
Towards Software Defined Persistent Memory: Rethinking
Software Support for Heterogenous Memory Architectures

Swaminathan Sundararaman

SanDisk Corporation

Nisha Talagala ∗

Parallel Machines

Dhananjoy Das

Sandisk Corporation

Amar Mudrankit∗

Yahoo, Inc.

Dulcardo Arteaga∗

Florida International University

Abstract
The emergence of persistent memories promises a sea-
change in application and data center architectures, with effi-
ciencies and performance not possible with today’s volatile
DRAM and persistent slow storage. We present Software
Defined Persistent Memory, an approach that enables ap-
plications to use persistent memory in a variety of local
and remote configurations. The heterogeneity is managed
by a middleware that manages hardware specific needs and
optimizations. We present the first ever design and imple-
mentation of such an architecture, and illustrate the key ab-
stractions that are needed to hide hardware specific details
from applications while exposing necessary characteristics
for performance optimization. We evaluate the performance
of our implementation on a set of microbenchmarks and
database workloads using the MySQL database. Through
our evaluation, we show that it is possible to apply Soft-
ware Defined concepts to persistent memory, to improve
performance while retaining functionality and optimizing
for different hardware architectures.

1. Introduction
For decades, application performance has been defined by
the use of two resources, memory and storage. Memory
was “fast”, accessed directly via CPU load/store semantics

∗Work done while at SanDisk Corporation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

INFLOW’15, October 4, 2015, Monterey, CA.
Copyright c© 2015 ACM 978-1-4503-3945-2/15/10. . . $15.00.
http://dx.doi.org/10.1145/2819001.2819004

that bypassed the OS, and was volatile. Storage was “slow”,
accessed via the OS through system calls such as read() and
write(), and was persistent. Applications brought their data
in from storage, operated on it in memory, and put the result
back in storage.
The advent of flash began the blurring of storage and

memory through an intermediate tier that was substantially
faster than disk but also much slower than DRAM. The
expected arrival of media such as Phase Change Memory,
Resistive RAM and Memristor, will drive further conver-
gence of storage and memory [40]. Since these memories
are expected to have latencies low enough to enable direct
CPU load/store access, software can now access storage with
memory semantics combinedwith persistence [34, 39]. With
such memories, applications can expect substantial perfor-
mance benefits [37].
However, these new media tiers further complicate sys-

tem configurations since they do not directly replace existing
tiers of DRAM, Flash, or HDDs. Persistent Memory (PM) is
expected to be slower and cheaper than DRAM, and faster
but possibly more expensive than flash. Given this expansion
of media tiers, software now faces greater design complexity.
Applications will need to answer questions such as: which
tiers should be optimized for under what circumstances, and
what will performance be when the physical machine run-
ning the application does not havememory/storage of the ex-
pected type or size, etc.? Prior to the arrival of PM, the stor-
age industry has driven the Software Defined Storage initia-
tive that uses middleware to enable optimal application be-
havior on varied hardware configurations of flash, disk and
networking. We argue that the arrival of PM will require a
similar Software Defined Persistent Memory (SDPM) fo-
cus, and describe an initial approach to this problem.
We believe that PM will need middleware support due

to the expected variants of hardware. At present, the in-
dustry appears to be converging on several key defining

characteristics of PM: direct CPU load/store access, byte
grained updates and extremely low latency [7, 11, 29]. Be-
yond these elements, however, there are many variables.
Exact performance, capacity, and endurance characteristics
are unclear, with different studies highlighting a range of
expectations [30, 45, 48]. Furthermore, to accommodate a
variety of cost/capacity/performance trade-offs, tiering be-
tween PM and flash may be required. Attach points are also
open for debate, with memory bus access being proposed by
some and I/O bus access (like PCIe) or remote access (over
RDMA) being proposed by others [3, 13, 40].
For our SDPM architecture, we show how six hardware

configurations of PM that all meet the defining criteria above
can be seamlessly accessed by an applicationwith no custom
changes for each hardware configuration. Our architecture
enables DDR attached local PM, PCIe attached local PM,
RDMA or Ethernet accessed remote DDR attached PM,
and RDMA or Ethernet accessed remote PCIe attached PM.
Our architecture also supports dynamic tiering between all
of these forms of PM and Flash. For our prototype and
benchmarking, we use PM hardware, based on power fail
protected DRAM, that is commercially available today in
both DDR attach (Type N NVDIMMs) and PCIe attached
variants [3, 6].
The contributions of this paper are as follows. First, to

the best of our knowledge, we present the first middleware
architecture that manages multiple PM hardware types with
different attach points and performance characteristics. Sec-
ond, we outline the design trade-offs required for making
PM “Software Defined”, i.e., how to abstract key hardware
details while enabling applications to optimize for others.
Third, we describe a cost-effective, pragmatic, and immedi-
ately deployable architecture that tiers PM with flash while
retaining a seamless data management model. Fourth, we
optimize a database application (MySQL) to use SDPM
through a single unified API and describe the impact of dif-
ferent hardware attach points (including an efficient PCIe at-
tach) on both base latency and application level performance
– to our knowledge, the first study to do so comprehensively.
The rest of the paper is as follows. Section 2 describes

related work. Sections 3 and 4 describes the assumptions
that drove our architectural decisions and our SDPM design,
respectively. Section 5 describes a case study with MySQL,
a widely deployed database. Section 6 evaluates the perfor-
mance of our SDPM implementation with different PM ar-
chitectures. Sections 7 and 8 discusses our observations and
possible architectural extensions and summarizes our learn-
ings, respectively.

2. Related Work
The Software Defined approach is now a popular trend,
having already been applied to networking, storage, and
data center design. In the storage context, all major storage
vendors provide products to decouple storage management

from hardware specifics [42]. Our work, though similar in
spirit, is complementary to these initiatives since we focus
on managing PM and driving decoupling of PM hardware
and attach points from end applications.With respect to flash
specifically, caching software enables seamless management
of flash/disk hybrids while appliances support tiering of both
flash and disk [4].
PM is expected to have access latencies from 100ns-

500ns and support byte addressability [29]. Researchers
have proposed file systems that exploit PM [24, 26, 43, 47]
and optimizations to existing file systems [21]. Recent work
in the Linux community includes DAX [44] to export PM
devices as virtual memory via a file. Also, whole system
persistence has also been explored [33].
Recently a variety of hardware architectures have emerged

to connect persistence across DDR, with Type N NVDIMMs
providing the load/store PM access using DRAM with flash
backing. Multiple vendors provide these devices and various
studies have used this hardware as a placeholder for emerg-
ing memories. PMs using PCIe attach have been explored
by researchers and also demonstrated by Fusion-io [3].
New data structures, programming models, and libraries

have also been proposed to combine persistence with mem-
ory semantics [19, 20, 23, 43]. New CPU instructions have
been proposed in several studies [23, 24] and Intel has an-
nounced the availability of new instructions in upcoming
processors for PM [10]. Underlying most of this work is
the fundamental assumption that user space applications will
be able to access PM through a memory interface and bypass
the OS. I/O models are also being supported for legacy back-
ward compatibility [11, 12]. The SNIA Non Volatile Mem-
ory Programming Technical Working Group has formalized
these two access models as part of their 1.0 NVM Program-
ming Specification [7]. These efforts add to earlier work in
recoverable virtual memories that was based on DRAM and
disk architectures [27, 36].
Previous studies have shown the performance potential

of PM in varied capacities [29, 32, 46]. Some studies focus
on the benefits of fast persistence while others focus on the
DRAM displacement possible with slower but cheaper PM.

3. The Need for Software Defined Persistent
Memory

Beyond the complexity caused by the addition of a new stor-
age/memory tier, other factors necessitate a software defined
approach for practical wide scale deployment of PM. Here
we discuss these factors and our assumptions.

Seamless Storage Management: We believe that data
stored on PM will require the same management (such as
compliance, audit, etc.) as data stored on other persistent me-
dia. Such needs are driven by the nature of the data, domain
specific requirements on security and retention, and are not
necessarily impacted by media type or performance. Unlike
classic volatile memory, PM requires a persistent namespace

to recover data after a reboot. The memory map (mmap)
model has appealed to industry and researchers alike be-
cause it enables the ability to access the data with memory
operations while retaining a familiar persistent file names-
pace (the most commonly used data management model by
data center administrators). We therefore assume that the
PM storage management should be done via a File System
(FS) namespace.

Varied Attach Points and Form Factors: Since PM is
still emerging technology, much is unknown about the me-
dia and the ideal attach point for different server platforms.
While memory bus attaches will likely have optimal laten-
cies, storage deployment history has shown that attach points
have practical concerns unrelated to performance. For ex-
ample, while a DDR attach can be ideal from a perfor-
mance perspective, depending on the number of available
DDR slots and the required mix of DRAM and PM [14],
a server may not be able to support enough of both. Simi-
larly, some systems have minimal PCIe slots [8], making the
PCIe interface undesirable for large amounts of PM. Other
desirable characteristics, such as dual port, are more realisti-
cally achievable in PCIe than in DDR. While hot-plug DDR
technologies exist [22], other attach points are better able to
support this function [35]. Finally, the emerging trend of
disaggregation may drive top of rack style memory/storage
solutions which optimize efficiency at rack level rather than
server node level [2]. Given these factors, we assume that an
ideal SDPM architecture should be extensible to any local or
remote physical attach points.

Byte Addressability: Byte addressability in PM can en-
able new usages not possible with block based storage [21,
34, 39]. Some attach protocols, such as NVM Express, may
not support byte operations but for other practical reasons
may be the only available access mode for some servers.
As such, we believe it is valuable for an SDPM architec-
ture to support the levels of byte addressability possible
with each hardware architecture and emulate this capability
where needed.

Support Local and Network Attached Hardware: The
emerging disaggregation trend suggests that server configu-
rations may have locally attached or top of rack persistence.
The top of rack persistence may be accessed via a range of
options from PCIe to networking. An ideal SDPM architec-
ture should support both local and remote access to PM and
optimize under the covers for each.

Varied Cost/Performance Configurations: While it is
appealing to think of all data in PM, data growth rates are
so substantial that many deployments require both high per-
formance and low cost media. Therefore, an ideal SDPM
architecture should accommodate tiering between PM and
flash. Moreover, PM specifications suggest performance
lower than DRAM, so we support caching of volatile data in
DRAM as needed [29].

Figure 1. SDPM Architecture

4. Software Defined PM
In this section we discuss design goals and describe our
architecture and prototype implementation.

4.1 Design Goals

Based on the needs of practical deployments as outlined in
Section 3, we define our goals for SDPM as follows:

Goal 1: Support both memory and I/O access, traditional
storage management, and persistence guarantees to combine
the best of memory and storage worlds.

Goal 2: Support a variety of local and remote attach points
with differing performance but identical functionality and
semantic guarantees. In particular, our goal is to provide byte
addressability at the application level and optimal perfor-
mance for each hardware configuration. The low latencies
of PM require that software be as thin as possible. Given
this, SDPM should provide load/store access to PM when-
ever possible and minimal overhead approaches otherwise.

Goal 3: Enable tiering of data between PM and flash,
with caching in DRAM, to enable different cost/performance
configurations.

Goal 4: Provide a single programming model to the ap-
plication. Applications cannot reasonably be expected to
implement different code for each possible server hard-
ware configuration. In SDPM, applications should be able
to choose a single API, which is adapted optimally for each
hardware configuration with identical persistence and se-
mantic guarantees.

4.2 Design Overview

Figure 1 describes the high level design of SDPM. The de-
sign has four key elements: a FS for namespace and tiering,
layered programming language libraries for unified but flex-

ible APIs, hardware and location abstraction for hiding PM
attach point and location details.

4.2.1 Non Volatile Memory File System (NVMFS)

The SDPM architecture has an FS at its center. For our proto-
type implementation, we select NVMFS, a flash-optimized
POSIX compliant Linux FS [9]. We extended NVMFS to
support both PM and flash devices. Given our focus on
PM, we do not describe the flash aspects of NVMFS (de-
tails available here [25, 28]). We now describe how NVMFS
meets many of our design goals.
NVMFS provides a unified and persistent namespace to

both PM and flash. Through this namespace, NVMFS trans-
parently provides both memory and I/O access to PM, en-
abling applications to flexibly and seamlessly switch be-
tween different access modes to data in PM. The unified per-
sistent namespace also enables transparent application accel-
eration where existing applications can benefit from the FS
tiering of PM and flash.
We build upon historical mmap to provide direct (or raw)

mmap to PM via NVMFS. All FSes (including NVMFS)
provide load/store access through conventionalmmap where
data is first cached in DRAM before it is persisted to the stor-
age media. In contrast, direct mmap directly accesses data in
PMwithout caching in DRAM [7]. With direct mmap, a user
space application can map a file into its virtual address space
and perform memory operations which translate into loads
and stores directly to the PM. On crash/restart, applications
can remap the file using direct mmap and resume access.
We support tiering in NVMFS by maintaining the media

location of each data block within the FS inodes. Data access
via a unified namespace combined with enclosing data loca-
tion within an inode enables NVMFS to transparently move
data between PM and flash. We also implement several well
known dynamic tiering algorithms that optimize for com-
mon access patterns (such as log files) and data liveliness
(i.e., retention requirements).
We also support a single programming model via a com-

bination of application specific libraries over direct mmap
and transparent access via POSIX APIs that support both
memory and block I/O access to data. This approach has the
added benefit that applications that currently use a FS do not
need to be modified to workwith PM. On the flip side, it does
force these application to go through the OS to get to the FS.
This additional code traversal can reduce the performance
benefits [19, 39] for transparent acceleration as compared to
direct PM access.
It is worth noting that we have selected a FS namespace

over a variety of other possible models such as object names-
paces, key value stores, compiler supported persistent vari-
ables etc. We believe that the file namespace is a good can-
didate as a base namespace for several reasons. First, it is
by far the most common namespace used by system admin-
istrators, implying that existing data management practices
that rely on files can adopt PM with minimal or no changes.

Second, using direct mmap, any other type of namespace
can be built atop the FS using direct load/store access (the
file namespace enables and does not replace all other names-
paces). Third, since FSes manage disk and flash today, PM
can be added to the mix seamlessly with the benefits of both
traditional APIs and direct mmap used as needed.

4.2.2 Programming Libraries

Programming libraries can provide a unified access API
to applications. Such libraries can be implemented in user
space and communicate with NVMFS for management.
Many APIs are possible and the intent of this paper is not
to advocate for a specific API but rather for the layering
approach itself. Moreover, libraries can provide optimized
data structures, language support, memory management, er-
ror checking and other runtime functions. Example libraries
are Oracle’s NVM-Direct which provides transactional and
data structure support for PM [20]. We also implemented a
small log acceleration library which is used in our experi-
ments (see Section 5).
NVMFS enables optimal implementation of such li-

braries by providing direct mmap() to map the PM directly
to virtual address space, msync() to flush data to the per-
sistence domain, and two additional operations to optimize
CPU cache flush (barrier()), and to control memory mapping
types. NVMFS also provides options to libraries to guide file
data placement across the two media types.

4.2.3 Hardware Abstraction

All PM hardware is discovered and managed by the Persis-
tent Memory Manager (PMM). PMM is a dedicated kernel
module that presents both memory pages and data blocks
for use by NVMFS. In our prototype SDPM system, PMM
supports both DDR and PCIe attaches for PM. The PM is
exposed to the user space libraries via NVMFS as virtual
memory space. PMM is also responsible for setting mem-
ory caching types, guaranteeing persistence, and free space
management for PM.

Memory Mapping Types. PM can have different mem-
ory mappings depending on the hardware. For example, the
OS supports write back, write through, write combining, and
uncached for DDR attached PM but only a subset are sup-
ported for PCIe MMIO attached PM. SDPM is responsible
for ensuring that each memory type is default mapped to the
optimal model possible for its physical attach (in our proto-
type, write combining is the default mode). We also enable
FS operations that allow the application to control the per
file memory mapping.

Guaranteeing Persistence. Given the different ways to
map persistent memory by applications, we need mech-
anism(s) to guarantee all in-flight data (such as in CPU
caches, registers, etc.) have reached the PM device inde-
pendent of its attach point. For example, depending on the
memory mapping model, certain CPU instructions will en-

Figure 2. Remote attached Persistent Memory

sure flushes of the intermediate CPU caches. The further
mechanism for ensuring persistence for DDR is Advanced
Dynamic Refresh (ADR) [5]. ADR ensures that data flushed
from CPU caches through CLFLUSH and other methods
is driven from any intermediate memory buffers to PM at
power cut. Since ADR support does not extend to PCIe
MMIO based PM, we defined and implemented a custom
protocol to ensure similar support with the cooperation of
the PCIe device. In direct mmap mode, at msync(), NVMFS
is responsible for guaranteeing persistence. PMM provides
a barrier() operation to NVMFS and user space libraries that
employ their own CPU flush operations. When barrier() is
invoked, SDPM will ensure data is moved to the persistence
domain as needed for the attach point.

4.2.4 Abstracting Local and Remote Attach Points

PM can be attached either locally or on a remote machine.
SDPM abstracts different attach points that can be used
within a server. As long as PM is both discovered and
mapped, it can be used by local or remote applications.
Figure 2 shows the remote attach model for our SDPM

prototype. Two instances of the library are required.We refer
to the local instance (where the application is running) as the
source, and the remote instance (where the PM is located)
as the sink. The client (source) exposes the same APIs as
that in the local attach case. The library instance on source
translates these API calls into a network transport (either
Ethernet or Infiniband in our implementation) to a remote
instance of the library on the sink. The sink hosts a local
instance of NVMFS which can support all of the capabilities
and hardware configurations outlined in the above design
sections. Note that data replication such as in Mojim is also
possible using our SDPM architecture [47].
When SDPM is used over Ethernet, we employ sockets

over TCP/IP to communicate data between nodes. When
used over Infiniband, direct OS-bypass communication is
used with RDMA write operations for the data. SDPM en-
ables additional optimizations such as direct transfer of data
between memory and network through third party PCIe
DMA when PCIe based PM is used. Our architecture en-

ables these operations to occur dynamically as possible for
each hardware configurationwithout the application needing
to do specific optimizations.
There are several other SDPM considerations that ap-

ply specifically for remote attaches. For example, different
memory types exist at the destination (sink) node as in the
local attach case. When DDIO is enabled, data may need to
be explicitly flushed on the sink to before the PM update
can be positively acknowledged [13]. In the case of PCIe
MMIO, a direct PCIe to PCIe transfer is possible from NIC
to PM hardware. This avoids any traversal of data to the
CPU/memory complex on the sink node.
In all cases, the RDMA write operation only guarantees

that data has been sent from the receiving NIC (on the
sink) to the memory location. To meet the persistent store
guarantee, we need to ensure that the data was in fact written
to the ADR boundary on the sink node. This requires a
subsequent RDMA read to ensure that the data was fully
flushed to the end memory location.

5. Case Study: MySQL
We useMySQL (a database application) to show the applica-
bility and capability of our SDPM architecture [1]. We chose
MySQL as it is the most popular and fastest growing open
source database today.
Prior studies have shown that databases can expect sub-

stantial performance improvements by using PM and that
the degree of improvement will depend on the amount of
PM available [38, 41]. Since PM hardware based on new
memory technologies like PCM are not yet widely available,
we focus our application example on small amounts of PM
that can be purchased in hardware today (such as Type N
NVDIMMs). For a small amount (1-10GB) of such memory,
the ideal database use case is log acceleration. Log accelera-
tion is also an important focus for database researchers since
transaction performance can be limited by log write (i.e., log
persistence) latencies.
MySQL allows for pluggable storage engines. InnoDB

(and its variant XtraDB) is the most widely used production
storage engine due to its reliability and performance [17].
The InnoDB storage engine uses two logs, the Transaction
Log (TxLog, also sometimes referred to as the Redo Log)
and the Binary Log (BinLog) [15, 16]. Updates to both types
of logs gate the performance of MySQL transaction com-
mits. Hence, our PM integration focuses on placing log up-
dates in low latency PM for automatic later destage to flash if
needed. The logs are stored as normal files on NVMFS and
the SDPM architecture is responsible for tiering parts of the
files into flash when they are not being actively updated. This
enables SDPM to use small amounts of PM for our experi-
ments and have log files of arbitrary size (which is particu-
larly useful for BinLogs whose size is not pre-determined).
To integrate SDPM with MySQL, we wrote a small li-

brary that uses the direct mmap() mechanism to access part

Config Persistent Memory Attach Local or Remote
config-1 DDR NVDIMM Local
config-2 PCIe MMIO Local
config-3 DDR NVDIMM Remote Ethernet
config-4 PCIe MMIO Remote Ethernet
config-5 DDR NVDIMM Remote Infiniband
config-6 PCIe MMIO Remote Infiniband

Table 1. Persistent Memory configuration.

local config-1, config-2
System Configuration Local: HP DL380 96GB DDR
MySQL version Percona Server 5.5
Flash(PCI-e) Fusion-io Gen 2 ioMemory 1.2TB
Persistent Memory PCI-e ioMemory Persistent Memory

DDR Viking NVDIMM
Remote config-3, config-4, config-5, config-6
System Configuration Source: HP DL380 96GB DDR

Sink : SuperMicro 2U 64GB DDR
MySQL version Source: Percona Server 5.5
Flash(PCI-e) Fusion-io Gen 2 ioMemory 1.2TB
Persistent Memory Source: DDR / PCI-e ioMemory PM

Sink: DDR Viking NVDIMM,
PCI-e ioMemory Persistent Memory

Network Infiniband: ConnectX-3 56 Gbit IB
Ethernet: Intel 82599ES 10-Gigabit

Table 2. System configuration Local and Remote.

of the log file as direct load/store PM. Our library exposes
POSIX-like APIs (such as append() and read()) that enable
MySQL to place data at the end of the log file and to read
from the file anywhere as needed for recovery or normal
operation. Within our programming library, the append() is
translated into a memory copy operation into PM (for local
attach) or an RDMA write operation into PM (for remote
attach). The InnoDB engine operates on the logs mostly as
normal except at the point of write() where the library op-
erations are used instead of file write() operations. In this
model, the database can perform very small low latency
updates to the logs, which enables faster and finer grained
transaction commits.

6. Evaluation
We evaluate the performance of our SDPM prototype through
a series of microbenchmarks and application level perfor-
mance studies. Prior studies have shown comprehensive re-
sults on the performance of individual PM configurations
under a range of workloads [29, 38, 47]. Hence, we focus our
evaluation on the Software Defined aspect of our prototype,
i.e., we take a workload and evaluate how well SDPM per-
forms across different hardware configurations. For work-
loads, we use both microbenchmarks and application level
experiments. Since our application focus is database log ac-
celeration, we also focus our performance studies on write
(or CPU store) operations and the associated persistence
guarantees.

Figure 3. Microbenchmark: Local PCIe MMIO (config-2)
Vs. DDR4 (config-1) (a) Bandwidth (b) Latency

Table 1 lists the supported configurations and Table 2 pro-
vides the details of our machine configurations. We explore
two primary dimensions and one secondary dimension. The
primary dimensions are local vs. remote and the attach point
for the PM itself (DDR or PCIe). Second, within the remote
dimension, we explore both Infiniband and Ethernet trans-
ports. These combinations help us to assess whether we can
adequately deliver application performance across a range of
hardware architectures.
Note that for DDR attached PM, we use a single Type N

NVDIMM. It is possible to also test with DRAM as a place-
holder for PM, if the areas being evaluated are not persis-
tence related. However, there are subtle performance differ-
ences between using a single Type N NVDIMM and generi-
cally allocating system DRAM - which can then come from
an interleaved set of volatile DIMMs. Rather than dissect
the details of such DRAM configurations, we focus on the
PM hardware available today (ie NVDIMM) and use actual
NVDIMMs.

6.1 Local Attach: Microbenchmarks

Figure 3 shows the latency and bandwidth of updates to PM
through both the local PCIe MMIO and DDR attach. In each
case, the data is written to the virtual memory location which
is direct mmap’ed by NVMFS to the physical PM. The
data is then committed through a SDPM barrier() operation
(using hardware specific micro-operation(s)).
As the data shows, the cost of the barrier operation domi-

nates the latency for small updates regardless of whether the
update is over PCIe MMIO or DDR. For small (64B) up-
dates, the latency of PCIe MMIO (with barrier()) is within
2x of DDR. As the transfer size increases, the gap in band-
width between the DDR and the PCIe attach becomes more
clear in higher latencies for the PCIe solution. It is worth
noting that our PCIe hardware uses Gen2 PCIe which has a
maximum lane bandwidth of 1GB/s while the DDR attach
hardware is using DDR4. We have observed lower latencies
(roughly by about 2x for large transfers) for PCIe MMIO
when using Gen3 PCIe.

Figure 4. Microbenchmark: 4K write + barrier (config-1,
config-3, and config-5)

Based on these results, we expect PCIe MMIO to be a
reasonable solution for access patterns that involve small
updates, and we have observed this in application level tests.
However, due to lack of space, we focus the rest of the paper
on presenting the results for the DDR attach.

6.2 Remote Attach: Microbenchmark

Figure 4 shows microbenchmarks for simple write opera-
tions from user space through the library. In each case, 4KB
writes are performed into PM with a synchronization opera-
tion performed after a number of 4KB operations (displayed
on X-axis). As discussed in Section 4, when synchroniza-
tion is invoked, it is performed as needed for each hardware
configuration. DDR would imply a cache flush and network
would imply a network sync following whatever is required
on the remote node for local sync. As Figure 4 shows, for
small sync operations, as expected there is a notable differ-
ence in latency between TCP/IP and the other configurations
TCP/IP is about 20x slower than Infiniband for small trans-
fers. Between Infiniband and local DDR PM there is about
a 4x difference. Since the destination in each case is PM,
the bulk of the overhead is due to the synchronization op-
eration. As the number of operations between synchroniza-
tions increases, the performance becomes closer. Since dif-
ferent applications will use different update sizes, this gives
us an indication of how workloads will respond when used
with different configurations under SDPM. While this sec-
tion only presented DDR attached PM, the results for PCIe
MMIO attached PM are similar in the tradeoffs.

6.3 MySQL: Transactional Workload

Figure 5 shows the performance ofMySQLwhen PM is used
for log acceleration using an insert heavy workload (100%
inserts) when run with and without PM. For comparison, the
Logs DISABLE bars shows theoretical peak performance
when logs are disabled (i.e., performance possible with in-
finite log acceleration). The Logs ENABLED bars shows
what happens with no PM (i.e., all logs are written directly
to flash). The remainder are the PM configurations where

Figure 5. MySQL - insert heavy workload (config-1,
config-3, and config-5)

Figure 6. LinkBench 10x workload (config-1 and config-5)

the PM is local DDR, remote DDR over infiniband, or re-
mote DDR over Ethernet. In each case, the data shows two
columns, one for only accelerating the Txlog and one for
accelerating both TxLog and BinLog.
The difference in transaction performance between Logs

DISABLE and the baseline Logs ENABLED is almost 2x,
indicating the opportunity for PM log acceleration. We see
that the local PM over DDR achieves nearly all of the
achievable acceleration. However, the Infiniband option does
nearly as well, suggesting that the small added latency re-
sults in a measurable but not substantial loss in performance
at the application level. Even when remote, the PM configu-
ration still delivers better performance than local flash when
used over Infiniband. However, as latency increases substan-
tially with Ethernet, the application performance of remote
PM drops dramatically to become far less than that of local
flash.
Given the extreme drop in application performance for

the Ethernet configurations, we focus only on Infiniband/RDMA
based remote configurations for the remainder of the paper.

6.4 MySQL: Social Graph Workload

LinkBench was created by Facebook to simulate the activ-
ity pattern of a social graph [18]. Linkbench operations in-

cludes a mix of insert, delete, update, and lookup database
operations and is approximately 70% access heavy (forms
of reads) and only 30% modification heavy (updates and
deletes). The default (1x) LinkBench dataset comprises 10
million node ids with a dataset size of 10GB on media. A
dataset with 100 million nodes is referred to as 10x work-
load. Since the 10x workload allows only a partial amount
of the data to fit in the buffer pool, it is a more realistic
test of the I/O subsystem. Figure 6 shows the results for
this workload for local and remote DDR attached PM where
the remote attach is over Infiniband. Since this workload is
read intensive, the difference between the Vanilla (all data
on flash) and the NoLogs (infinite log acceleration) is 31%.
Both the local and remote PM solutions achieve a reasonable
fraction of the available performance gain, delivering 17%
acceleration over Vanilla. The performance of local and re-
mote is very similar (less than 3% difference) showing again
that the latency achieved by Infiniband for small updates is
sufficient to deliver good performance for applications.

7. Discussion
Our experience developing SDPM has led to several in-
sights. There are many possible hardware configurations
that an application can optimize for, ranging from different
CPU mapping strategies to different attach points. The need
to work with remote memory only further exacerbates the
complexity involved. Some hardware specific optimizations
(such as direct PCIe-PCIe transfer for remote attach), may be
difficult for applications to be aware of or to control. Fortu-
nately, our results demonstrate that it is possible to abstract
the bulk of this complexity within an SDPM architecture
without substantial loss of performance at microbenchmark
level and nearly identical performance at application level
for some hardware configurations.
For TCP/IP over Ethernet however, the slowdown pre-

sented is substantial and very visible at application level.
Ethernet based measurements discussed in the paper are us-
ing the standard networking stack. An offload network de-
vice can potentially help reduce the operation latencies as
reported by the application. This is an area of future work
for us. Even within the Infiniband implementation, further
optimizations are possible. Infiniband provides a DMA effi-
cient method, send-immediate, which is ideal for small data
payloads since it avoids an additional DMA. Using send-
immediate, we have measured update operation latencies of
less than 2 usec (including barrier assertion on remote) for
sync interval of 3 or more updates. This observation leads us
to expect that small application log updates will benefit from
this optimization.
The potential of software defined concepts applied to PM

is vast and we have only explored an initial subset of its pos-
sibilities in this paper. A more comprehensive architecture
would include clustering of PM and possibly a distributed
file system. We have focused on the specific challenges in-

volved in PM since that is the new media technology. We
believe a distributed SDPM architecture can build on our
SDPMwork and also incorporate existing concepts from dis-
tributed in-memory file systems and data stores [31].
In a similar vein, we focused on DDR and byte address-

able MMIO PCIe for our prototype hardware attaches. Given
the high latencies of SAS/SATA attaches, it is not clear
whether PM will ever be attached using these transports.
NVMe is however a possibility given its low latency for
block accesses. It is possible to extend our SDPM architec-
ture to include NVMe PM devices in two ways. In a first ap-
proach, we could replace our flash layer with these devices.
A second, and perhaps better approach,would be to use read-
modify-write operations and DRAM caching to emulate byte
addressable PM using block addressable PM devices over
NVMe [21].
Intel has announced three new CPU instructions in fu-

ture platforms to support PMs (CLFLUSHOPT, PCOMMIT,
CLWB) [10]. Since these instructions are not yet available,
our SDPM prototype does not use them. However, it would
be trivial to implement barrier() and msync() operations
to leverage these instructions when they become available.
This in fact illustrates the power of the software defined ap-
proach. As new instructions become available with subse-
quent platforms, applications do not have to have platform
specific code. The optimizations can be abstracted under the
generalized persistence operations and semantics offered by
SDPM.

8. Conclusions
We presented SDPM, the first instance of a software defined
approach to PM that can bring the benefits of new non-
volatile memory media to wide ranging practical deploy-
ments. By abstracting heterogeneous memory hardware, we
are able to support both local and remote attaches as well as
different local attach points likely to be available in servers.
By carefully selecting the characteristics to expose and ab-
stract, we enable applications to get optimal performance
across a range of configurations or optimize aggressively for
a specific configuration. By tiering PM with flash, we en-
able both existing applications and applications written to
exploit PM to operate with a wide range of PM capacities.
Our prototype and performance evaluation demonstrate that
the architecture provides good performance and near optimal
acceleration for a range of local and remote PM configura-
tions.

9. Acknowledgments
We thank the anonymous reviewers for their insightful feed-
back. We thank the many developers of the SDPM project
and also the members of the advanced development group at
SanDisk for their help and feedback.

References
[1] MySQL. https://www.mysql.com, 2010.

[2] OpenCompute. http://www.opencompute.org/, 2011.

[3] Fusion-io Breaks One Billion IOPS Barrier.
http://www.fusionio.com/press-releases/fusion-io-breaks-
one-billion-iops-barrier, 2012.

[4] ioCache. http://www.fusionio.com/products/iocache, 2012.

[5] JEDECDDR3 Specification. http://www.jedec.org/standards-
documents/docs/jesd-79-3d, 2012.

[6] NVDIMM. http://www.micron.com/products/dram-
modules/nvdimm, 2012.

[7] NVM Programming Model (NPM).
http://www.snia.org/tech activities/standards/-
curr standards/npm, 2013.

[8] Blade servers: An introduction and overview.
http://searchdatacenter.techtarget.com, 2014.

[9] In a Battle of Hardware, Software Innovation Comes Out
On Top. http://itblog.sandisk.com/in-a-battle-of-hardware-
software-innovation-comes-out-on-top/, 2014.

[10] Intel Architecture Instruction Set Extensions Programming
Reference. https://software.intel.com/sites/default/files/-
managed/0d/53/319433-022.pdf, 2014.

[11] Persistent Memory Programming. http://pmem.io, 2014.

[12] Providing Atomic Sector Updates in Software for Persistent
Memory. http://events.linuxfoundation.org/sites/events/files/-
slides/vault-btt 0.pdf, 2014.

[13] RDMA with byte-addressable PM.
http://downloads.openfabrics.org/WorkGroups/-
ofiwg/dsda rqmts/RDMA with PM.pptx, 2014.

[14] What is SAPHANA? http://www.saphana.com/community/about-
hana, 2014.

[15] InnoDB: The Binary Log.
http://dev.mysql.com/doc/refman/5.7/en/binary-log.html,
2015.

[16] Redo Logging in InnoDB. https://blogs.oracle.com/

mysqlinnodb/entry/redo_logging_in_innodb, 2015.

[17] The InnoDB Storage Engine.
http://dev.mysql.com/doc/refman/5.7/en/innodb-storage-
engine.html, 2015.

[18] ARMSTRONG, T. G., PONNEKANTI, V., BORTHAKUR, D.,
AND CALLAGHAN, M. Linkbench: A database benchmark
based on the facebook social graph. In Proceedings of the
2013 ACM SIGMOD International Conference on Manage-
ment of Data (New York, NY, USA, 2013), SIGMOD ’13,
ACM, pp. 1185–1196.

[19] BAILEY, K., CEZE, L., GRIBBLE, S. D., AND LEVY, H. M.
Operating system implications of fast, cheap, non-volatile
memory. In Proceedings of the 13th USENIX Conference on
Hot Topics in Operating Systems (Berkeley, CA, USA, 2011),
HotOS’13, USENIX Association, pp. 2–2.

[20] BRIDGE, B. NVM-Direct. https://github.com/oracle/NVM-
Direct, 2015.

[21] CAMPELLO, D., LOPEZ, H., KOLLER, R., RANGASWAMI,
R., AND USECHE, L. Non-blocking writes to files. In

13th USENIX Conference on File and Storage Technologies
(FAST 15) (Santa Clara, CA, Feb. 2015), USENIX Associa-
tion, pp. 151–165.

[22] CHEN, T. Introduction to acpi-based memory hot-plug. In
LinuxCon/CloudOpen Japan (2013), LinuxCon ’13.

[23] COBURN, J., CAULFIELD, A. M., AKEL, A., GRUPP, L. M.,
GUPTA, R. K., JHALA, R., AND SWANSON, S. Nv-heaps:
Making persistent objects fast and safe with next-generation,
non-volatile memories. In Proceedings of the Sixteenth Inter-
national Conference on Architectural Support for Program-
ming Languages and Operating Systems (New York, NY,
USA, 2011), ASPLOS XVI, pp. 105–118.

[24] CONDIT, J., NIGHTINGALE, E. B., FROST, C., IPEK, E.,
LEE, B., BURGER, D., AND COETZEE, D. Better i/o through
byte-addressable, persistent memory. In Proceedings of the
ACM SIGOPS 22nd Symposium on Operating Systems Princi-
ples (New York, NY, USA, 2009), SOSP ’09, ACM, pp. 133–
146.

[25] DAS, D., ARTEAGA, D., TALAGALA, N., MATHIASEN, T.,
AND LINDSTRÖM, J. Nvm compression—hybrid flash-aware
application level compression. In 2nd Workshop on Interac-
tions of NVM/Flash with Operating Systems and Workloads
(INFLOW 14) (Broomfield, CO, Oct 2014).

[26] DULLOOR, S. R., KUMAR, S., KESHAVAMURTHY, A.,
LANTZ, P., REDDY, D., SANKARAN, R., AND JACKSON, J.
System software for persistent memory. In Proceedings of the
Ninth European Conference on Computer Systems (NewYork,
NY, USA, 2014), EuroSys ’14, ACM, pp. 15:1–15:15.

[27] GUERRA, J., MÁRMOL, L., CAMPELLO, D., CRESPO, C.,
RANGASWAMI, R., AND WEI, J. Software persistent mem-
ory. In Proceedings of the 2012 USENIX Conference on
Annual Technical Conference (Berkeley, CA, USA, 2012),
USENIX ATC’12, pp. 29–29.

[28] JOSEPHSON, W., BONGO, L., LI, K., AND FLYNN, D. Dfs:
A file system for virtualized flash storage. In Usenix Confer-
ence on File and Storage Technologies (February 2010).

[29] KIM, H., SESHADRI, S., DICKEY, C. L., AND CHIU, L.
Evaluating phase change memory for enterprise storage sys-
tems: A study of caching and tiering approaches. In Pro-
ceedings of the 12th USENIX Conference on File and Storage
Technologies (FAST 14) (Santa Clara, CA, 2014), USENIX,
pp. 33–45.

[30] LEE, B., IPEK, E., MUTLU, O., AND BURGER, D. Archi-
tecting phase change memory as a scalable dram alternative.
In International Symposium on Computer Architecture (ISCA)
(June 2009).

[31] LI, H., GHODSI, A., ZAHARIA, M., SHENKER, S., AND
STOICA, I. Tachyon: Reliable, memory speed storage for
cluster computing frameworks. In Proceedings of the ACM
Symposium on Cloud Computing (New York, NY, USA,
2014), SOCC ’14, ACM, pp. 6:1–6:15.

[32] MÜHLBAUER, T., RÖDIGER, W., SEILBECK, R., REISER,
A., KEMPER, A., AND NEUMANN, T. Instant loading for
main memory databases. Proc. VLDB Endow. 6, 14 (sep
2013), 1702–1713.

[33] NARAYANAN, D., AND HODSON, O. Whole-system persis-
tence with non-volatile memories. In Seventeenth Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS 2012) (March
2012), ACM.

[34] OIKAWA, S. Virtualizing storage as memory for high perfor-
mance storage access. In Proceedings of the 2014 IEEE Inter-
national Symposium on Parallel and Distributed Processing
with Applications (Washington, DC, USA, 2014), ISPA ’14,
IEEE Computer Society, pp. 18–25.

[35] PIOTROWSKI, A., AND MAKOWSKI, D. Pciexpress hot plug
mechanism in linux-based atca control systems. International
Journal of Microelectronics and Computer Science Vol. 1, nr
2 (2010), 201–204.

[36] SATYANARAYANAN, M., MASHBURN, H. H., KUMAR, P.,
STEERE, D. C., AND KISTLER, J. J. Lightweight recoverable
virtual memory. ACM Trans. Comput. Syst. 12, 1 (feb 1994),
33–57.

[37] STRUKOV, D. B., SNIDER, G. S., STEWART, D. R., AND
WILLIAMS, R. S. The missing memristor found. Nature 453,
7191 (2008), 80–83.

[38] SUZUKI, K., AND SWANSON, S. The non-volatile memory
technology database (nvmdb). Tech. Rep. CS2015-1011, De-
partment of Computer Science & Engineering, University of
California, San Diego, May 2015. http://nvmdb.ucsd.edu.

[39] SWANSON, S., AND CAULFIELD, A. Refactor, reduce, recy-
cle: Restructuring the i/o stack for the future of storage. Com-
puter 46, 8 (Aug. 2013), 52–59.

[40] TALAGALA, N. One Billion IOPS: Auto Commit Memory
Blurs the Line Between Enterprise Storage and Memory.
http://www.fusionio.com/blog/one-billion-iops-auto-commit-
memory-blurs-the-line-between-enterprise-storage-and-
memory, 2012.

[41] THATTE, S. M. Persistent memory: A storage architecture for
object-oriented database systems. In Proceedings on the 1986
International Workshop on Object-oriented Database Systems
(Los Alamitos, CA, USA, 1986), OODS ’86, IEEE Computer
Society Press, pp. 148–159.

[42] THERESKA, E., BALLANI, H., O’SHEA, G., KARAGIAN-
NIS, T., ROWSTRON, A., TALPEY, T., BLACK, R., AND
ZHU, T. Ioflow: A software-defined storage architecture. In
SOSP’13: The 24th ACM Symposium on Operating Systems
Principles (November 2013), ACM.

[43] VOLOS, H., TACK, A. J., AND SWIFT, M. M. Mnemosyne:
Lightweight persistent memory. In Proceedings of the Six-
teenth International Conference on Architectural Support for
Programming Languages and Operating Systems (New York,
NY, USA, 2011), ASPLOS XVI, ACM, pp. 91–104.

[44] WILCOX, M. DAX: Page cache bypass for filesystems on
memory storage. http://lwn.net/Articles/618064/, 2014.

[45] WILLIAMS, R. How we found the missing memristor. IEEE
Spectr. 45, 12 (Dec. 2008), 28–35.

[46] YANG, J., WEI, Q., CHEN, C., WANG, C., YONG, K. L.,
AND HE, B. Nv-tree: Reducing consistency cost for nvm-
based single level systems. In 13th USENIX Conference on
File and Storage Technologies (FAST 15) (Santa Clara, CA,
Feb 2015), USENIX Association, pp. 167–181.

[47] ZHANG, Y., YANG, J., MEMARIPOUR, A., AND SWANSON,
S. Mojim: A reliable and highly-available non-volatile mem-
ory system. In Proceedings of the Twentieth International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems (New York, NY, USA, 2015),
ASPLOS ’15, ACM, pp. 3–18.

[48] ZILBERBERG, O., WEISS, S., AND TOLEDO, S. Phase-
change memory: An architectural perspective. ACM Comput.
Surv. 45, 3 (July 2013), 29:1–29:33.

