches it. If a new record arrives that matches FL and the per-
sonal database system has insufficient resources to store it (such as disk
storage or main memory), the personal database system will try to make
room by deleting records from queries in FL that are "over budget". If
there still is insufficient room for the new record, 'the personal database
system will delete records from queries in FL that are less important
than the most important query that matches the new record.

Because the system does not necessarily keep all records that match FL,
and because a user's personal computer may miss certain updates (when
it is turned off or when there are uncorrectable channels errors), FL
does not accurately describe the contents of the local database. A solu-
tion to this problem, which we have not implemented, would be to
maintain a separate predicate, PDB, that describes the local database
exactly. PDB could be obtained by conjoining each query of FL with
an additional predicate that describes a set of time intervals for which
the local database has a complete set of database updates,

At the user's request, the personal database system will display the filter
list. The user can easily change the filter list, or instruct the system to
process one of the queries in the filter list. By allowing the usem to
select preplanned queries, the system inherits many of the advantages

164

5 matchtng a r t | o l e o found, l i n e s 1 : 1 8 of 18

I sap 19, 10:48 (121 lines) ~ g u l a r (F i n s n e ~
NEW YORK -~ A f t e r a record year , the market f o r p u b l i c stock
o f f e r i n g s by p r i v a t e companies has gone i n t o a slump, f o r c i n g many of
these companies t o bypass the new- issue market and seek c a p i t a l - -
o f ten th rough c r e a t i v e dea ls - - e lsewhere .

2 .~g I& 22:37 (89 lines) regular (FinancloO
NEW YORK - - Technology s tocks took a beat ing Tuesday, Toe tWO
u n r e l a t e d reasons, and helped t o keep the market on the downslde.

3 sap I& 21:18 (82 lines) urgent (Financial)
A d i g e s t of bus iness and f l n a n c l a l news f o r Wednesday. Sept. 19.
IgB4:

4 sap I& 18:22 (70 lines) urgent (Finnoelt~
NEM YORK - - StOCk p r i ces dropped Tuesday in acce le ra ted t r a d i n g , w i t h
some of the techno logy and la rge c a p i t a l i z a t i o n issues r e g i s t e r i n g
the b igges t d e c l i n e s .

S sap I& 7:41 (I 13 ILeal de~rred (Flnancl |~
London - The American l a w y e r would have been rubb ing h l s hands,
except t h a t he was j ogg ing in Hyde Park, so he was swing ing h is arms.

techno logy & (ca tego ry : f i n a n c i a l) ;

A r t i c l e N4Og187.727: l i n e s 1:23 of 80

type : New York Times genera l news copy
p r i o r i t y : r e g u l a r
date : 09-18-84 2237edt
c a t e g o r y : Finaoc~l
s u b j e c t : MARKETPLACE
t i t l e : (BtzDay)
au tho r : DANIEL F, CUFF
source: (c)1984 B.Y, Times News Serv tce
t e x t :

NEW YORK -Technology s tocks took a bea t ing Tuesday, fop two
u n r e l a t e d reasons, ann helped to keep the market on the downstde.

F i r s t+ worry over problems w i t h a d i sk d r i v e h u r t Cont ro l Data and
Burroughs. Second. the semiconductor issues were b a t t e r e d by a
bear tsh brokerage house repo r t on Motoro la .

Burroughs opened down 2 3/8 Tuesday morning a f t e r an o r d e r imbalance,
The drop in Burroughs. which c losed the day at 53. o f f 3 5 / 8 , f o l l owed
Cont ro l Dora 's s l i d e . On Monday. Cont ro l Data dropped 2 1/8, and I t l o s t
an a d d i t i o n a l 3/8 Tuesday, to c lose a t 26 1 /8 .

Cont ro l Data. accord ing to a n a l y s t s , encountered problems w l t h •
t h i n coa t ing on the d i s k . ' ' l f t h a t chemical compound is not
v i r t u a l l y p e r f e c t , t r o u b l e e n s u e s , ' ' sald U l r i c Wet1, an a n a l y s t at
Morgan S tan ley & Co. ' 'Me are t a l k i n g about t o le rances the th tcknese
of a human h e i r . ' '

techno logy & (ca tegory : f t n a n c t a l) : 2

Typical Article Summary Display
Figure 3

of menu oriented systems.

When a user selects a query from the filter list, this query is placed in
the query input line as if it had bccn typed by the user. The user is free
to edit the query input line before submitting the query. The user may
also submit arbitrary queries that do not appear in the filter list.

The task of deciding how and where to process a query is called query

muting. To perform query routing, the personal system needs the
descriptions of all available databases. Given a query, query routing

determines which databases could process the query. From this set, we
may select, fi)r example, the database that has the lowest estimated
communication cost. If the selected database is unavailable, the next
lowest cost database may be selected.

A user's personal database system maintains a description of available
remote databases. At present the descriptions of the available
databases are fixed. However, we plan to include database descriptors
in the database itself. The user's filter list predicate FL would then
implicitly contain a termmatching any record that contains a database
description. Thus, descriptions of remote databases would be kept up
to date automatically.

The current implementation of the personal database system is limited
to infi)rmation retrieval. We plan to add Kacilities that will allow users
to update remote databases interactively.

3.2. Implementation of the Personal Database Sys tem

Figure 5 shows the internal organization of the personal database sys-
tem as implemented for the IBM-PC family of computers. The
modules shown are organized into two processes. One process monitors
the keyboard and the mouse, processes user requests, and writes to the
display. A second process receives the incoming stream of database
updates from the packet radio system, and applies them to the local
database as necessary. A non-preemptive scheduling discipline is used:
the receiver process must yield at regular intervals to give the user
interface process a chance to run, and vice versa.

We will not describe the system's modules in detail, but we will discuss
their interrelations. The window manager reads from the keyboard and
mouse, passes completed commands to the database user interface, and
updates the display as requested by the database user interface. The

Typical Article Display
Figure 4

database user interface is responsible for implementing all commands,
and for formatting database records for display. The query routing
module is in charge of processing queries. As described earlier, query
routing uses the filter list and descriptions of remote databases to decide
where a query should be processed.

The local database is stored on disk, and an index is maintained in
primary memory. The amount of data that can be kept in the local
database depends on the amount of storage available. An average news
article requires 5K bytes of disk storage, and approximately 470 bytes
of main memory. This results in on approximate capacity of 40 news
articles for a system with a 320 KB floppy disk, and 250 news articles
for a system with 512K bytes of memory and a hard disk.

Our protocol for access to shared database servers is based on remote
procedure calls. Table I shows the intcrlhce to a shared server. The
intert~lcc is designed to be implemented using rclnote procedure calls:
however ()ill" current ilnplcmentation does nut actually export the
procedures shown in the interface. We plan to explore how we could
automatically generate atruc RPC stub fi)r tbc procedures in Table 1.

The operations in Table I fall into two classes:

I. Connection Management: Connect is used to establish a connection
with a server. Connect is passed the name e r a server, and it returns

a completion status. The interface only supports a single connection
at a time. I)isco,nect closes the currently open connection. Abort
can bc called while an RWC in progress: the RPC in progress will be
ilnmcdiatcly terminated and return aborted as its status.

2. l)atabasc Requests: The server interface is designed to permit query
processing at a server to occur concurrently with other client
processing. The procedure EstablishQuery initiates processing of a
query at the server, and then returns immediately to the clienL
CountMatchingReeords returns the number of records that have
matched a query so thr, and a flag indicating if this count is final.
FetehSununaries is used to return summaries of specified records,
while FetchRecord is used to obtain specified lines from a specific
record.

There are three innovations in our model of remote procedure call.
They are:

1. Backcalls for incremental results: In our RPC model clients can pass
procedures to servers. When a server applies such a value, a remote

165

Window
Manager

Packet Radio
Receiver

I
Byte
Buffer

Interrupt
Level

n Database User
Interface

I
!

FL Predicate i

i

Query
Routing

I I i,.o, ouo i Processing

Remote DB Descriptions

I I

Reassembly and Decryption Match

!

Reliable
Byte Stream Server

I

F

I,ocal DB
Index

Local DB
Records

Internal Organization of the Personal Database System

Figure 5

procedure call from the server to the client will result. These back-
ward remote procedure calls are named backcalls. Backcalls are
used in our application to provide results to a user as soon they are
computed. For example, FetchSummaries and FetchRecord will
return data to a client incrementally, by calling the procedure passed
as the deliver-to formal parameter. In addition to providing results
as they are computed, backcalls also permit bulk data transfer be-
tween a server and a client within a remote procedure call
framework.

2. Explicit Flow Control: Clients usually have limited buffering
capability. To permit explicit flow control, FetehSummaries and
FetchRecord have parameters that permit the client to specify how
much data should be returned.

3. RPC Abort: We permit an RPC in progress to be aborted. In our
application, the personal database system will abort a
FetchSummaries or FetchRecord request when a user decides to
issue a new command without waiting for the previous request to
finish. If Abort did not exist, the client would have to wait for each
request to finish before issuing a new request. Because RPC re-
quests can require a long time to finish, waiting for completion
would be unacceptable.

The RPC stub uses a byte stream module to communicate with a shared
server. The byte stream module uses an autodial modem to establish a
server connection without user intervention.

The reception of database updates via the packet radio system is
handled by the set of modules at the bottom of Figure 5. Bytes arrive
from the packet radio receiver at 4.8K bits/see, and are placed in a 5K
byte ring buffer at interrupt level. The size of the buffer accommodates
a service latency of up to 10 seconds. Such latency can be caused by
activity in the user interface process.

The receiver process polls the byte buffer and reassembles records out
of individual packets. Each packet contains information for error
detection and error correction. To mask channel errors, packets are
transmitted more than once, and these transmissions are separated in

time. When a previously unseen packet arrives, it is copied into its
proper place in the record reassembly buffer. A bit map of received
packets is maintained sff record reassembly can determine when an
entire record has arrived.

Once an entire record has arrived, its key number is looked up on the
key ring. If a matching key is available, the contents of the record are
decrypted. If the decrypted record matches the filter list predicate, it is
presented to the local database for insertion. The record may or may
not be retained, depending on resource availability and on the record's
priority relative to the information already present. The match module
has been designed so that the time required to match an incoming
record is essentially independent of the complexity of the filter list.

4. T h e Sha red D a t a b a s e Se rve r s

The shared database servers form the second half of our system. We
will first discuss the functions of the shared servers, and second, how
these functions are implemented.

4.1. Shared Server Functions

The shared database servers in our system perform three major func-
tions: they
1. accept data from information sources and add the data to their own

databases,
2. transmit database updates to personal systems via a broadcast digital

packet radio system, and
3. implement the remote procedure call interface described in Table I

to allow remote access by personal systems.

The organization of these functions within a single server is described
below.

166

Status: type : {completed, aborted, error}

Connect: proc (name: string)
returns (s: S t a t u s)

D i s c o n n e c t : pme ()
~turns (s : S t a t u s)

Abort: proc ()
mtums (s: Status)

£stabl-ishQuery: proc (query: string)
returns (s: Status)

C o u n t M a t c h i n g R e c o r d s : pme ()
returns (f i n a l : bool, c o u n t : int, s : S t a t u s)

FetchSummarJes:
proc (f i r s t - r e c o r d , l as t - reco rd : ~t,

d e l i v e r - t o : pmc (s: Summary))
~ t u m s (s: Status)

FetchRecord:
poe (record, f i r s t - l i n e , l a s t - l i n e : int,

d e l i v e r - t o : pme (1: L ine))
~tums (s: S t a t u s)

"fable I. RPC Interface to the Shared Servers

The conccptual organizmion of the data in each server borrows an im-
portant idea from Section 2, whcre the personal and scrvcr systems are
mt~eled as a collection of databases, rather than one large database.
Similarly, the information in each servcr is organized as a collection of
databases. These databases may even reside on distinct storage units, so
that any database can be physically removed from a server without
affecting the remaining databases. The existence of multiple internal
databases is not observable at thc interface to the server. Query routing
is used inside a server to fi~rward each request to the proper set of

databases.

Since we view a server as a collection of databases, the databases them-
selves can bc regarded as the basic units of information tbat are stored
on a server. "lhe ability to view prcdicate databases as the basic unit of
cmoqguration provides a number of conceptual and practical ad-

vantages:
• Databases can be relocated from scrver to server, and the descriptive

prcdicates of each server can easily be updated accordingly.
• Databases can be replicated to achieve performance and availability

goals. Replication is most naturally donc at the level of a database.
lmmutablc databases can be easily replicated, either within a server
or on several distinct scrvers. Replication of append-only and
mutable databases is a more complicated issue.

• Each database can have its own representation and implementation,
provided that all databases implement the same intcrface. This is
useful when the databases store different kinds of data. In our
application, most databases bcgin their lives as append-only
databases, and then become immutable. They can then be con-
solidated to improve pcrformancc and reduce storage demands.

Thus far, we have discussed how data is organized in our database
systcm, but we have not examined how the data actually gets there.
The bulk of our data consists of news artielcs, which arrive in a con-
tinuous strcam over dedicated telephone circuits. Each input stream is
converted into a stream of database records, and the resulting records
are inserted, based on their types, into appropriate dau~bases. When a
database is replicated on more than one server, the incoming tclephone

circuit is connected to each server so that all server copies of the

database are kept up to date.

In addition to these continuous streams, there are sources that must be
polled periodically for new information, in our present system,
electronic bulletin board entries are received in this manner. New mes-
sages are formatted into database rccords and inserted into the ap-

propriate databases.

As new infi~rmation arrives at the system, it is quened to be sent out
over the digital broadcast channel, t~cb record is transmitted more
than once. with transmissions separated in time. The transmitted
records are encrypted to prntect all infiwmation that is broadcast from
unauthorized use. The eJlcryption key used depends on the type of the
record (New York Times, Associated Press, ate). This scheme logically
divides the broadcast transmissions into several independently
protected streams. Users are given keys for only the streams they arc
authorized to receive. These keys are placed on the "key ring" of the
personal database system.

The remote procedure call interface shown in Table 1 does not have any
provision tbr the authentication of users that communicate with the
system. We plan to use the key rings of the personal database systems
for authentication in this two-way setting.

4.2. Implementation of the Shared Database Servers

Figure 6 is a block diagram of a typical server as implemented under 4.2
BS1) UNIX TM. The exact configuration of each server depends on the
databases stored on the server, the inlbrmation sources to which it is
connected, and the communication channels through which the pep
sonal systems can access the server. Only one server is used to drive the
digital broadcast channel. To ensure continuity of service, a second
server can take over the broadcast channel if the server driving the
channel fails.

To maximize concurrent activity and failure isolation, each major func-
tion in a server is performed by a separate process. Processes communi-
cate via messages that are placed in the file system, in an approximation
of recoverable message queues, l f a process fails, its input messages will
accumulate until the process is restarted. Input messages are not
deleted undl they have been completed processed: if a process fails
while processing an input message, this message will be processed again
later. Processes that modify non-volatile state infi~rmation must operate
properly when a failure occurs. Transactions could be used to impose
additional structure on the failure recovery procedure [4].

In Figure 6, infi~rmation flows from the left side of the figure to the
right side. Information from the various sources is constantly being
read by htpul daemons that simply record incoming data items, t h e
incoming items are stored in separate tiles. To reduce the chance that
the input daemons would thil and Iosc information, they were designed
to be extremely simple, q'o date, we have observed no input daemon
failures.

Each input daemon forwards incoming data items to a source-specific
format conversion process. Earl1 information source has its own format.

Thc source conversion processes take received data items, and convert
them into standard fiwmat database records. The rcsulting records arc
forwarded to the broadcast scheduler and to the database insertion
process.

Figure 6 also shows an input process for electronic bulletin board input.
This process periodically polls a set of mailboxes, and when it finds
mail, converts it to standard format database records, which are then

167

] Broadcast
Scheduler

To Transmitter

Information ~ 1 Input
Source A Process

Electronic
Mail

I
Conversion
to Records

to Records

Conversion t -
to Records

I
Information I Input
Source B Process

_• Update
Routing I

Database
Descriptions

I Database

I ID 'Ta ° I ,

~ Query
Routing

I
Reliable
Byte Stream t _ Personal

System

Internal Organization of a Shared Server

Figure 6

forwarded to the broadcast scheduler and to the database insertion
process.

The broadcast scheduler process receives database records, along with
an expinltion time for each record, an indication of how many times the
record should be transmitted, and the key with which the record should
be encrypted when it is transmitted. The information broadcasts are
scheduled on the basis of this information. In addition to driving the
digital broadcast channel, the scheduler maintains a status display for
the system administrator.

The database insertion process adds new records to the appropriate
databases, based on the content of the record and the descriptive predi-
cate of each database. In our prescnt system configuration, a new set of
such databases is created every night at midnight, and the databases
with the information that arrived during the preceding 24 hour period
are converted to immutable status. Fa~ch database collects information
from a specific source. Thus, there is a separate database for each type
of information for each day. These databases are kept on line for a
period of time which varies, depending on the source of the database.
Eventually, a database may be either archived or deleted.

The final component of a server is the remote procedure call inter#ce to
the personal systems. When a personal system connects to a server, a
process is assigned to manage the connection and process requests from
the personal system. Figure 6 shows one such process. Data from the
personal system is first processed by a module that implements a byte
stream interface. This module is connected to the server's RPC stub
module. The RPC stub module calls the appropriate procedures in the
server's query routing module.

The query routing module uses the descriptions of the available
databases to determine a strategy for processing the request. It then
applies the query to the appropriate database(s), and forwards the
results to the user's system as they become available. If a query spans
multiple databases of a given type but with different dates, the query is

applied to these databases in reverse chronological order. This ensures
that the most recent records in the result set are produced first. This
approach often allows the personal system to display a complete screen
of results well before query processing has been completed.

This concludes our discussion of the implementation of the server sys-
tem. The next section discusses work that is related to our approach.

5, Re la ted W o r k

This section compares our system with other systems that have similar
goals. We will consider two broad catcgories: systems that share our
goal of serving a large user community, and systems that share our goal
of distributed query processing.

5.1. Community Information Systems

Teletex [7] and Videotex [1] are two contemporary technologies for
community iuformation systems. Telctex involves the broadcast trans-
mission of limited amounts of information to specially equipped televi-
sion sets that can display preformatted pages of information. All avail-
able intbrmation is transmitted in an endless cycle, which usually lasts
no more than a few minutes. In the teletex approach the user selects a
page to be displayed, and when the page is next received it is captured
by the receiver in a local buffer and displayed on the screen. Most
systems limit their teletex transmissions to a total of a few hundred
pages to keep response time acceptable.

Videotex [1] is essentially time-sharing on a very large scale. Each
videotex user has an inexpensive terminal that communicates with the
central system, either over telephone lines or via a digital two-way cable
system. Since videotex is a two-way system, it can also be used for
home banking, shopping, and other transactional services.

168

In a sense, our system represents an attempt to combine the best aspects
of both teletex and videotex. By combining personal computation,
broadcast communication, two-way communication and centralized
mass storage, our design achieves the following advantages:

• The economies of scale of broadcast communication are combined
with the capability to access large databases and to perform trans-
actional services;

• A high-quality user interface is possible because of the processing
power and storage available at each personal database system;

• Performance is improved because the answers to many queries can
be determined using the personal database only;

• The system provides a great deal of flexibility because data can be
integrated with a user's other computational tools;

• llecanse of the open system architecture, a user can access a wide
variety of databases, potentially offered by a number of vendors;

• Privacy can be safeguarded by ensuring that certain requests are
processed entirely within the user's personal system;

• Users can operate autonomously from the central system.

5.2. Distributed Database Systems

Distributed database systems, as the name implies, pennit the distribu-
tion of data over a collection of cooperating computers; the resulting
system can be viewed by a user as a cohesive whole. The relational
database system R* 18] is an example of a contemporary distributed
database system.

In R*, relations (collections of records) can be distributed horizontally
or vertically, or replicated at multiple sites. R* also provides a naming
scheme whereby information at remote sites can be accessed directly.
The query compilation and query processing components of R*
automatically route queries to appropriate database nodes for process-
ing. Systems similar to R* include distributed Ingres [6] and the SDD-I
system [51.

The model we have proposed for query routing is sufficiently powerful
for immutable and append-only databases. For more comprehensive
systems that include shared, replicated, mutable data, our approach
would need to be combined with a mechanism to maintain integrity
and serializability.

Our approach differs from the traditional distributed database ap-
proach in one important respect. In traditional distributed database
systems, dependencies can develop between databases, while in our
approach databases are always considered to be strictly independent.
Dependencies of this kind are central to many applications. However,
the scheme that we have outlined is suitable under many circumstances,
and has the following advantages:

• Databases can be freely added to and deleted from the system with-
out affecting other databases;

• A single, simple mechanism allows our system to adjust to changes
in the set of available databases;

• Because of query routing, queries do not have to indicate where the
requested data is to be found.

6. Implementation Status and Performance

Our community information system began regular operation in April of
1984. Every day we receive and distribute approximately 150 news
articles from the New York Times totaUing 600K bytes, 1300 news ar-
ticles from the Associated Press News Sen,ice totalling 6M bytes, and
70K bytes from electronic mailing lists.

Currently, 15 users outside of our own research group use a broadcast-
only version of the system. These users have been very helpful in
suggesting user interl~ace enhancements (one user added mouse support
himscl0 and in motivating us to catalog the content of our databases.

In addition, the users let us know immediately if there is a problem with
our database transmissions!

A research version of the system, incorporating both query routing and
server access, is operational and is currently being tested within our
laboratoryy. The peril)finance measurements shown below apply to this
version of the personal database system. A user acceptance test of the
full personal database system, including query routing and server ac-
cess, is planned for this fall. ",

The performance of the system is excellent for requests that can be
locally processed. On a PC AT, less than 300 milliseconds are requited
to either process a query or display a record i?om the local database.

To compare the performance of local and remote queries, we per-
formed a set of experiments. Each experiment consisted of making a
request that caused the personal database system to access a server. The
observed response times were directly related to the bandwidth (I.2K
bits/sec) of the channel linking the personal database system and the
server. "l~e results of our experiments are shown in Table 1I.

One shortcoming of the current implementation is that the personal
database system can not collect database updates from the digital
broadcast channel while a user is running other applications. We
believe that this problem will be solved by the next generation of per-
sonal computer operating systems, which will support true multi °
tasking.

Time fi'om query entry
to display of the first record summary

Time from query entry
to display of a complete summary page

Time from request for a record
to display of the first line

Time from request for a record
to display of a complete page

"Fable It:
Typical Performance of Remote Query Processing

(I.2 Kl|it/Sec Channel)

2.7 sec.

11.6 sec.

4.1 sec.

11.9 sec.

169

7. Conclusions

We are pleased with the initial user aecepmnce of our system. Users
have been able to grasp the idea of a local database defined by logical
predicates, and we have found that users actively modify the definition
of their local database to match their interests. Our experience
demonstrates that broadcast technology is an effective way to update
local databases. The natural advantage of the broadcast portion of our
system is that it can scale to a user population of any size.

Database content descriptions and query routing can help integrate per-
sonal databascs into a comprehensive information service. Experience
with our system has shown that users sometimes wish to retrieve infor-
mation that is not available on their personal system. Our system will
automatically route such queries fi)r non-local information to an ap-
propriate server database. We believe that our decision to structure the
system as a collection of independent databases has simplified our
design, and has resulted in both a clear conceptual fi'amework and a
number of practical benefits.

Based on our research results, we feel that the architecture that we have

proposed is wcll adapted to a varicty of information system applica-
tions. In addition, a number of its component ideas - - including our
model of remote pnvccdure call and recoverable mcssagc qucues - - will
find application in other contexts.

Acknowledgments

The authors would like to thank Barbara H. Liskov and tteidi R. Wyle
for their comments.

References

[1] Bright, R.I)., Prestel - The World's First I'ublic Viewdata Service,
1EEE Trans. on Consumer Electronics CE-25, 3 (July 1979), pp.
251-255.

[2] Geller, V.J., and Lesk, M.E.. How Users Search: A Comparison of
Menu and Attribute Retrieval Systems on a Library Catalog, Bell
Laboratories, Murray Hill, N.J., September 27, 1981.

[3] Gifford, D.K., Lucassen, J.M., and Berlin. S.T., The Application o f
Digital Broadcast Comnmnication to Large Scale hoqmnation Systent~
IEEE Trans. on Selected Areas in Comm. (May 1985).

[4] Gifford, I).K.. and l)onahue, J.D., Coordinating hzdependent Atomic
Actions, Proc. of IEEE Spring CompCon 85, Feb. 25-28, 1985, San
Francisco, CA, pp. 92-95.

[5] Rothnie, J.B et aL, Introduction to a System for Distributed
Databases (SDD-I), ACM Trans. on Database Systems 5, 1 (March
1980).

[6] Stonebreaker, M., and Neuhold, E., A Distributed Data Base Version
of INGRES, Proc. 2nd lk~rkeley Workshop on Distributed Data
Management and Computer Networks, Berkeley, CA, May 1977, pp.
19-36.

[7] Tanton, N.E., Teletex - Evaluation and Potential, IEEE Trans. on
Consumer Electronics CE-25, 3 (July 1979), pp. 246-250.

[8] Williams, R. et al,, R*: An Overview of the Architecture, Rep.
RJ3325, IBM Research, San Jose, CA, December 2, 1981.

170

