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ABSTRACT 

This paper describes a drum space allocation and accessing strategy called "folding", whereby effective 
drum storage capacity can be traded off for reduced drum page fetch time. A model for the "folded drum" is 
developed and an expression is derived for the mean page fetch time of the drum as a function of the degree 
of folding. In a hypothetical three-level memory system of primary (directly addressable), drum, and ter- 
tiary (usually disk) memories, the tradeoffs among drum storage capacity, drum page fetch time, and page 
fetch traffic to tertiary memory are explored. An expression is derived for the mean page fetch time of 
the combined drum-tertiary memory system as a function of the degree o~ folding. Measurements of the 
MULTICS three-level memory system are presented as examples of improving multi-level memory performance 
through drum folding. A methodology is suggested for choosing the degree of folding most appropriate to a 
particular memory configuration. 

1.0 Introduction 

Many computer systems today employ auto- 
matically managed multi-level memory systems of 
successively larger, slower, and cheaper storage 
devices to provide rapid access to large address 
spaces. This paper is concerned with a three- 
level paged virtual memory system with a rotat- 
ing drum as the intermediate level of storage 
between primary (directly addressed) and ter- 
tiary memories. Specifically, this paper 
describes a drum space allocation and accessing 
strategy called "folding", whereby the effective 
storage capacity of the drum can be traded off 
for reduced drum access time. Several identical 
copies of each page are maintained on the drum, 
spaced equally around the drum circumference. 
A request to fetch a page from the drum is served 
by reading the copy of the page closest to the 
read heads. 

With a simple modification to Coffman's drum 
analysis [3], an expression is derived for the 
mean page fetch tlme of a drum as a function of 
its storage capacity, speed, degree of "folding", 
and mean page fetch request arrival rate. Using 
a general success function for the probability 
that any randomly chosen page fetch request finds 

* For purposes of this paper, mean page fetch time 
of a memory subsystem is taken as the mean or 
expected time between the arrival of a demand page 
fetch request at the subsystem access algorithm 
queues and the arrival of the last bit of the re- 
quested page at the main memory of the system. 
This does not include any software overhead times 
involved in page exception handling. 
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a copy of the requested page on the drum, an ex- 
pression is derived for the overall mean page 
fetch time of the combined drum-tertiary memory 
system as a function of the degree of folding. 
The "linear paging" model of Saltzer [5] is 
employed in an illustrative example of the 
application of this analysis to a real computer 
system. In appendix A, measurements of the 
MULTICS system [I0] under a repeatable bench- 
mark user load for several very different con- 
figurations of number of CPUs and size of primary, 
memory provide some experimental verification of 
the analysis, but more importantly, demonstrate 
the value of the flexibility of being able to 
fold the drum in system tuning. Consideration 
is given to the practical limitations on the 
degree of drum folding. Finally, a method is 
suggested for the system designer to take advan- 
tage of the three-way tradeoff of drum size, 
speed, and degree of folding, to improve the 
cost-effectiveness of a multilevel memory system. 

2.0 The Three-Level Memory S~st~m 

Our model of a three-level paged virtual 
memory system consists of: 

i. a primary memory of size M page frames 
(usually core), that is directly referenced by 
programs, into which pages not already present 
are loaded as they are referenced; 

2. an intermediate paging device of size D page 
frames (drum, in this paper) on which copies of 
pages being used by currently executing programs 
may reside when they are not in primary memory; 
and 

3. a tertiary memory (usually disk) on which 
each page of program or data in the system main- 
tains a permanent residence. 

ThE flow of pages in this system is shown in fig- 
ure i. This flow is managed automatically (by 

58 



] pages 
primary removed 

He~ory primary 

buf f er  area 

rem°~:~f r°m I - 

Dru~ 
(Secondary 

Memory) 

Ter t f ary  

Hemory 

Figure I 

Flow of pages in a 3-1evel paged virtual memory 

system programs invoked when a page needs to be 
moved) according to the following rules: 

I. When a page not present in primary memory is 
referenced, if a valid copy of the page (a copy 
that includes the most recent modifications to the 
page) exists on the drum, the drum copy is fetched 
into primary memory. If no valid copy of the page 
exists on the drum, the copy in tertiary memory is 
fetched. 

2. When the primary memory page replacement 
algorithm decides to remove a page from primary 
memory, the page is written onto the drum. 

3. When the drum page replacement algorithm 
decides to remove a page from the drum, the page 
is first read into a buffer in primary memory 
and then written out to its permanent tertiary 
memory address. 

3.0 The Drum 

The drum to be considered has T tracks, each 
with its own set of read-write heads, and each 
divided into S sectors, as shown in figure 2. The 
total storage capacity of the drum is thus D = S.@ 
page frames. Successively numbered sectors on 
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Figure 2 
Organization of a sectored drum 

different tracks can be accessed (either read or 
written) without loss of a revolution. The drum 
rotates in R seconds, so that page transmission 
time is fixed at R/S seconds. 

A pair of flrst-come-first-served (FCFS) 
queues of arriving access requests is maintained 
for each drum sector, as shown in figure 3. 
Arriving demand page fetch requests for pages on 
drum sector k go into "fetch queue" k; other 
drum access requests go into "write queue" k. 
When sector k arrives under the heads, the page 
for the first request in fetch queue k is read. 
If fetch queue k is empty, the page for the first 
request in write queue k is accessed. 

fetch ~ueue I 

page etch queue £ ~.._.~.--..~ , ~  

:L. 7 It 

• / /  

write  queue S /~ ~ access zecuests for sector $ 

Figure 3 
~eues for sectored d r ~  scheduling a l g o r i t ~  

3.1 Sectored D[umAnalysis 

In [3], Coffman analyzed a model of a sec- 
tored paging drum where all arriving drum access 
requests for each sector are queued in a single 
queue in first-come-first-served order. In the 
model of the previous section, since all page 
fetch requests for each sector are served before 
any page write requests, and since the service 
of a write request never cahs~the service of a 
page fetch request to be delayed or prolonged, 
Coffman's model and analysis are directly appli- 
cable to studying drum behavior in our model 
with respect to page fetch requests. The major 
results of his analysis relevant to this paper 
are sunmmrized here. 

Let the inter-arrival times between page 
fetch requests to the entire drum be indepen- 

dent random variables distributed as kf e-%ft' 

where kf is the mean arrival rate of page fetch 
requests to the drum. Let the page fetch re- 
quests be distributed uniformly over S fetch 
queues, so that arrivals of page fetches to any 
sector k also form a Poisson process, with mean 

arrival rate__~f . Then, according to Coffman, 
S 

the mean page fetch time of the drum (time be- 
tween arrival of the page fetch request at a 
fetch queue and completion of reading) is given 
by 
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is the "utilization fraction" of the drum, or the 
expected fraction of drum page transfer capacity 
(the drum can transfer, by virtue of its rota- 
tional speed, S/R pages per second) that is used 
to transfer pages being fetched~ 

3.2 The Folded Drum 

Suppose that, instead of using every page 
frame of the drum to contain a different page, ~ 
we use N page frames, spaced equally around the 
drum circumference, to contain identical copies 

of the same page. Clearly, this reduces the 
storage capacity of the drum quite drastically. 
However, if the drum access algorithm is modi- 
fied to serve page fetch requests by reading the 
copy of the page closest to the heads, we find 
that page fetch time of the drum is also drama- 
tically reduced. This strategy of maintaining 
N copies of each page on the drum and reading the 
one closest to the heads we will call "folding 
the drum N times". Let us attempt to quantify 
this tradeoff of size for speed. 

First, let us clearly state the operation of 
the queue arrival and service disciplines with 
respect to demand page fetches. Page writes are 
discussed in a later section. An arriving page 
fetch request has the choice of entering any one 
of N different fetch queues for the N different 
sectors where copies of the page are maintained 
Thus, the S sector fetch queues are partitioned 
into S/N (assume that N divides S exactly) 
classes such that two fetch queues for sectors 
i and j are in the same partition if and only if 
i mod S/N = j mod S/N. The policy for choosing 
the fetch queue into which an arriving fetch 
request will go is quite simple: put it into the 
queue from which it will be serviced earliest. 
This amounts to finding the subset of fetch queues 
in the partition of this request that have the 
smallest number of requests in them, and then 
puttlng the new request into the queue for the 
sector that will arrive under the heads soonest. 
(There ~re far simpler ways of implementing this 
strategy than indicated here. However, this des- 
cription relates the essential effect of the 
algorithm.) Figure 4 depicts this partitioning 
of sector fetch queues. 

* Coffman defines "drum utilization" as the 
average number of sectors accessed (fetched, 
in this case) per drum revolution, p, as 
defined here, is Coffman's "drum utilization" 
divided by S~ the number of drum sectors. 

fetch aueue I 

"I partition I 

I partition 2 

fetch queue S 

1111 

, I partltion 
g~ 

Figure 4 

Partitioning the S sector fetch queues into S~ partitions 

for a drum folded N times 

Note that arrivals to individual fetch queues 
no longer constitute a Poisson process, since 
the placing of a request in a queue is dependent 
on both the number there already, and the current 
drum position. Thus, Coffman's results are not 
directly applicable. 

This difficulty is circumvented by noting 
that, for fetch requests, this model can be trans- 
formed into the following equivalent model. Let 
the drum in our new model rotate in R/N seconds 
and have S/N sectors and T tracks. The storage 
capacity of this new drum is thus D/N pagesj the 
effective storage capacity of the larger drum 
folded N times. The time a single sector is 
under the heads is (R/N~S/N) = R/S seconds, the 
same as in the old model, so page transmission 
time is unchanged. Each partition of sector 
fetch queues in the old model is mapped into a 

single sector fetch queue tn the new model whose 
number is the residue modulo (S/N) of the num- 
ber of any one of the sectors in this partition 
in the old model. Figure 5 depicts the queue 
organization of this new drum model. 

Assume that inter-arrival times of page 
fetch requests to the folded drum are still in- 
dependent random variables obeying the exponen- 

-~f,N t , 
tial density function %f,N e where%f, N 

is the mean arrival rate of page fetch requests 
to the N-folded drum, and that page fetch arrivals 
are uniformly distributed over the sectors of our 
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Queue Organization of N-Folded Drum Model 

new smaller drum.* Then page fetch arrivals to 
each individual sector fetch queue in our new 
model constitute a Poisson process. We thus re- 
gain the use of Coffman's drum analysis results, 
to give us ~- expression for mpft~rum(N), the 

mean page retch time oi the drum folded N times: 

3.3 Evaluating Folded Dr~n Mean Page Fetch Time 

In order to evaluate this rather forbidding 
expression for a particular drum, we need to know 
kf,N , the mean arrival rate of page fetch requests 

to the drum folded N times, or equivalently, PN' 

the fetch utilization fraction of the N-folded 
druf,. These can be measured directly, or pre- 
dicted from knowledge of the combined mean page 
fetch arrival rate of both drum and teriary memo- 
ries. 

Consider the three-level memory system of 
Figure 6. ~ is the mean arrival rate of page 
fetch requests to the combined drum-tertiary 
memory system, lf,N of these ~f page fetches 

per unit time have valid copies of their pages 
resident on the drum; the remainder require 
tertiary memory accesses. Let us make the sim- 
plifying assumption that ~f is independent of 

D/N; i.e. that the mean page fault rates re- 
main constant as effective drum size, and de- 
rivatively, mean page fetch time of the combined 
memory system, chan~es due to greater or lesser 
drum folding.** Let P(M~) represent the pro- 
bability that a randomly chosen page fetch re- 
quest finds a copy of the missing page on the 
drum, for main memory size M page frames, and 
effective drum size ~ page frames. Setting 
8 = D/N, we obtain 

kf,N = P(M, D/N) ~f (3a) 

* A sufficient but not necessary condition for 
these assumptions to be true, given that they 
are true for the unfolded drum (N=I), is the 
following: Page fetch requests directed to 
the drum before folding, but directed to ter- 
tiary memory after folding due to decreased 
drtmn size, are chosen at random from the page 
fetch requests that went to the drum before 
folding. 

Combined D r u m ~ T e r t l a r y  Memory 

Primary Memol 

M 
page  
fr~es 

~f 
?age 
f e t c h e s  
per 
~eeond 

~f,N " ~f - kf,N 

~ ~r~ fr~eO • D/N page  

~ I  T e r t i a r y  

F i g u r e  6 

Page f e t c h  a r r i v a l  r a t e s  i n  a t h r e e - l e v e l  memory 

and 

R 
PN = S P(M, D/N) ~f (3b) 

Several existing models for individual program 
and multiprogralmning paging behavior supply 
functions similar to p(M, 6). [1,2~4,7] 
Given an explicit function for P(M,D/N), equa- 
tion 3b may be substituted into equation 2a to 
produce the desired expression for mpftdrum(N), 

the mean page fetch time of the drum folded N 
times. 

As an illustrative example, let us employ 
Saltzer's linear model for multi-level memory 
demand paging performance%~ to obtain lf,N" 

According to Saltzer, the mean headway% be- 
tween references (mhbr) to a page for which no 
copy exists in memory levels i through i is 
directly proportional to the sum of the sizes 
of memory levels i through i. Assuming that 
l~f is proportional to I/mhbr (i.e. that mean in- 

struction execution time is constant), then 
Saltzer's model claims that 

a 

Uf = ~ (4) 

where a is a co:~stant of proportionality. Fo- 
cusing-on t h e  f r a c t i o n  of the  ~f  page e x c e p t i o n s  + 

that are not satisfied on the drum we have 
that 

** In the experiments on the MULTICS system report- 
ed in appendix A, it was found that, under multi- 
programming of degree between 4 and 8, the mean 
page fault rate ~f varied less than 25~ over a 

wide range of drum foldings, so long as secondary 
memory did not become overloaded. Thus, although 
this is certainly not a generally valid assumption, 
it is sufficient for investigating the degree of 
drum folding that minimizes overall mean page 
fetch time. 

A discussion of the linear paging model and 
validating experiments appears in reference [5]. 

#; mean number of machine instructions executed 

+ instances o£ reference to a page not in pri- 
mary memory 
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_ - a 

~f kf,N M + D/N (5) 

.which, after the substititution of ~fM for a 

(from e q u a t i o n  4) ,  and some r e a r r a n g e m e n t ,  be -  
comes 

- --~--- flf kf,N NM + D (6a) 

suggesting that 

D 

P(M, D/N) = NM+ D (6b) 

for this model. By equation 2b, then, 

P N ~ k = R D 
= S f,N S NM + D ~f (7) 

(PN is the "fetch utilization fraction" of the 

drum folded N times), which, upon substitution 
into equation 2a, gives the desired expression 

for mpftdrum(N). 

3.4 Optimal Folding 

We take the mean page fetch time (mpfttotal) 

of the combined drum-tertiary memory system 
(Figure 6) as the measure of memory performance 
that we wish to minimize. Given the first-order 
independence between mean page fetch request gener- 
ation rate ~f and mean page fetch time mpfttota I 

(discussed in section 3.3), minimizing mean page 
fetch time for a constant page fetch rate mini- 
mizes the real time a program spends waiting for 
pages to be fetched This has a generally de- 
sirable effect on overall system performance 
(e.g. response time to users' requests for com- 
putation and throughput of users' useful work 
per unit time). 

mpfttota I is given by 

m~fttota I = P(M, D/N) mpftdrum(N) + 

[i-P(M, D/N)] mpfttertiary (wf, N) 

(8a) 
where 

w 
f,N = ~f - kf, N = [I-P(M, D/N)] ~f 

is the mean arrival rate of page fetch requests 
to' tertiary memory with the drum folded N times. 
mpfttertiary is a function of ~f,N because, in 

general, the mean page fetch time of a tertiary 
memory system will depend on the arrival rate of. 
page fetch requests. 

With mpftdrum(N) given by equations 2, 

P(M, D/N) given by the character of the specific 
system, and mpfttertiary(Wf,N) specified by the 

particular tertiary memory system, a curve of 
mpfttota I versus N for possible values of N* 

can be constructed. In general, such a curve 
will either have a single minimum, indicating 

that mpfttota I can be enhanced by folding the 

W See section 3.6 for constraints on the pos- 
sible values of N. 

drum, or will have positive slope for its whole 
length, indicating that an unfolded drum is 
best. Investigating the minimum of equation 8a 
with respect to N is of little merit, since the 
value of N that produces this minimum will in 
general be non-integral, and thus will not cor- 
respond to a possible folding. We are really 
only interested in comparing the values of 
mpfttota I corresponding to possible values of N. 

3.5 Exam~! ~ of Optimal Folding Using Linear Pan 

To illustrate the process of evaluating equa- 
tion 8a for a specific system, we again make use 
of Saltzer's linear paging model. 
equations are reproduced below: 

For mpftdrum(N): 

R R- S+2N- 
mpftdrum(N) = ~ + ~[ON(-~-) 

(l-p N) 

PN 

The necessary 

+ ~  
2(i-P N) + 

0N(I-N/S) (l_e PN) 
e 

From the linear paging model: 

i -~] 

(2a) 

D 
P(M, D/N) = NM + D 

so that 

(6b) 

PN=R D 
S NM + D ~f (7) 

To simplify this example, we take 

mpfttertiary(Wf,N) = A (9) 

(by which we assume that tertiary memory page 
fetch time remains constant over the range of 
page fetch loads pl=ced on it by successive drum 
foldings). 

Then, from equation 8a, mpfttota I is given 
by: 

i 
mpfttotal = NM+ D " 

2 L°trr  o. 
+ ~[PN[-~-) + 2(l_PN ) + 

N 

(i-PN)0N PN(i's ) -PN ~ ] + e (l-e ) - ] 

+ NM • A I (I0) 
3.6 Constraints on Folding 

There are several obvious constraints on N, 
the number of drum folds. N must be integral. 
It must be true that i< N < S. And N muSt divide 
S exactly (One could conceive of more complex 
drum folding schemes where N does not divide S 
exactly; these are not considered here.) 

The total combined arrival rate of demand 
page fetch and write requests for the drum must 
not exceed the page transfer capacity of the 
drum. If %f,N and ~w,N represent the arrival 

rates of demand page fetch and page write re- 
quests to the drum folded N times, then this con- 
dition is expressed as 
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S 
%f,N + N kw, N < ~ (ii) 

(kw, N is multiplied by N because each request 

~o write a page onto the drum blossoms into N 
requests to write N copies of the page on N dif- 
ferent sectors.) If ~f and ~w are the respective 

combined arrival rates of page fetch and write 
requests to the drum-tertiary memory, and 
Pf(M, 8) and Pw(M,8) are the respective probabi- 

lities that a particular page fetch or write re- 
quest will go to the drum with capacity 8 pages, 
then this condition becomes 

S 
~fPf(M, D/N) + N ~wPw(M, D/N) < ~ (12) 

which, when solved for N with specific functions 
for Pf and Pw' gives an upper bound on the number 

of folds so as not to overload the drum. In 
practice one should choose N somewhat less than 
this bound because, as drum capacity is approached, 
the time to complete the writing of all N copies 
of a page will increase markedly, and primary 
memory may become tied up with copies of old pages 
that have not yet been completely written out 

Finally, the increase in access traffic to 
tertiary memory must not overload it. If C is 
the maximum average number of accesses per unit 
time that tertiary memory can support, then this 
condition is 

Bf [i - Pf(M, D/N)] + ~w [I - Pw(M,D/N)] < C 
(13) 

3 .7  Write Interference 

When a drum is folded N times, each time a 
page is written, N different drum sectors must 
be written. Thus, although the number of dis- 
tinct pages to be written onto the drum can be 
expected to decrease as the effective size of the 
drum is decreased by folding, the total number 
of sectors to be written increases somewhat 
faster with increasing N. Equations ii, 12 and 
13 explore one aspect of this increase, defining 
upper bounds on N such that neither the drum nor 
tertiary memory become overloaded. However, since 
demand page fetch requests are given priority 
over write requests, the mean sector write time, 
and therefore the mean page write time, will in- 
crease drastically as maximum drum page transfer 
capacity is approached. The implication is that, 
when the primary memory page replacement al- 
gorithm decides to remove a particular page 
from primary memory, it will be some time before 
all N copies of that page are completely writ- 
ten onto the drum, and the primary memory space 
taken up by that page can be used for some in- 
coming page. The danger is that a page fetch 
request may be forced to wait for the completion 
of writing of the primary memory page it will re- 
place, thus effectively lengthening page fetch 

time. 

This interference is viewed as a second- 
order effect. Paging systems often try to main- 
tain a buffer of a small number of free pri- 
mary memory page frames into which incoming 
pages may be read without waiting for a page 
to be written out. If the probability that a 
new page fetch request finds no free primary 
memory page frames into which it can be read 

is significant, that is an indication that the 
buffer being maintained is too small for the 
system operating point, and should be made 
larger. Since the buffer sizes we are con- 
sidering are generally only a small fraction 
9f the size of primary memory, their size can 
be increased without seriously reducing the 
primary memory available for paging. 

4.0 Drum Cost Vers~s Mean Pa~e Fetch Time 

The introduction of the folded drum allo- 
cation and accessing strategy adds new complexity 
to the system design activity of choosing the 
drum to be used as the paging device of a multi- 
level memory. Where the system designer pre- 
viously had to trade off only drum speed and 
drum size (which are primary determinants of 
drum cost) against mean page fetch time of the 
multi-level memory, he now may wish to consider 
the possibility of folding the drum. He now 
has the option, for example, of choosing a small, 
fast drum, to be used unfolded, or a larger and 
slower drum, to be used folded, to meet the same 
mean page fetch time objective. It is thus ap- 
propriate to suggest a methodology for dealing 
effectively with this three-way tradeoff. 

The two most cow,non questions one might ex- 
pect a designer to ask are: 

I. What is the minimum mean page fetch time 
that can be obtained for d dollars? 

2. How much will it cost to keep mean page 
fetch time under m milliseconds? 

The following methodology provides quanti- 
tative information to answer these questions. 

I. For each drum on the market that satis- 
fies interface specifications, find the 
possible folding that minimizes mean 
combined drum-tertlary page fetch time 
for the system (from equation 8). 

2. On a single set of drum cost (vertical) 
versus mean page fetch time (horizontal) 
axes, construct a scatter plot with each 
point representing the cost and minimum 
combined mean page fetch time for each 
drum under consideration. (Remember to 
include the costs of implementing a 
folded drum algorithm, if they will be 
substantial.) Such a graph might look 
like that of Figure 7. 

D1~usn COSt 

d o l l a r s  

(n~t l l l seconds)  

minimmn a t t a i n a b l e  
mean page f e t c h  time 
o f  combined drum- 
t e r t i a r y  memory 

Figure 7 

A s c a t t e r - p l o t  o f  drum cos t  versus minimum a t t a i n a b l e  mean page f e t c h  time 

for  s evera l  h y p o t h e t i c a l  drums 
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The scatter-plot produced in step 2 becomes a 
source of cost-benefit information for choosing 
the drum and degree of folding that will be 
used. 

One comment is appropriate concerning this 
choice. A drum that produces optimum mean page 
fetch time when folded mid-way in its range of 
possible foldings probably provides more flexi- 

bility in an evolving system than one that pro- 
duces optimum mean page fetch time when com- 
pletely unfolded (N=i) or when maximally folded 
(N=S). As primary memory size changes, or as 
mean time between page fetch requests changes 
(due perhaps to changing the number of CPUs, 
faster CPUs, new scheduling algorithms or 
changing the character of user load), a drum 
that can be further folded or unfolded to mir- 
ror shifts in the system's operating point 
will be more valuable than one that cannot be 
folded or unfolded further. 

5.0 Summary and Conclusions 

The "folded" drum allocation and accessing 
algorithm offers the computer system designer 
the flexibility to trade off drum size for 
speed as needed to improve multi-level memory 
performance, and to keep pace with evolving 
system configurations, programming, or user 
load. Sections 3.2 through 3.7 explore the 
quantitative aspects of this tradeoff for a 
specific model of a three-level paged virtual 
memory system, culminating in equations 2 and 
8 which relate combined drum-tertiary memory 
mean page fetch time to the number of drum folds. 

A model of the redistribution of page fetch 
requests between the second and third levels of 
a three-level memory system is required to apply 
the analysis to a real system. The "linear" 
paging model of Saltzer was present as an example 
of such application. The folded drum analysis 
assumes that times between successive arrivals 
• of page fetch requests to the drum are inde- 
pendent of each other, a condition which is met 
to a first approximation by multiprogramming 
over a small number of jobs. 

Appendix A presents results of experiments 
with the MULTICS three-level memory. Although 
these results cannot be taken as validating this 
model and analysis, they do demonstrate the use- 
fulness of drum folding in system tuning. 

A methodology was presented for deriving com- 
parative cost-benefit information for different 
drums used as paging devices in a multi-level 
memory. This information should be useful in 
choosing between competitive drums during system 
design and upgrading activities. The method 
could conceivably be generalized to multi-level 
memories of more than three levels, and to in- 
clude other memory devices than drums. 

APPENDIX A Measurements of the MULTICS Three- 
Level Memory with Drum Foldin$ 

The Honeywell 645 MULTICS system is a time- 
shared multi-progra~mned computer system with an 
automatically managed three-level memory composed 
of core, drum, and disk. The drum presently 
used by MULTICS has 16 sectors and 256 tracks, 

giving it a capacity of 4096 pages. Drum rota- 
tion time is 33.3 milliseconds. The MULTICS 
drum scheduling algorithm is quite similar in 
function to the two-priority folded drum sche- 
duling algorithm analyzed in this paper (al- 
though it is very different in form). 

Measurements were taken on the three very 
different configurations shown in Figures AI, 
A2, and A3. In each configuration, a number of 
benchmark user processes* were run simultaneously 
to provide a reproducible realistic user load. 
In each configuration, the number of drum folds 
was varied from i to 16 (8 for the "minimum" con- 
figuration) in powers of 2, the range of possible 
foldings implemented. For each configuration 
and degree of folding, average frequency of page 
exceptions from main memory (~f) and drum, disk, 

and combined drum-disk mean page fetch times** 
were measured over approximately 10-20 minutes 
of time after the system reached an equilibrium 
state. Using equations 2a and 7, a prediction 

of drum mean page fetch time (mpftdrum(N)) was 

obtained. To this was added an estimate of soft- 
ware overhead for drum queue management. This 
prediction, together with the measured value of 
disk mean page fetch time (which already includes 
software overhead) were substituted into equations 
8, with P(M, D/N) given by equation 6b, to ob- 
tain a prediction of overall drum-disk mean page 

fetch time, mpfttota I. The measured and pre- 

dicted values of mpfttota I for each configura- 

tion and degree of folding are presented side- 
by-side in table Ai. 

These experiments should be taken with a 
grain of salt, for several reasons. The model 
described in this paper is not an exact model 
of the MULTICS drum scheduling algorithm. Se- 
veral concessions to simplicity and efficiency 

were made in its implementation. In particular, 
software overhead times for drum queue manage- 
ment are not constant with varying numbers of 

* For purposes of system tuning, comparisons 
of performance of successive versions of the 
MULTICS software system, and conductin con- 
trolled experiments. Douglas H. Hunt of M.I.T. 
Project MAC Computer Systems Research Division 
developed a method of simulating a realistic 
user load on the system. Several independent 
processes, each representing a single user, are 
run simultaneously. All processes execute the 
same single control program which invokes com- 
mands in a random order from a subset of the 
more frequently used system conmmnds involved 
by users. The commands consist of editing, com- 

pilation, trial execution9 debugging, final exe- 
cution, and file system manipulation requests. 
The frequency of usage of each type of conmmnd 
from each process'is adjusted to match fre- 
quency-of-usage statistics kept during normal 
system operation, so that, under multipro- 
gramming, these processes exhibit the same 
distribution of resource and system program 
usage as observed for a normal user load. 

** The mean page fetch times measured include 
software overhead times for drtma and disk queue 
management and interrupt handling. 
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Figure AI. A "minimum" MULTICS configuration 

disk 

Figure A2. A "small" MULTICS configuration 

disk 

Figure A3. A "large" MULTICS configuration 

mean 
time 

between 

Configuration Folds faults 

r' . . 
m in imum 
(I CPU, 
~40 pages 
primary 
memory 

small 
(i CPU, 
~175 pages 
primary 
memory) 
large 
(2 CPUs, 
~300 pages 
primary 
memory) 

No. total mean page 
Drum page fetch time 

measured predicted 
~msec) ~msec) ~msec) 

i 

i 15.6 21.9 i 21.9 
2 12.4 14.9 13.8 
4 11.7 16.4 18.0 
8 18.0" 23°2 25.5 

I 11.8 23.5 22°0 
2 12.7 15.0 16.4 
4 12.2 16.2 18.4 
8 14.4 25.6 32.6 

16 27.7* 71.5 76.1 
I 9.1 24.6 23.4 
2 11.3 15.3 20°2 
4 ii.5 24.2 39.2 
8 27.7* 84.4 88.4 

16 45.3* 113.5 122.3 

* = overload on secondar/memory 

Table AI 

Measured and Predicted Combined Drum- 
Disk Mean Page Fetch Times for the 

MULTICS System 

drum folds, and become a significant fraction 
of drum page fetch time for large numbers of 
drum folds (N=8 or N=I6). The analysis in the 
body of the paper makes the assumption that soft- 
ware overheads are negligible, or at worSt, not 
dependent on the number of drum folds. Also, 
Saltzer's linear paging model, used to obtain 
the drum page exception success funtion P(M, D/N), 
is not an exact model of paging in MULTICS. 
Nevertheless, the figures in table AI demonstrate 
that folding a sectored drum in a three-level 
memory can result in measurable improvements 
in memory performance. 
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