
Using Annotated Interface Definitions to Optimize RPC

Bryan Ford Mike Hibler Jay Lepreau

Department of Computer Science, University of Utah

http:ilwww.cs.utah. edtiprojectslfluxl

Abstract’

In a typical remote procedure call (RPC) system, interfaces be-
tween clients and servers are defined explicitly in an interface defi-
nition language (IDL), and the IDL file is processed by a stub gen-
erator to produce client and server stubs. The primary purpose of
the IDL file is to define the “network contract” between the client
and the server what operations can be invoked and what informat-
ion must be passed across the network on an invocation. However,
in most RPC systems, the IDL file also indirectly defines the “pro-
grammer’s contract” between the stubs and the programmer how
parameters are passed to the stub, who allocates storage for the pa-
rameters, etc. For example, consider the following CORBA IDL
fragment:

interface SysLog {

void write_msg (in string msg) ;

);

Given this interface definition, a CORBA-compliant stub com-
piler for C will always produce a stub with the following C function

prototype, with the msg parameter assumed to be null-terminated:

void SysLog-write-msg (SysLog object, CORSA_Sxception *ex,

char *msg) ;

However, the stub could just as easily conform to the following
function prototype instead, taking the length of the string explicitly
through the length parameter
void SysLog_write_msg (Sys Log object, CORS2_Exception *ex,

char ‘msg, int length) ;

This difference should not affect the protocol between the client
and the server: a client stub using the former prototype should still

be able to invoke a server stub using the latter, because the C call-
ing convention is merely a local language issue. In our terminol-

ogy (adopted from the 0S1 networking model), these function pro-
totypes represent alternate presentations of the same interface. The

former is the standard presentation, but by no means the only pos-

sible one.

While the example was drawn from CORBA, this restriction oc-
curs inmost existing RPC systems, because they support only a sin-
gle fixed presentation for any given interface definition. However, a
few (OSF’S DCE, IBM’s Concert system) allow the presentation to

be varied independently for a given client or server. In DCE, a few

presentation attributes can be specified explicitly, separately from

the IDL file defining the interface, in a supplemental file known as
an application controljile (ACF). Thus, while all clients and servers

using a particular RPC interface generally share the same IDL file,
each can have its own ACF and thus specify its own presentation
annotations for its stubs.

1 Thk research was supported in part by the Advanced Research Projects Agency

under grant number DABT63–94-CO058 and by the Hewlett-Packard Research

Grarrts Program,

Permission to make digitalfiard copy of part or all of this work for personal
or classroom use is granted without fee provided that mpies are not made
or distributed for profit or commercial advantage, the copyright notice, the
title of the publication and its date appear, and notice is given that
copying is by permission of ACM, Inc. To copy otherwise, to republish, to
post on servers, or to redistribute to lists, requires prior specific permission
and/or a fee.

SIGOPS ’95 12/95 CO, USA
01995 ACM 0-89791-71 5-4/95/0012...$3.50

Up until now, the primary motivation for flexible presentation
has been for programmer convenience and improved interoperabil-

ity. However, we have found flexible presentation also to be useful
for optimization of RPC, and in many cases necessary to achiev-

ing maximal performance without throwing out the RPC system

and resorting to hand-coded stubs. In this paper we provide seven

examples demonstrating this point for a number of different op-
erating systems and IPC transport mechanisms, with RPC perfor-

mance improvements ranging from s~o to an order of magnitude.
To demonstrate the broad applicability of this concept, we imple-

mented the examples in a variety of environments and transport
protocols. Among the example annotations were parameter stor-

age allocation control (reads on a pipe serveL optimizing same-
domain communication in CORBA), controlling copy vs. borrow

semantics of parameters, varying degrees of trust between client

and server by controlling integrity and confidentiality, and avoid-

ing extra copies (Sun RPC in NFS).

In doing this work, we designed and implemented a new RPC

stub compiler called Flick (FLexible IDL Compiler Kit) that sup-

ports flexible presentation while retaining compatibility with ex-
isting RPC systems. The stub compiler is cleanly separated into

front-ends and back-ends so that it can both read multiple exist-
ing IDLs as its input and generate stubs for various operating sys-

tems and transport protocols as its output. Currently we have Mach
MIG, CORBA IDL, and Sun front-ends, and back-ends for Sun

RPC/XDR in a Unix environment and several Mach-based proto-

cols (transport mechanisms). Flexible presentation is supported in

our system by adding a third compiler stage between the front-
end and back-end, in which the presentation of an RPC interface

is modified declaratively through the use of a presentation defini-
tion language (PDL). Nothing declared in the PDL file can affect

the contract between client and serven thus, while all clients and
servers using a particular RPC interface will generally share the

same IDL file defining that interface, each can have its own PDL
file. [The Flick compiler source and binaries are freely available
from http://www.cs.utah. edu/projects/flux/flick. html]

Our results show that flexible presentation benefits RPC perfor-

mance because it is necessary to create optimal stubs: any fixed pre-
sentation is the wrong one some of the time, causing unnecessary

data copying in either the user code, the stubs, or both. For example,
if a client wants to read data through RPC into a particular buffer,

but the RPC stub insists on allocating anew buffer for the returned
data, the client will have to perform an extra copy-often uselessly,

because the stub could just as easily have unmarshaled the data into
the client’s buffer in the first place.

In general, we observe that the more efficient the underlying IPC
transport mechanism is, the more important it is for the RPC sys-

tem to support flexible presentation, in order to avoid unnecessary
user-space overhead. Therefore, we believe that flexible presen-
tation support will be most important in two domains: highly de-
composed and microkemel-based operating systems that support

extremely fast IPC mechanisms, and in very high speed network-
ing.

232

