An Architecture for Large Scale Information Systems

David K. Gifford, Robert W. Baldwin, Stcphen T. Berlin. John M. Lucassen

MIT Laboratory for Computer Science
545 Technalogy Square
Cambridge, MA 02139

A new type of system architecture is deseribed thae uses both duplex
communicition and wide-arca simplex communication to implement a
single service. A working community information system based on this
architecture is discussed from u systems perspective, with an cmphasis
on the unique way in which processing is distributed among a con-
federation of shared servers and private personal systems.

In the community information system, cach personal system maintains
a local. user-defined subset of the databasces slored on the shared ser-
vers. Datubase updates are transmitted o the personal systems via a
broadcast packet radio system. ‘This design allows many qucries to be
processed completely at users’ persenal machines, and thus reduces the
reliance on shared servers,

A unifying design principle is that the systent is seen as a collection of
independent shared and personal databascs, as opposed to a single
monplithic database. Query routing is used to hide the system’s divi-
sion into component databases from a user.

CR Caicgories and Subject Descriptors: C.2.4 Cemputer Communica-
tion Networks — Distributed Systems, H.3.4 Information Storage and
Retrieval — Systems and Sofiware, H.4.3 Information Systems Applica-
tions — Communications Applications, 1.4 Opcrating Systems.

Additional Kcy Words and Phrases. Community Information System,
Multi-Database, Predicate Data Modcl, Broadcast Packet Radio, Query
Routing, Remote Procedure Call

{T'his work was supporsted in part by DARPAZONR contract number
N00014-83-K-0125)

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and /or specific permission.

© 1985 ACM-0-89791-174-1-12/85-0161 $00.75

161

1. Introduction

This paper introduces a new architecture for larpge scale information
systems. The architecture combines personal computation, broadcast
digital communication. two-way communication, and centralized mass
storage in a unigue way. In this architecture an information system is
seen as a collection of independent shared and personal databases, as
opposed to a single monotithic database, Qucry routing is used to hide
the division into component databases from the user.

"To test our architectural ideas, we have impleinented an experimental
large scale community information system that is currently opcrating at
the Laboratory for Computer Science at MIT. ‘The system gives our
users throughout the Boston arca access to a varicty of information
sources. including the New York Times, the Associaied Press News
Service, and several clectronic mailing lists,

Qur rescarch anticipates a time when most information will be com-
municated 1o the home and office by digilal means instead of on paper.
Digital delivery will make a wider range of information sources avail-
able to everyone, and computers will provide the necessary power to
filter and process the large volume of information that will be reccived.
These future systems may also be used o contribute information o
public databases, as well as for banking, shopping, and other trans-
actions.

Our system design goals include;

o Economy: the system should be able to serve an entire metropolitan
area cost-effectively

» Fasc of usc: the system should have a high-guality user interface
that is cusily mastered by naive users

« Privacy: the privacy of individuad users should be safcguarded

& Protection: the services provided by the system should he available
to autherized users only

* Autonomy: uscrs should be able to process information drawn from
the system in any way they desire

» Scale: the systemn should make access to very large databases pos-
sible

o Flexibility: it should be casy to add acw applications to the system’s
cxisting infrastructure.

Qur approach ta these goals has been to utilize personal computers for
most processing {asks, thereby minimizing reliance on centralized ser-
vers. Qur Connmunity Information Systenr consists of two major com-
ponents; a set of shared servers. operated at a central location, and a
large number of personal computers, one for each user. The personal
computers help us meet our ohjcctives of cconomy, case of use, privacy,
protection, and autonomy, while the shared servers provide the tradi-

tional advantages of direct access to a large database. 'To cnsure
flexibility. the system has been designed with modularity in mind.

In view of our design goals, we decided that the personal computers
should be capuble of processing the most common user requests com-
pletely on their own, without resort o any shared servers, To this end,
we have built a personal databasce system that runs on a personal com-
puter and is designed to offer a high-quality user interface, while
operating auonomousty as much as possible, Although a personal
computer can not hold all the available information, it may be capable
of hotding the infonmation that a particular user is most likely to re-
quest. To help ensure that most user requests can be processed locally,
cach user specifics what information should be kept within his personal
database syslem. When a reguest can not be processed by the personat
system along, shared servers are utilized. This use of shared servers is
invisible to the uscr.

The intcgration of personal computers and shared servers into a single
database environment poses a number of interesting research issues, To
inswlate our users from the distributed natore of the system, the user is
presented with a “single system image': the system appears to the user as
a single, large database. At the same time, we decided 10 make every
datibase autonomous, so that the overall system consists of a large
number of independent databascs. Database content descriptions are
used to route cach request o an appropriate database or set of
databascs.

Our systemn is designed w he adaptable 1o technological advances.
Thus, our design is not bused on specific communication channel
characteristics or specific personal computer technology. As techinology

f

Radio
XMTR

R
1 Personal
M M Computer
sk o
Storape Server d
o "
s
Personal
Computer
Iisk . ’3“ IjI_il—
Storage crver d Personal
2 Compuiter
8
Local Area
Personal
Network
M Computer
{Internct)
New York —
Times Personal
Computer
Associated e
Press

develops, we cxpect o be able to upgrade our syslem accordingly,
thereby improving its functionality and performance.

We decided not w rely upon high bandwidth communication within a
community. This presented us with the challenge of isolating users
from the cffects of low to moderate bandwidth communication
(LK-10K bits/sec). Our design for the personal database systems seeks
to minimize the impact of bandwidth limitations by mecans of a multi-
process strucure that enables the system to perferm communication
tasks in the background while responding o user requests at the same
time.

An overview of our prototype system is shown in Figure 1. The shared
servers shown in the figure are located at the MIT Laboratory for Com-
puter Science. Each server contains one or more independent
databases, unified by a query routing module, Some databases are
replicated on more than one server to improve availability and perfor-
mance. When a shared server reccives new information, it is queucd
for transmission to the personal systems via a broadcast packet radio
system. Fhe ype of cach database item determines both the number of
times that the item is transmitted and the key (i any) with which the
transmissivn is encrypled. “The broadeasts are reecived by the personal
systems, where a background wsk uses them to update the local
database. ‘The personal database system processes guerics from the
user; when it does not have the information nceded 1o process a user
request, it automatically establishes 4 connection to the appropriate
shared server.

Persenal
Computer

s

System Block Diagram

Figure 1

The remainder of this paper is organized as follows, Scction 2 intro-
duces the predicate data model and query routing, in which our single
syslem image is based. Sccrivn 3 presents the personal dalabase system
in detail, and provides a bricl overview of its user interface, Section 4
presents the design of the shared servers. ‘The next two sections review
related work (Section 5), and system performance and project status
(Section 6), and we end with some conclusions about our approach and
dircctions for future work (Section 7).

2.'The Predicate Data Model

To organize our system, we have developed a new data model which we
call the Predicate Data Model ‘Ihe predicate data modcl is designed for
information retrieval applications, and incorporates many ideas from
contemporary information retrigval systems, The predicate data model
is less powerful than the relational model in many respects (for example
it does not support join). but it provides full text scarching capabilities
that the relational model does not.

A Predicate Daiabase consists of a set of records. Each record consists
of a number of named ficlds. ‘There are required ficlds {(such as TYPE
and DATE). as well as optional ficlds. A predicate dalabase can be
mutable (ie. records can be altered), immutable (ie the database can
never be altered), or append-only {ie. records can be added to a
database but existing records are immutable). To date we have imple-
menied append-only and immutable databases.

The fundamental operation on a predicate database is to restrict atten-
tion o a subsct of the records in the database. A specification of a
subset of the database is called a guery, and the computation of a
database subsct is called query processing. Once a subset has been
selected, the recards contained in the subset can be retricved or deleted.

The predicate dats model provides users with a great deal of flexibility
in the formulation of queries, This is important in a community infor-
mation system, where users know certain things about the records they
seck, but arc unable to produce a single, unique key that identifies the
information of interest. The predicatc data model permits users to
express what they know about the records they are secking by defining
a predicate that matches cach such record.

In the predicate data model, predicates and resuelt sets are defined as
follows. A predicawe function, or predicate, retums TRUE Or FALSE
when applied to a record, depending on the content of the record. A
query is a Boolcan combination of predicates, and is therefore itsclf a
predicate. A record is said to match a query (and vice versa) T the
query predicate rewrns TRUE when applied to the record. A record x is
in the result ser of a query Q iff it matches the query Q. In our present
databasc system, predicates permil sclection on the basis of:
o The record type (corresponding roughly to the source of the
information):
® The date and time a record was inserted into the database {range
querics on dates and times are supported);
o The presence of arbitrary words or phrases in the record or in
specific (textual) record fields, such as the SUBJECT, AUTHOR or
PRIORITY field.

For example, here are some querics that users of our system might
type:

{type: times) & (date: [date sep 17])
{subject: movie review) & (author; smith)
{category: financial) & (ibm | apple)}

163

The predicate data model has two main advantages over traditional data
models. First, it is suvitable for dealing with text and other semi-
structured information that can not be casily indexed within the
framework of more traditional approaches. Rescarch suggests that
predicate based approaches may be preferred by novices and ex-
perienced users alike [2].

The sccond advantage is more relevant to this paper: the predicate data
model provides a framework for reasoning about the confens of
databases, Most traditional systems make a ‘closed world assumption”:
if a piece of information is not found in a database, then it is assumed
not to exist. This assumption is not appropriate in our system, where
there are many databases. and where no single database necessarily
contains all the available information.

To determine where a query can be processed, we must be able to
reason about the content of datibases. Figure 2 illustrates the kinds of
problems we are trying to solve, with two databases and three queries
cxpressed as a Venn diagram. Query Q4 describes a potential result set
that is only partially contained in DB, but is contained entirely in DB2.
‘Thus Q1 can he processed at DB2, Query Q2 describes a potential
result sct that is only partially contained in DB2. In this case we can not
guarantee that the result of processing Q2 at DB2 will find all infor-
mation of interest. Qur approach s Lo have the system supgest another
query to the user, Q2', which represents the intersection of D32 and the
potential result set of Q2. 1f the user confirms, this query Q2" will be
processed at DB2. “The third and final case is represented by query Q3,
which is disioint from both DB1 and DB2. 'I'his query can not be
processed using only DBY and DB2, and is thercfore rejected, To sum-
marize, there arc three cascs:
¢ IFQEDB, the query Q can be processed at a database with predi-
catc DR,
oIf QNDB=@ for all database predicates DB, the query Q is
rejected.
» Otherwise, the modified query Q' =QNDB (for one or more ap-
propriate datubase predicates DB) is proposed to the user as an
alicrnative query.

The ability to reason in this manner about the queries presented to our
systemn is central to our strategy for query processing. The query lan-
guage itself is used to formally describe the content of cach database,
Content descriptions and qucrics are formalized in a first order theory
that has an cfficient decision procedure.

Let DR be the description of a database, phrased in terms of predicates,
For example, DB could be a formalization of the statement that 3
database contains al! information from the New York Times for the
month of November, 1983, ln our guery language, this would be ex-
pressed as:

(type: times) & (date: [date nov 1985])

To show that a query Q can be processed at a given database DB, we
must show that QCDB. where Q denotes the potential result set of the
corresponding query, and DB denotes a database. To this end, it is
sufficient to show that the statement Q(x)=> DI{x) is true for all x, ie
that Q(x) implics DI(x) for all x. By checking the truth of similar
statements, we can determine when there is an intersection between DB
and the potential result set of Q. and when they are disjoint. When the
potential result set of Q is not contained within DB, we attempt to add
the minimum number of terms to 4@ that will make its potential result
set a subset of DB.

The Predicate Data Model allows us to view several 'simple’ databases
as a single ‘compusite’ database. As we described above, the content of

S Qr

Datahase Descriptions and Query Result Sets

Figure 2

a database can be described by a Boolcan combinatien of predicates.
‘This means that the joint content of a ser of databascs is described by
the disjunction (logical OR) of the expressions that describe the com-
ponent databases. Given any query that falls within the scope of a
composite databasc, the result set can be obtained by submitting the
query to cach of the component databases. and taking the union of the
results obtained.

‘The cxpressions that deseribe the component databases can be used to
determine which of them contain information needed to process a given
query. This gives rise to the concept of guery rowting. Rather than
submitting the query o all the component databases, it suffices to sub-
mit it o any sct of components for which the disjunction of the content
descriptions is implied by the query.

A similar procedure can be used when adding records to a composite
database. A given append request could be applied 1o cach component
database, but it suffices ta apply the request to only those components
whose description predicates match the record being added.

In our system, cach server is implemented as a composite database.
Within the server, information is assigned to the component databases
hased on its type and on the time of acquisition. Every 24 hours the
currently active databases are converted from append-only to im-
mutable status, and a new set of databases is created. Because each
databasc has a specific content description, a database can be taken
off-line without affecting the system’s ability to describe its own con-
tent, The compasite database manager must note the change, and up-
date the predicate that describes the server’s content. Likcewise, new
databascs can be added to the system without causing disruption.

From the outside, a composite database is indistinguishable from a
simple databasc. We will refer Lo the composite databases stored on the
servers simply as ‘databases’.

3. The Personal Database System

The personal databasc system is an integral part of the Community
Information System. It runs on each user’s personal computer, and
implements the user interface to the rest of the system, In this section

we will first describe the functions of the personal data base system, and
second, how these functions are implemented.

3.1. Personal Data Base System Functions

The personal database system performs two tasks concurrently: it

164

processes user requests, and it applies database updates received over
the digital broadcast channel to the local database. The details of the
transmissiop medium and packet protocol are described in [3],

Fipures 3 and 4 illustrate how information from thc database is
presenied to the user. Figure 3 shows a sct of article summaries result-
ing from the processing of a guery; Figure 4 shows an article that has
been selected for display.

‘To meet the goals we outlined in Scction 1, we have designed the sys-
tem su that a user's most frequent requests can be answered from the
user's personal database. ‘l'o this end a user compiles a list of routine
querics into what is known as the filrer Iist. ‘The queries in the filter list
are disjunctively combined {(Or’ed together) to create a predicate called
FL (for filicr list) that describes the information that will be retained at
the user’s personal computer. “The personal database that results is
precisely the set of records necessary to process any query in FL.

The predicate FL may describe more information than can be stored on
the user’s personal system. When this occurs, the system must make a
choice among the records that match FLl, deciding which records to
keep and which to discard. To deal with this, we let the user list the
component querics of KL in order of importance, and ask him to
specify a ‘budget” for cach query in Fi. ‘This ‘budget’ indicates how
many records matching the query should be retained. Each record in
the personal database is associated with the most important query in FL
that matches it. If a new record arrives that matches FL and the per-
sonal databasce system has insufficient resources to store it (such as disk
storage or main memory), the personal databasc system will try to make
room by deleting records from queries in FL, that are “over budget™. If
there still is insufficicnt room for the new record, the personal database
system will delete records fromt queries in FL that are less important
than the most important query that matches the new record,

Because the system does not necessarily keep alt records that match FL,
and because a user’s personal computer may miss certain updates (when
it is turned off or when there are uncorrectable channels errors), FL
does not accurately describe the contents of the local database. A solu-
tion to this problem, which we have not implemented, would be to
maintain a separate predicate, PDB, that describes the local database
cxactly, PDR could be obtained by conjoining each query of FL with
an additional predicate that describes a sct of time intervals for which
the local database has a complete sct of database updates.

At the user's request, the personal database system will display the filter
list The user can casily change the filter list, or instruct the system to
process one of the queries in the filter list. By allowing the users to
sclect preplanned queries, the system inherits many of the advantages

5 metching artitlas found. lines 1:18 of 14

1 sep 19, 10:48 (121 Hnes) regular (Financlad)
NEW YORK =~ After a record ysar. the market lor public stock
offerings by private compamies has gons iato a siump, forcing many of
thess companies to bypass the new-issua market and sqek capitat ==
often through creative deals -- alsewhars.
1 sep 18, 22:37 (80 lines) regular {Financial)
NEW YORK -~ Tectinelogy stocks took & beating Tuesday, for two
unrelated reasons, and halped to keep the markebl on the downside,
3 sep 18, 21:18 (82 lines) urgent (Financial)
A digest of business and financial news for Wadnesday, Sept. 19.
1984

4 sep 18, 18:22 (70 lines} urgent (Financial)
HEW YORK -- Stack prices dropped Tuesday in accelarated Lrading, with
soma of the technology and largas capitalization issuss registering
the higgest declines,

5 sep I8, T:di (113 lines) deferred (Financial)
London - The American lawyer would have besn rubbing his hands,
a1cept that he was jogging in Hyds Park, 5o he was swinging his arma.

technelogy & (category: financial);

Typicat Article Summary Display
Figure 3

of menu oriented systems.

When a user selects a query from the filter list, this query is placed in
the query input line as if it had been typed by the uscr. The user is free
to edit the query input line before submitting the query. The user may
also submit arbitrary querics that do not appear in the filter List.

The task of deciding how and where to process a query is called query
routing. To perform query routing, the personal system needs the
descriptions of all available databases. Given a query, query routing
determines which databascs could process the query. From this sct, we
may sclect, for cxample, the databasc that has the lowest estimated
communication cost. If the sclecied database is unavailable, the next
lowcst cost database may be sclected.

A user’s personal database system maintains a description of available
remoie databascs. At present, the descriptions of the available
databases are fixed. However, we plan to include database descriptors
in the databasc itself. “The user’s filter list predicate FI. would then
implicitly contain a term-matching any record that contains a database
description. ‘Thus, descriptions of remote databases would be kept up
to date automatically,

The current implementation of the personal database system is limited
to information retricval. We plan to add facilities that will allow users
10 update remote databases interactively.

3.2. Implementation of the Personal Database System

Figure 5 shows the intcrnal organization of the personal database sys-
tem as implemented for the IBM-PC family of computers. The
modules shown are organized inlo two processes. One process monitors
the keyboard and the mouse, processes user requests, and writes to the
display. A sccond process receives the incoming stream of database
updates from the packet radio system. and applies them to the local
datzbase as necessary. A non-preemptive scheduling discipline is used:
the recciver process must yield at regular intervals to give the user
interface process a chance to run, and vice versa,

We will not describe the system’s modules in detail, but we will discuss
their interrclations. The window manager reads from the keyboard and
mouse, passes completed commands to the database user interface, and
updates the display as requested by the database user interface. The

Article N40U1B7.727: lines 1:23 of &0

typa: Hew York Times gensral news copy
priority: regular
date: 09-18-B4 2237¢dt
category: Fimancial
subject: MARKETPLACE
title: {BizDay)
author: DAMIEL F. CUFF
source: {(c}i984 N.¥. Times News Service
text:

KEW YORK - Techmology stocks took a beating Tussday, for twe
unré¢lated reasons. and helpad to keep the market on ths downside.

First, worcy over problems with a disk drive hurt Control Data and
Burroughs. Second, the semiconductor issues were battered by a
bearish brokarsge howsé reparlk on Motorota.

Burroughs openas down 2 3/B Tuesday morning after an order imbalance.

The drop in Burrocughs, which clossd the day at 83, of f 3 5/B. followed
Contro) Data’s slide. On Mondsy. Contro) Data dropped 2 1/8, and it lost
an additional 3/8 Tuasday, to closs at 26 1/8.

Control Cata. according te analysts. encountered problems with &
thin coating on the disk, ‘'If that chemical tompound is not
virtvally parfect, troubts ensues,’' satg yUlric Meil, an anaTyst at
Morgan Stanley & Co. ''We are talking aboutr tolarancas the thickness
of a human haie, '

technology & (category: financiat);z

Typical Article Display
Tigure 4

database user interface is responsible for implementing all commands,
and for formatting databasc records for display. The query routing
module is in charge of processing queries. As described carlier, query
routing uses the filter list and descriptions of remote databases to decide
where a query should be processed.

The local database is stored on disk, and an index is maintained in
primary memory. ‘The amount of data that can be kept in the locat
databasc depends on the amount of storage available. An average news
article requires 5K bytes of disk storage, and approximately 470 bytes
of main memory. This results in an approximate capacity of 40 news
articles for a system with a 320 KB floppy disk, and 250 ncws articles
for a system with 512K bytes of memory and a hard disk.

Our protocol for access to shared database servers is based on remote
procedure calls. ‘l'able | shows the interface to a shared server. The
interface is designed to be implemented using remole procedure calls;
however our current implementation does not actually cxport the
procedures shown in the interface, We plan 1o explore how we could
autontaticatly gencrate a true RPC stub far the procedures in Table 1,

‘The operations in ‘Table 1 fall into two classes:

1. Connection Management: Connect is used (o cstablish a connection

with a server. Connect is passed the name of a server, and it returns
a completion status. 'The interface only supports a single connection
at a time. Disconneet closes the currently open connection. Abert
can be called while an RPC in progress: the RPC in progress will be
immediately erminated and return aborted as its status.
Database Requests: The server interface is designed to permit query
processing at a server o occur concurrently with other client
processing. The procedure EstublishQuery initiates processing of a
query at the server, and then returns immediately o the client.
CountMatchingRecords returns the number of records that have
matched a query so far, and a flag indicating if this count is final.
FetchSummuaries is used to return summaries of specified records,
while FetchRecord is used to obtain specified lines from a specific
record.

™

There are three innovations in our model of remote procedure call.
They are:

1. Backcalls for incremental results: In our RPC modcl clicnts can pass

procedures Lo servers. When a seryver applies such a value, a remote

Window Dalabase User Query RPC Reljable LS
Manager Interface Routing Stub Byte Stream erver
. Local Query I.ocal DB
FL Predicate Processing Index
Remaote DB Descriptions I.ocal DB
Packet Radio Records
Receiver
)
] | :
!
Byte 1 | Packet Record Rcass".cmbly 1 Mah
Buffer 1 | Reassembly and Decryption
1
' l
Interrupt 1
Level Key
Ring

Internal Organization of the Personal Database System

Figure §

procedure calt from the server to the client will result, These back-
ward remote procedure calls are named backealls. Rackcealls are
used in cur application to provide results to a user as soon they are
computed. For example, FetchSummaries and FetchRecord will
return data to a client incrementally, by calling the procedure passed
as the deliver-to formal parameter. 1n addition to providing results
as they are computed, backealls alse permit bulk data transfer be-
tween a server and a client within a remote procedure call
framework.

2. Explicit Flow Control: Clicnts usually have limited buffering
capabitity. To permit explicit fTow control, FetchSummarics and
FetchRecard have parameters that permit the client to specify how
much data should be returned.

. RPC Abori: We permit an RPC in progress to be aborted. In our
application, the personal database system will abort a
FetchSummaries or FetchRecord request when a user decides to
issuc a ncw command without waiting for the previous request to
finish. 1f Abert did not exist, the client would have to wait for each
request to finish before issuing a2 new request. Because RPC re-
quests can require a long time to finish, waiting for completion
would be unacceptable.

=]

The RPC stub uses a hyte stream modulke to communicate with a shared
server. ‘The byte stream module uses an autodial modem to establish a
server connection without user intervention.

The reception of database updales via the packet radio system is
handled by the set of modules at the bottom of Figure 5. Bytes armrive
from the packet radio receiver at 43K bits/sec, and are placed in a SK
byte ring buffer at interrupt level. The size of the buffer accommodates
a service latency of up te 10 scconds. Such latency can be caused by
activity in the user interface process.

The receiver process polls the byte buffer and reassembles records out
of individual packets. Each packet contains informalion for error
detection and crror correction. 1o mask channel errors, packets are
transmitted more than once, and these transmissions are separated in

166

time. When a previously unseen packet arrives, it is copied into its
proper place in the record reasscnbly buffer, A bit map of received
packets is maintained so- record reassembly can detcrmine when an
entire record has arrived,

Once an entire record has arrived, its key number is looked up on the
key ring. If a matching key is available, the contents of the record are
decrypted. If the decrypted record matches the filter list predicate, it is
presented to the local database for insertion. The record may or may
not be retained, depending on resource availability and on the record’s
priority relative to the information already present. The match module
has been designed so that the time required to match an incoming
record is essentially independent of the complexity of the filter list.

4. The Shared Database Servers

The shared databasc servers form the sccond half of our system, We
will first discuss the functions of the shared servers, and second, how
these functions are implemented,

4.1. Shared Server Functions

The shared database servers in our system perform three major func-
tions: they
1, accept data from information sources and add the data to their own
databases,
2. transmit database updates to personal systems via a broadceast digital
packet radio system, and
3. implement the remote procedure call interface described in Table 1
to allow remote access by personal systems.,
‘T'he yrganization of these functions within a single server is described
below.

Status: type = {completed, aborted, error}

Connect: proc (name: string)
refumns {s: Status})

Discannect: proc ()
relurns {s: Status)

Abort: proc ()
relurns {s: Status)

EstablishQuery: proc (query: string)
returns {3: Status)

CountMatchingRecords: proc ()
returns {final: bool, count: int, 3: Status)

FetchSummarias:
proc {first-record, Tast-record: int,
deliver-to: proc {5: Summary))
reterns {s: Status)

FetchRecord:
proc {record, first-line, Yast-line: int,
deliver-to: proc {1: Line) }
returns (s: Status)

Table 1. RPC Interface to the Shared Servers

"The conceptud organization of the data in cach server borrows an im-
ponant idea from Section 2. where the personal and scrver systems are
mudeled as a collection of daabascs, rather than one large database.
Sitnilarly. the information in cach server is organized as a cullection of
databases. These databases may even reside on distinet storage units, so
that any databasc can be physically removed from a server without
affecting the remaining databases. ‘The existence of multiple internal
databases is not observable at the interfiace to the server. Query fouting
is used inside a server to forward cach request to the proper set of
databases.

Since we view a server as a collection of databases, the databases them-
selves can be rcgul-dcd as the basic units of information that are stored
on aserver. The ability to view predicatc databases as the basic unit of
configuration provides a number of conceptual and practical ad-
vantages:

» Databases can be relocated from scever to server, and (he descriplive
predicates of cach server can casily be updated accordingly.

» Databascs can be replicared to achicve performance and availability
goals. Replication is most naturally done at the level of a dalabase.
Immutable databascs can be casily replicated, cither within a server
or on several distinet scrvers. Replication of append-only and
mutable databascs is a more complicated issue,

o Bach database can have its own representation and implementation,
provided that all databascs implement the same interface. This is
useful when the databases store different kinds of data. In our
application, must databases begin their lives as append-only
databases, and then become immutable. They can then be con-
solidated to improve performance and reduce storage demands.

Thus far, we have discussed how data is organized in our database
system, but we have nol examined how the data actually pets there.
The bulk of our data consists of news artictes, which arrive in a con-
tinuous stream over dedicated telephone circuits. Each input stream is
converied into a stream of database records, and the resulting records
are inserted. based on their types, into apptopriate databases. When a
databasc is replicated on more than one server, the incoming telephone

167

circuit s connccted to each server so that all scrver copics of the
database arc kept up to date.

In addition to these continuous streams, there are sources that must be
potied periodically for ncw information. 1n our present sysiem,
alectronic builetin buard entries are reccived in this manner. New mes-
sages are formatted into database recerds and inscried into the ap-
propriate databases.

As new information arrives at the system. it is queoed e be seat out
over the digital broadeast channel, Each record is transmitted more
than once. with transmissions separated in time. The transmiced
records are encrypted to protect all information that is broadcast from
unauthorized use. The encryption key used depends on the type of the
record (New York Thnes, Assuctated Press, cic). This scheme logically
divides the broadcast transmissions into scveral independently
protected streams, Users are given keys for only the streams they are
authorized to receive. These keys are placed on the “key ring” of the
personal database system.

The remote procedure call interface shown in Table 1 does not have any
provision for the authentication of users that communicate with the
system. We plan to use the key rings of the personal database systems
for authentication in this two-way seiting.

4.2, Implementation of the Shared Database Servers

Figure 6 is a block diagram of a typical server as implemented under 4.2
BSI UNIX™. The exact configuration of cach server depends on the
databases stored on the server, the information sources to which it is
connccted, and the communication channels through which the per-
sunal systems can access the server. Only one server is used to drive the
digital broadcast channel. To ensurc continuity of service, a second
server can take over the broadcast channgl if the server driving the
channel fails.

To maximize concurrent activity and failure isolation, cach major func-
tion in a scrver is performed by a separate process. Processes communi-
cate via messages that arc placed in the file system, in an approximalion
of recoverable message queues. 1Fa process fails, its input messages will
accumulate until the process is restarted. Input messages are not
deleted until they have been completed processed: if a process fails
while processing an input message, this message will be processed again
Iater. Processes that madify non-volatile state information must operate
properly when a fatlure occurs. Transactions could be used to impase
additional structure on the failure recovery procedure [4].

In Figure b, information Aows from the left side of the figurce to the
right side. Information from the various sources is constantly being
read by input daemons that simply record incoming data items, ‘The
incoming items are stored in scparate files. ‘To reduce the chance that
the input dacmons would fail and lose informauion, they were designed
ty be cxtremely simple. To dute, we have observed no input dacmon
faitures.

Euch input dacmon forwards incoming data items to a source-specific
Sormat conversion process. Each information source has its own format.
‘The source conversion processes take received data items, and convert
them into standard format database records. 'The resulting records are
forwarded w the broadeast scheduler and to the database insertion
Process.

Figure 6 also shows an input process for clectronic builetin board input,
This process periodically polls a set of mailboxes, and when it finds
mail, converts it 1o standard formart database records, which are then

Broadcast — .
[——— T'0 Transmitter
Scheduler
Infurmation Database
Source A Japut f
Process Descriptions
]
Conversion Database
to Records u 1 |
Electronic Conversion Update Database Query
Mail to Records] Routing 2 ’ Routing
Conversion | Database RPC
to Records r 3 Stub
* N
Information Input Database | P 1
Source B Process 4 Reliable | Tersona
Byte Stream System

Internal Organization of a Shared Server

Figure 6

forwarded to the broadcast scheduler and to the database inscrtion
Process.

The broadeast scheduier process receives database records, along with
an expiration ime for cach record, an indication of how many times the
record should be ransmitted, and the key with which the record should
be encrypled when it is transmitted. “The information broadcasts are
scheduled on the basis of this information. In addition to driving the
digital broadeast channel, the scheduler maintains o status display for
the system administrator,

The database insertion process adds new rccords to the appropriate
databascs, bascd on the content of the record and the descriptive predi-
cate of each databasc. In our present system configuration, a new set of
such databases is created cvery night at midnight, and the databases
with the information that arrived during the preceding 24 hour period
are converied to immutable status. Each database collects information
from a specific source. Thus, there is a separate database for each type
of infermation for each day. These databases are kept on line for a
period of time which varics, depending on the source of the database.
Eventually, a database may be cither archived or deleted.

The final component of a server is the remeie procedure call interface to
the personal systems, 'When a personal system connccts (o a server, a
process is assigned to manage the connection and process requests from
the persenal system. Figure 6 shows one such process, Data from the
personal system is first pracessed by a module that implemnents a byte
streamn interface. ‘This module is connected to the server’s RPC stub
module. The RPC stub module calls the appropriate procedures in the
server's query routing module.

The query routing module uses the descriptions of the available
databascs to delermine a strategy for processing the request. It then
applics the query to the appropriate databasc(s), and forwards the
results o the user’s system as they become available, IF a query spans
multiple databases of a given type but with different dates, the query is

168

applicd to these databases in reverse chronological order. This ensures
that the mest recent records in the result set arc produced first. This
approach often altows the persenal system to display a complete sereen
of results well before query processing has been completed.

"This concludes our discussion of the implementation of the server sys-
tem. “FPhe next section discusses work that is related to vur approach,

5. Relaled Work

“T'his section compares our system with other systems that have similar
goals. We will consider two broud categories: systems that share our
goal of serving a large user community, and systems that share our goal
of distributed query processing.

5.1. Cammunity Information Systems

Teletex [T} and Videotex [1] are two contemporary echnologies for
community information systems. Teletex involves the broadeast trans-
mission of limited amounts of informatien w specially equipped televi-
sion scts that can display preformatted pages of information. Al avail-
able information is transmitted in an endiess cycle, which wsually lasts
no more than a few minutes. In the teletex approach the user seloets a
page to be displayed, and when the page is next received it is captured
by the receiver in a local buffer and displaved on the screen. Most
systems limit their teletex transmissions to a totat of a few hundred
pages o keep responsc time accepiable. ’

Videotex [!] is essentially time-sharing on a very large scale. Each
videotex user has an inexpensive terminal that communicates with the
central system, either over elephone lines ar via a digital two-way cable
system. Since vidcotex is a two-way sysiem, it can also be used for
home banking. shopping, and other transactional services.

In a sense, our system represents an attempt to cambine the best aspects
of both teletex and videotex. By combining personal computation,
broadcast communication, two-way communication and centralized
mass storage, our design achicves the following advantages:
® The cconomics of scale of broadcast communication are combined
with the capability to access large databases and to perform trans-
actionat services;
A high-quality uscr interface is possible because of the processing
power and storage available at each personal databasc system;
» Performance is impraved because the answers 1o many queries can
be determined using the personal database only;
e The system provides a great deat of flexibility because data can be
integrated with a user's other computational tools;
@ Because of the open sysiem architecture, a user can access a wide
varicty of databases, potentially offered by a number of vendors;
» Privacy can be safeguarded by ensuring that cerlain requests are
processed cntirely within the user's personal system;
o Uscrs can operate autonomously from the central system,

5.2. Distributcd Database Systems

Distributed database systems, as the name implics, permit the distribu-
tion of data over a collection of cooperating computers; the resulting
system can be viewed by a user as a cohesive whole, The relational
database system R* {8] is an cxample of a contemporary distributed
database system.

In R*, relations {collections of records) can be distributed horizontally
or vertically, or replicated at multiple sites. R* also provides a naming
scheme whereby information at remote sites can be accessed directly,
The query compilation and query processing components of R*
automatically route queries 1o appropriate database nodes for process-
ing. Systems similar to R* include distributed Ingres [6] and the SDID-1
system §5).

The model we have propoesed for guery routing is sufficiently powerful
for mmutable and append-only databases. 1For more comprehensive
systems that include shared, replicated, mutable data, our approach
would need to be combined with a mechanism to maintain integrity
and scrializability.

Qur approach differs from the traditional distributed databhase ap-
proach in onc important respect. In traditional distributed database
systems, dependencies can develop between databases, while in our
approach databases are always considered to be strictly independent.
Dependencies of this kind are central o many applications. However,
the scheme that we have catlined is suitable under many circumstances,
and has the following advantages:
e Databases can be freely added to and deleted from the system with-
out affccting other databases;
o A single, simple mechanism allows our system to adjust to changes
in the sct of available databases;
& Becausc of query routing, querics do not have to indicate where the
requested data is to be found.

6. Implementation Status and Performance

Qur community information system began regular operation in April of
1984, Every day we reeeive and distribute approximately 150 news
articles from the New York Times towlling 600K bytcs, 1300 news ar-
ticles from the Associaied Press News Service totalling 6M bytes, and
70K bytcs from clectronic mailing lists.

169

Currently, 15 users outside of our own research group usc a broadcast-
only version of the systenl. ‘These users have been very helpful in
suggesting user interface enhancements (one user added mouse support
himsclf) and in motivating us to catalog the content of our databases.
In addition, the users let us know immediately if there is a problem with
our database transmissions!

A rescarch version of the system, incorporating bath query routing and
scrver access, is operational and is currently being tested within our
laboratory. "I'he performance measurements shown below apply to this
version of the personal database system. A user acceptance test of the
full personal database system. including query routing and server ac-
cess, is ptanned for this fall. -

The performance of the system is excellent for requests that can be
locally processed. On a PC AT, less than 300 milliscconds are required
to cither process a query or display a record from the local database.

To compare the performance of local and remote guerics, we per-
formed a sct of experiments. Each experiment consisted of makiag a
request that caused the personal database system 1o access a server, The
observed response times were directly related to the bandwidth (12K
bits/sec) of the channel linking the personal database system and the
server. The results of our cxperiments arc shown in ‘Table 11,

One shortcoming of the current implementation is that the personal
database system can not collect database updates from the digital
broadcast channcl while a user is running other applications. We
believe that this prabicm will be solved by the next generation of per-
sonal computer operating systerns, which will support true multi-
tasking.

Time from guery cniry

to display of the first record summary 2.7 sec.
Time from query entry

to display of a complote summary page 11.6 sce.
Time from request for a record

to display of the first line 4.1 sec,
Time from request for a record

to display of a complete page 11.9 sec.

Table II;
Fypical Performance of Remote Query Processing
(1.2 KBit/Sec Channel)

7. Conclusions

Woe are plcased with the initial user acceptance of our system. Users
have been able o grasp the idea of a Tocal database defined by logical
predicates, and we have found that users actively modify the definition
of their local database to match their interests. Our experience
demonstrates that broadeast technology is an effeciive way to update
local databases. The natural advantage of the broadcast portion of our
system is that it can scale (o a user population of any size.

Datahasc content descriptions and query routing can help integrate per-
sonal databases into a comprehensive infarmation service. Experience
with our system has shown that users sometimes wish to retrieve infor-
mation that is not available on their personal system, QOur system will
automatically route such querics for non-local information to an ap-
propriate server database. We believe that our decision to structure the
system as a collection of independent databases has simplified our
design, and has resulted in both a clear conceptual framework and a
number of practical benefits.

Based on our research results, we feel that the architecture thal we have
proposed is well adapted to a variety of information system applica-
tions. In addition. a number of its component ideas — including our
model of remote procedure call and recoverable message queucs — will
find application in other contexts,

Acknowledgnients

The authors would like to thank Barbara H. Liskov and Heidi R. Wyle
for their comments.

170

References

[1] Bright. R.13., Presiel - The World's First Public Viewdala Service,
1EEE Trans. on Consumer Electronics CIE-25, 3 {July 1979), pp.
251-255.

[2] Geller, V.)., and Lesk. M.E.. How Users Search: A Comparison of
Moeny and Anvibute Reirieval Systems on a Library Catalog, Bell
Laboratorics, Murray Hill, N.J., September 27, 1981.

[3] Gifford, ND.K., 1.ucasscn, I.M., and Berlin, 8.T., The Application of
Digital Broadcast Communication to Large Scale Infonnation Systems,
1EEE Trans. on Selected Arcas in Comm. (May 1985).

[4] Gifford. 1>.K.., and Donahue, J.ID., Coordinating Independent Atomic
Actians, Proc. of 1EEE Spring CompCon 85, Feb. 25-28, 1985, San
Francisco, CA, pp. 92-95.

I51 Rothnie, LB ef al. Introduction 0 a System for Distributed
Darabases (SPD-1), ACM Trans, on Database Systems §, 1 (March
1930),

[8] Stoncbreaker, M., and Neuhold, E., A Distributed Pato Base Version
of INGRES, Proc. 2nd Berkeley Workshop on Distributed Data
Management and Computer Networks, Berkeley, CA, May 1977, pp.
19-35.

[7] Tanton, N.E., Teletex - Evaluation and Potential, ITEEE Trans. on
Consumer Electronics CE-25, 3 (July 1979), pp. 246-250.

[8] Williams, R. et al, R*: An Overview of the Archilecture, Rep.
RJ3325, IBM Research, San Jose, CA, December 2, 1931,

