
OPTIMAL FOLDING OF A PAGING DRUM
IN A

THREE LEVEL MEMORY SYSTEM

by

Lee J. Scheffler

Massachusetts Institute of Technology
Department of Electrical Engineering and Project MAC

ABSTRACT

This paper describes a drum space allocation and accessing strategy called "folding", whereby effective
drum storage capacity can be traded off for reduced drum page fetch time. A model for the "folded drum" is
developed and an expression is derived for the mean page fetch time of the drum as a function of the degree
of folding. In a hypothetical three-level memory system of primary (directly addressable), drum, and ter-
tiary (usually disk) memories, the tradeoffs among drum storage capacity, drum page fetch time, and page
fetch traffic to tertiary memory are explored. An expression is derived for the mean page fetch time of
the combined drum-tertiary memory system as a function of the degree o~ folding. Measurements of the
MULTICS three-level memory system are presented as examples of improving multi-level memory performance
through drum folding. A methodology is suggested for choosing the degree of folding most appropriate to a
particular memory configuration.

1.0 Introduction

Many computer systems today employ auto-
matically managed multi-level memory systems of
successively larger, slower, and cheaper storage
devices to provide rapid access to large address
spaces. This paper is concerned with a three-
level paged virtual memory system with a rotat-
ing drum as the intermediate level of storage
between primary (directly addressed) and ter-
tiary memories. Specifically, this paper
describes a drum space allocation and accessing
strategy called "folding", whereby the effective
storage capacity of the drum can be traded off
for reduced drum access time. Several identical
copies of each page are maintained on the drum,
spaced equally around the drum circumference.
A request to fetch a page from the drum is served
by reading the copy of the page closest to the
read heads.

With a simple modification to Coffman's drum
analysis [3], an expression is derived for the
mean page fetch tlme of a drum as a function of
its storage capacity, speed, degree of "folding",
and mean page fetch request arrival rate. Using
a general success function for the probability
that any randomly chosen page fetch request finds

* For purposes of this paper, mean page fetch time
of a memory subsystem is taken as the mean or
expected time between the arrival of a demand page
fetch request at the subsystem access algorithm
queues and the arrival of the last bit of the re-
quested page at the main memory of the system.
This does not include any software overhead times
involved in page exception handling.

This research was supported by the Advanced Research
Projects Agency of the Department of Defense under
ARPA Order No. 2095, which was monitoried by ONR
Contract No. N00014-70-A-0362-006.

a copy of the requested page on the drum, an ex-
pression is derived for the overall mean page
fetch time of the combined drum-tertiary memory
system as a function of the degree of folding.
The "linear paging" model of Saltzer [5] is
employed in an illustrative example of the
application of this analysis to a real computer
system. In appendix A, measurements of the
MULTICS system [I0] under a repeatable bench-
mark user load for several very different con-
figurations of number of CPUs and size of primary,
memory provide some experimental verification of
the analysis, but more importantly, demonstrate
the value of the flexibility of being able to
fold the drum in system tuning. Consideration
is given to the practical limitations on the
degree of drum folding. Finally, a method is
suggested for the system designer to take advan-
tage of the three-way tradeoff of drum size,
speed, and degree of folding, to improve the
cost-effectiveness of a multilevel memory system.

2.0 The Three-Level Memory S~st~m

Our model of a three-level paged virtual
memory system consists of:

i. a primary memory of size M page frames
(usually core), that is directly referenced by
programs, into which pages not already present
are loaded as they are referenced;

2. an intermediate paging device of size D page
frames (drum, in this paper) on which copies of
pages being used by currently executing programs
may reside when they are not in primary memory;
and

3. a tertiary memory (usually disk) on which
each page of program or data in the system main-
tains a permanent residence.

ThE flow of pages in this system is shown in fig-
ure i. This flow is managed automatically (by

58

] pages
primary removed

He~ory primary

buf f er area

rem°~:~f r°m I -

Dru~
(Secondary

Memory)

Ter t f ary

Hemory

Figure I

Flow of pages in a 3-1evel paged virtual memory

system programs invoked when a page needs to be
moved) according to the following rules:

I. When a page not present in primary memory is
referenced, if a valid copy of the page (a copy
that includes the most recent modifications to the
page) exists on the drum, the drum copy is fetched
into primary memory. If no valid copy of the page
exists on the drum, the copy in tertiary memory is
fetched.

2. When the primary memory page replacement
algorithm decides to remove a page from primary
memory, the page is written onto the drum.

3. When the drum page replacement algorithm
decides to remove a page from the drum, the page
is first read into a buffer in primary memory
and then written out to its permanent tertiary
memory address.

3.0 The Drum

The drum to be considered has T tracks, each
with its own set of read-write heads, and each
divided into S sectors, as shown in figure 2. The
total storage capacity of the drum is thus D = S.@
page frames. Successively numbered sectors on

t r a c k s

I 2 . . . T - 2 ~T~I~ T

s e c t o r 1 ~1 I [I I I 1 ~ I
seo tor s / / I • " / I r2t2 s 2¢;o 7°

rea.d,writeheads ~ ~ : : : / ~ E ~ i ~ ~-~

I channel

Figure 2
Organization of a sectored drum

different tracks can be accessed (either read or
written) without loss of a revolution. The drum
rotates in R seconds, so that page transmission
time is fixed at R/S seconds.

A pair of flrst-come-first-served (FCFS)
queues of arriving access requests is maintained
for each drum sector, as shown in figure 3.
Arriving demand page fetch requests for pages on
drum sector k go into "fetch queue" k; other
drum access requests go into "write queue" k.
When sector k arrives under the heads, the page
for the first request in fetch queue k is read.
If fetch queue k is empty, the page for the first
request in write queue k is accessed.

fetch ~ueue I

page etch queue £ ~.._.~.--..~ , ~

:L. 7 It

• / /

write queue S /~ ~ access zecuests for sector $

Figure 3
~eues for sectored d r ~ scheduling a l g o r i t ~

3.1 Sectored D[umAnalysis

In [3], Coffman analyzed a model of a sec-
tored paging drum where all arriving drum access
requests for each sector are queued in a single
queue in first-come-first-served order. In the
model of the previous section, since all page
fetch requests for each sector are served before
any page write requests, and since the service
of a write request never cahs~the service of a
page fetch request to be delayed or prolonged,
Coffman's model and analysis are directly appli-
cable to studying drum behavior in our model
with respect to page fetch requests. The major
results of his analysis relevant to this paper
are sunmmrized here.

Let the inter-arrival times between page
fetch requests to the entire drum be indepen-

dent random variables distributed as kf e-%ft'

where kf is the mean arrival rate of page fetch
requests to the drum. Let the page fetch re-
quests be distributed uniformly over S fetch
queues, so that arrivals of page fetches to any
sector k also form a Poisson process, with mean

arrival rate__~f . Then, according to Coffman,
S

the mean page fetch time of the drum (time be-
tween arrival of the page fetch request at a
fetch queue and completion of reading) is given
by

59

,page trans-

m i ~ m e

R
mpftdrum = '~"

+ RiP(W) +---~-- 2(l-p)

(la)

i + (~l-p> eP(1-1/S)(l_e-p) _ .~]
P

J

queue waiting time

R (lb) where p = Af

is the "utilization fraction" of the drum, or the
expected fraction of drum page transfer capacity
(the drum can transfer, by virtue of its rota-
tional speed, S/R pages per second) that is used
to transfer pages being fetched~

3.2 The Folded Drum

Suppose that, instead of using every page
frame of the drum to contain a different page, ~
we use N page frames, spaced equally around the
drum circumference, to contain identical copies

of the same page. Clearly, this reduces the
storage capacity of the drum quite drastically.
However, if the drum access algorithm is modi-
fied to serve page fetch requests by reading the
copy of the page closest to the heads, we find
that page fetch time of the drum is also drama-
tically reduced. This strategy of maintaining
N copies of each page on the drum and reading the
one closest to the heads we will call "folding
the drum N times". Let us attempt to quantify
this tradeoff of size for speed.

First, let us clearly state the operation of
the queue arrival and service disciplines with
respect to demand page fetches. Page writes are
discussed in a later section. An arriving page
fetch request has the choice of entering any one
of N different fetch queues for the N different
sectors where copies of the page are maintained
Thus, the S sector fetch queues are partitioned
into S/N (assume that N divides S exactly)
classes such that two fetch queues for sectors
i and j are in the same partition if and only if
i mod S/N = j mod S/N. The policy for choosing
the fetch queue into which an arriving fetch
request will go is quite simple: put it into the
queue from which it will be serviced earliest.
This amounts to finding the subset of fetch queues
in the partition of this request that have the
smallest number of requests in them, and then
puttlng the new request into the queue for the
sector that will arrive under the heads soonest.
(There ~re far simpler ways of implementing this
strategy than indicated here. However, this des-
cription relates the essential effect of the
algorithm.) Figure 4 depicts this partitioning
of sector fetch queues.

* Coffman defines "drum utilization" as the
average number of sectors accessed (fetched,
in this case) per drum revolution, p, as
defined here, is Coffman's "drum utilization"
divided by S~ the number of drum sectors.

fetch aueue I

"I partition I

I partition 2

fetch queue S

1111

, I partltion
g~

Figure 4

Partitioning the S sector fetch queues into S~ partitions

for a drum folded N times

Note that arrivals to individual fetch queues
no longer constitute a Poisson process, since
the placing of a request in a queue is dependent
on both the number there already, and the current
drum position. Thus, Coffman's results are not
directly applicable.

This difficulty is circumvented by noting
that, for fetch requests, this model can be trans-
formed into the following equivalent model. Let
the drum in our new model rotate in R/N seconds
and have S/N sectors and T tracks. The storage
capacity of this new drum is thus D/N pagesj the
effective storage capacity of the larger drum
folded N times. The time a single sector is
under the heads is (R/N~S/N) = R/S seconds, the
same as in the old model, so page transmission
time is unchanged. Each partition of sector
fetch queues in the old model is mapped into a

single sector fetch queue tn the new model whose
number is the residue modulo (S/N) of the num-
ber of any one of the sectors in this partition
in the old model. Figure 5 depicts the queue
organization of this new drum model.

Assume that inter-arrival times of page
fetch requests to the folded drum are still in-
dependent random variables obeying the exponen-

-~f,N t ,
tial density function %f,N e where%f, N

is the mean arrival rate of page fetch requests
to the N-folded drum, and that page fetch arrivals
are uniformly distributed over the sectors of our

6O

f e t c h queue 1
~ "" I I I I page fetch req for pages wlth copies 6n • g~ sectors I, N+I, 2N+I, ..'. , S/N-N+I

....

[]

D/N pages

page f e t c h a r r i v a l r a t e to a l l queues r o t a t i o n time
i s k f , N r e q u e s t s per second R/N s e c o n d s

Figure 5

Queue Organization of N-Folded Drum Model

new smaller drum.* Then page fetch arrivals to
each individual sector fetch queue in our new
model constitute a Poisson process. We thus re-
gain the use of Coffman's drum analysis results,
to give us ~- expression for mpft~rum(N), the

mean page retch time oi the drum folded N times:

3.3 Evaluating Folded Dr~n Mean Page Fetch Time

In order to evaluate this rather forbidding
expression for a particular drum, we need to know
kf,N , the mean arrival rate of page fetch requests

to the drum folded N times, or equivalently, PN'

the fetch utilization fraction of the N-folded
druf,. These can be measured directly, or pre-
dicted from knowledge of the combined mean page
fetch arrival rate of both drum and teriary memo-
ries.

Consider the three-level memory system of
Figure 6. ~ is the mean arrival rate of page
fetch requests to the combined drum-tertiary
memory system, lf,N of these ~f page fetches

per unit time have valid copies of their pages
resident on the drum; the remainder require
tertiary memory accesses. Let us make the sim-
plifying assumption that ~f is independent of

D/N; i.e. that the mean page fault rates re-
main constant as effective drum size, and de-
rivatively, mean page fetch time of the combined
memory system, chan~es due to greater or lesser
drum folding.** Let P(M~) represent the pro-
bability that a randomly chosen page fetch re-
quest finds a copy of the missing page on the
drum, for main memory size M page frames, and
effective drum size ~ page frames. Setting
8 = D/N, we obtain

kf,N = P(M, D/N) ~f (3a)

* A sufficient but not necessary condition for
these assumptions to be true, given that they
are true for the unfolded drum (N=I), is the
following: Page fetch requests directed to
the drum before folding, but directed to ter-
tiary memory after folding due to decreased
drtmn size, are chosen at random from the page
fetch requests that went to the drum before
folding.

Combined D r u m ~ T e r t l a r y Memory

Primary Memol

M
page
fr~es

~f
?age
f e t c h e s
per
~eeond

~f,N " ~f - kf,N

~ ~r~ fr~eO • D/N page

~ I T e r t i a r y

F i g u r e 6

Page f e t c h a r r i v a l r a t e s i n a t h r e e - l e v e l memory

and

R
PN = S P(M, D/N) ~f (3b)

Several existing models for individual program
and multiprogralmning paging behavior supply
functions similar to p(M, 6). [1,2~4,7]
Given an explicit function for P(M,D/N), equa-
tion 3b may be substituted into equation 2a to
produce the desired expression for mpftdrum(N),

the mean page fetch time of the drum folded N
times.

As an illustrative example, let us employ
Saltzer's linear model for multi-level memory
demand paging performance%~ to obtain lf,N"

According to Saltzer, the mean headway% be-
tween references (mhbr) to a page for which no
copy exists in memory levels i through i is
directly proportional to the sum of the sizes
of memory levels i through i. Assuming that
l~f is proportional to I/mhbr (i.e. that mean in-

struction execution time is constant), then
Saltzer's model claims that

a

Uf = ~ (4)

where a is a co:~stant of proportionality. Fo-
cusing-on t h e f r a c t i o n of the ~f page e x c e p t i o n s +

that are not satisfied on the drum we have
that

** In the experiments on the MULTICS system report-
ed in appendix A, it was found that, under multi-
programming of degree between 4 and 8, the mean
page fault rate ~f varied less than 25~ over a

wide range of drum foldings, so long as secondary
memory did not become overloaded. Thus, although
this is certainly not a generally valid assumption,
it is sufficient for investigating the degree of
drum folding that minimizes overall mean page
fetch time.

A discussion of the linear paging model and
validating experiments appears in reference [5].

#; mean number of machine instructions executed

+ instances o£ reference to a page not in pri-
mary memory

61

_ - a

~f kf,N M + D/N (5)

.which, after the substititution of ~fM for a

(from e q u a t i o n 4) , and some r e a r r a n g e m e n t , be -
comes

- --~--- flf kf,N NM + D (6a)

suggesting that

D

P(M, D/N) = NM+ D (6b)

for this model. By equation 2b, then,

P N ~ k = R D
= S f,N S NM + D ~f (7)

(PN is the "fetch utilization fraction" of the

drum folded N times), which, upon substitution
into equation 2a, gives the desired expression

for mpftdrum(N).

3.4 Optimal Folding

We take the mean page fetch time (mpfttotal)

of the combined drum-tertiary memory system
(Figure 6) as the measure of memory performance
that we wish to minimize. Given the first-order
independence between mean page fetch request gener-
ation rate ~f and mean page fetch time mpfttota I

(discussed in section 3.3), minimizing mean page
fetch time for a constant page fetch rate mini-
mizes the real time a program spends waiting for
pages to be fetched This has a generally de-
sirable effect on overall system performance
(e.g. response time to users' requests for com-
putation and throughput of users' useful work
per unit time).

mpfttota I is given by

m~fttota I = P(M, D/N) mpftdrum(N) +

[i-P(M, D/N)] mpfttertiary (wf, N)

(8a)
where

w
f,N = ~f - kf, N = [I-P(M, D/N)] ~f

is the mean arrival rate of page fetch requests
to' tertiary memory with the drum folded N times.
mpfttertiary is a function of ~f,N because, in

general, the mean page fetch time of a tertiary
memory system will depend on the arrival rate of.
page fetch requests.

With mpftdrum(N) given by equations 2,

P(M, D/N) given by the character of the specific
system, and mpfttertiary(Wf,N) specified by the

particular tertiary memory system, a curve of
mpfttota I versus N for possible values of N*

can be constructed. In general, such a curve
will either have a single minimum, indicating

that mpfttota I can be enhanced by folding the

W See section 3.6 for constraints on the pos-
sible values of N.

drum, or will have positive slope for its whole
length, indicating that an unfolded drum is
best. Investigating the minimum of equation 8a
with respect to N is of little merit, since the
value of N that produces this minimum will in
general be non-integral, and thus will not cor-
respond to a possible folding. We are really
only interested in comparing the values of
mpfttota I corresponding to possible values of N.

3.5 Exam~! ~ of Optimal Folding Using Linear Pan

To illustrate the process of evaluating equa-
tion 8a for a specific system, we again make use
of Saltzer's linear paging model.
equations are reproduced below:

For mpftdrum(N):

R R- S+2N-
mpftdrum(N) = ~ + ~[ON(-~-)

(l-p N)

PN

The necessary

+ ~
2(i-P N) +

0N(I-N/S) (l_e PN)
e

From the linear paging model:

i -~]

(2a)

D
P(M, D/N) = NM + D

so that

(6b)

PN=R D
S NM + D ~f (7)

To simplify this example, we take

mpfttertiary(Wf,N) = A (9)

(by which we assume that tertiary memory page
fetch time remains constant over the range of
page fetch loads pl=ced on it by successive drum
foldings).

Then, from equation 8a, mpfttota I is given
by:

i
mpfttotal = NM+ D "

2 L°trr o.
+ ~[PN[-~-) + 2(l_PN) +

N

(i-PN)0N PN(i's) -PN ~] + e (l-e) -]

+ NM • A I (I0)
3.6 Constraints on Folding

There are several obvious constraints on N,
the number of drum folds. N must be integral.
It must be true that i< N < S. And N muSt divide
S exactly (One could conceive of more complex
drum folding schemes where N does not divide S
exactly; these are not considered here.)

The total combined arrival rate of demand
page fetch and write requests for the drum must
not exceed the page transfer capacity of the
drum. If %f,N and ~w,N represent the arrival

rates of demand page fetch and page write re-
quests to the drum folded N times, then this con-
dition is expressed as

62

S
%f,N + N kw, N < ~ (ii)

(kw, N is multiplied by N because each request

~o write a page onto the drum blossoms into N
requests to write N copies of the page on N dif-
ferent sectors.) If ~f and ~w are the respective

combined arrival rates of page fetch and write
requests to the drum-tertiary memory, and
Pf(M, 8) and Pw(M,8) are the respective probabi-

lities that a particular page fetch or write re-
quest will go to the drum with capacity 8 pages,
then this condition becomes

S
~fPf(M, D/N) + N ~wPw(M, D/N) < ~ (12)

which, when solved for N with specific functions
for Pf and Pw' gives an upper bound on the number

of folds so as not to overload the drum. In
practice one should choose N somewhat less than
this bound because, as drum capacity is approached,
the time to complete the writing of all N copies
of a page will increase markedly, and primary
memory may become tied up with copies of old pages
that have not yet been completely written out

Finally, the increase in access traffic to
tertiary memory must not overload it. If C is
the maximum average number of accesses per unit
time that tertiary memory can support, then this
condition is

Bf [i - Pf(M, D/N)] + ~w [I - Pw(M,D/N)] < C
(13)

3 .7 Write Interference

When a drum is folded N times, each time a
page is written, N different drum sectors must
be written. Thus, although the number of dis-
tinct pages to be written onto the drum can be
expected to decrease as the effective size of the
drum is decreased by folding, the total number
of sectors to be written increases somewhat
faster with increasing N. Equations ii, 12 and
13 explore one aspect of this increase, defining
upper bounds on N such that neither the drum nor
tertiary memory become overloaded. However, since
demand page fetch requests are given priority
over write requests, the mean sector write time,
and therefore the mean page write time, will in-
crease drastically as maximum drum page transfer
capacity is approached. The implication is that,
when the primary memory page replacement al-
gorithm decides to remove a particular page
from primary memory, it will be some time before
all N copies of that page are completely writ-
ten onto the drum, and the primary memory space
taken up by that page can be used for some in-
coming page. The danger is that a page fetch
request may be forced to wait for the completion
of writing of the primary memory page it will re-
place, thus effectively lengthening page fetch

time.

This interference is viewed as a second-
order effect. Paging systems often try to main-
tain a buffer of a small number of free pri-
mary memory page frames into which incoming
pages may be read without waiting for a page
to be written out. If the probability that a
new page fetch request finds no free primary
memory page frames into which it can be read

is significant, that is an indication that the
buffer being maintained is too small for the
system operating point, and should be made
larger. Since the buffer sizes we are con-
sidering are generally only a small fraction
9f the size of primary memory, their size can
be increased without seriously reducing the
primary memory available for paging.

4.0 Drum Cost Vers~s Mean Pa~e Fetch Time

The introduction of the folded drum allo-
cation and accessing strategy adds new complexity
to the system design activity of choosing the
drum to be used as the paging device of a multi-
level memory. Where the system designer pre-
viously had to trade off only drum speed and
drum size (which are primary determinants of
drum cost) against mean page fetch time of the
multi-level memory, he now may wish to consider
the possibility of folding the drum. He now
has the option, for example, of choosing a small,
fast drum, to be used unfolded, or a larger and
slower drum, to be used folded, to meet the same
mean page fetch time objective. It is thus ap-
propriate to suggest a methodology for dealing
effectively with this three-way tradeoff.

The two most cow,non questions one might ex-
pect a designer to ask are:

I. What is the minimum mean page fetch time
that can be obtained for d dollars?

2. How much will it cost to keep mean page
fetch time under m milliseconds?

The following methodology provides quanti-
tative information to answer these questions.

I. For each drum on the market that satis-
fies interface specifications, find the
possible folding that minimizes mean
combined drum-tertlary page fetch time
for the system (from equation 8).

2. On a single set of drum cost (vertical)
versus mean page fetch time (horizontal)
axes, construct a scatter plot with each
point representing the cost and minimum
combined mean page fetch time for each
drum under consideration. (Remember to
include the costs of implementing a
folded drum algorithm, if they will be
substantial.) Such a graph might look
like that of Figure 7.

D1~usn COSt

d o l l a r s

(n~t l l l seconds)

minimmn a t t a i n a b l e
mean page f e t c h time
o f combined drum-
t e r t i a r y memory

Figure 7

A s c a t t e r - p l o t o f drum cos t versus minimum a t t a i n a b l e mean page f e t c h time

for s evera l h y p o t h e t i c a l drums

63

The scatter-plot produced in step 2 becomes a
source of cost-benefit information for choosing
the drum and degree of folding that will be
used.

One comment is appropriate concerning this
choice. A drum that produces optimum mean page
fetch time when folded mid-way in its range of
possible foldings probably provides more flexi-

bility in an evolving system than one that pro-
duces optimum mean page fetch time when com-
pletely unfolded (N=i) or when maximally folded
(N=S). As primary memory size changes, or as
mean time between page fetch requests changes
(due perhaps to changing the number of CPUs,
faster CPUs, new scheduling algorithms or
changing the character of user load), a drum
that can be further folded or unfolded to mir-
ror shifts in the system's operating point
will be more valuable than one that cannot be
folded or unfolded further.

5.0 Summary and Conclusions

The "folded" drum allocation and accessing
algorithm offers the computer system designer
the flexibility to trade off drum size for
speed as needed to improve multi-level memory
performance, and to keep pace with evolving
system configurations, programming, or user
load. Sections 3.2 through 3.7 explore the
quantitative aspects of this tradeoff for a
specific model of a three-level paged virtual
memory system, culminating in equations 2 and
8 which relate combined drum-tertiary memory
mean page fetch time to the number of drum folds.

A model of the redistribution of page fetch
requests between the second and third levels of
a three-level memory system is required to apply
the analysis to a real system. The "linear"
paging model of Saltzer was present as an example
of such application. The folded drum analysis
assumes that times between successive arrivals
• of page fetch requests to the drum are inde-
pendent of each other, a condition which is met
to a first approximation by multiprogramming
over a small number of jobs.

Appendix A presents results of experiments
with the MULTICS three-level memory. Although
these results cannot be taken as validating this
model and analysis, they do demonstrate the use-
fulness of drum folding in system tuning.

A methodology was presented for deriving com-
parative cost-benefit information for different
drums used as paging devices in a multi-level
memory. This information should be useful in
choosing between competitive drums during system
design and upgrading activities. The method
could conceivably be generalized to multi-level
memories of more than three levels, and to in-
clude other memory devices than drums.

APPENDIX A Measurements of the MULTICS Three-
Level Memory with Drum Foldin$

The Honeywell 645 MULTICS system is a time-
shared multi-progra~mned computer system with an
automatically managed three-level memory composed
of core, drum, and disk. The drum presently
used by MULTICS has 16 sectors and 256 tracks,

giving it a capacity of 4096 pages. Drum rota-
tion time is 33.3 milliseconds. The MULTICS
drum scheduling algorithm is quite similar in
function to the two-priority folded drum sche-
duling algorithm analyzed in this paper (al-
though it is very different in form).

Measurements were taken on the three very
different configurations shown in Figures AI,
A2, and A3. In each configuration, a number of
benchmark user processes* were run simultaneously
to provide a reproducible realistic user load.
In each configuration, the number of drum folds
was varied from i to 16 (8 for the "minimum" con-
figuration) in powers of 2, the range of possible
foldings implemented. For each configuration
and degree of folding, average frequency of page
exceptions from main memory (~f) and drum, disk,

and combined drum-disk mean page fetch times**
were measured over approximately 10-20 minutes
of time after the system reached an equilibrium
state. Using equations 2a and 7, a prediction

of drum mean page fetch time (mpftdrum(N)) was

obtained. To this was added an estimate of soft-
ware overhead for drum queue management. This
prediction, together with the measured value of
disk mean page fetch time (which already includes
software overhead) were substituted into equations
8, with P(M, D/N) given by equation 6b, to ob-
tain a prediction of overall drum-disk mean page

fetch time, mpfttota I. The measured and pre-

dicted values of mpfttota I for each configura-

tion and degree of folding are presented side-
by-side in table Ai.

These experiments should be taken with a
grain of salt, for several reasons. The model
described in this paper is not an exact model
of the MULTICS drum scheduling algorithm. Se-
veral concessions to simplicity and efficiency

were made in its implementation. In particular,
software overhead times for drum queue manage-
ment are not constant with varying numbers of

* For purposes of system tuning, comparisons
of performance of successive versions of the
MULTICS software system, and conductin con-
trolled experiments. Douglas H. Hunt of M.I.T.
Project MAC Computer Systems Research Division
developed a method of simulating a realistic
user load on the system. Several independent
processes, each representing a single user, are
run simultaneously. All processes execute the
same single control program which invokes com-
mands in a random order from a subset of the
more frequently used system conmmnds involved
by users. The commands consist of editing, com-

pilation, trial execution9 debugging, final exe-
cution, and file system manipulation requests.
The frequency of usage of each type of conmmnd
from each process'is adjusted to match fre-
quency-of-usage statistics kept during normal
system operation, so that, under multipro-
gramming, these processes exhibit the same
distribution of resource and system program
usage as observed for a normal user load.

** The mean page fetch times measured include
software overhead times for drtma and disk queue
management and interrupt handling.

64

disk

Figure AI. A "minimum" MULTICS configuration

disk

Figure A2. A "small" MULTICS configuration

disk

Figure A3. A "large" MULTICS configuration

mean
time

between

Configuration Folds faults

r' . .
m in imum
(I CPU,
~40 pages
primary
memory

small
(i CPU,
~175 pages
primary
memory)
large
(2 CPUs,
~300 pages
primary
memory)

No. total mean page
Drum page fetch time

measured predicted
~msec) ~msec) ~msec)

i

i 15.6 21.9 i 21.9
2 12.4 14.9 13.8
4 11.7 16.4 18.0
8 18.0" 23°2 25.5

I 11.8 23.5 22°0
2 12.7 15.0 16.4
4 12.2 16.2 18.4
8 14.4 25.6 32.6

16 27.7* 71.5 76.1
I 9.1 24.6 23.4
2 11.3 15.3 20°2
4 ii.5 24.2 39.2
8 27.7* 84.4 88.4

16 45.3* 113.5 122.3

* = overload on secondar/memory

Table AI

Measured and Predicted Combined Drum-
Disk Mean Page Fetch Times for the

MULTICS System

drum folds, and become a significant fraction
of drum page fetch time for large numbers of
drum folds (N=8 or N=I6). The analysis in the
body of the paper makes the assumption that soft-
ware overheads are negligible, or at worSt, not
dependent on the number of drum folds. Also,
Saltzer's linear paging model, used to obtain
the drum page exception success funtion P(M, D/N),
is not an exact model of paging in MULTICS.
Nevertheless, the figures in table AI demonstrate
that folding a sectored drum in a three-level
memory can result in measurable improvements
in memory performance.

ACKNOWLEDGEMENTS

Professor F. J. Corbat6 suggested folding
the MULTICS paging drum and interested me in this
project. Steven H. Webber programmed the MULTICS
multi-level memory strategies and wrote many of
the metering programs used in the experiments.
Noel I. Morris implemented the folded drum al-
gorithm on the Honeywell 645 MULTICS system.
Douglas H. Hunt designed and implemented the
benchmark script programs used in the experi-
ments comparing different degrees of drum folding.
Professors F. J. Corbat6 and J. H. Saltzer of
M.I.T. and P. J. Denning of Purdue University
provided guidance and critical appraisal of
this work.

REFERENCES

I. Aho, A. V., Denning, P. J., and Ullm~n, J. D.,
"Principles of Optimal Page Replacement", JACM,
volume 18, number I, January 1971, pp80-93.

2. Chow, C. K., "On Optimization of Memory Heir-
archies", IBM research report RC 4015, Septem-
ber 5, 1972.

3. Coffman, E. G., '~nalysis of a Drum Input/
Output Queue Under Scheduled Operation in a
Paged Computer System", JACM, volume 16, num-
ber I, January 1969.

4. Denning, P. J., "Effects of Scheduling on
File Memory Operation", Proceedings AFIPS,
1967 Spring Joint Computer Conference,
volume 30, pp9-21.

5. Saltzer, J. H., '~ Simple Linear Model of
Demand Paging Performance", submitted for
publication to Conmnunications of ACM.

6. Toda, lwao, '~ Large-Scale Data Processing
System: DIPS-l", proceedings of First uSA-
JAPAN Computer Conference, 1972, pp193-202.

7. Sekino, A., "Performance Evaluation of Multi-
programmed Time-Shared Computer Systems",
Ph.D. thesis~ MIT Project MAC TR-I03~
September, 1972.

IBM System/370 Model 158 Facts Folder, Inter-
national Business Machines Corp., August 1972.

IBM System/370 Model 168 Facts Folder, Inter-
national Business Machines Corp., AUgust 1972.

The Multics Programmer's Manual, available
from Honeywell Information Systems Inc., con-
tains a complete bibliography of published
papers and theses concerning the MULTICS
system.

8.

9.

i0.

65

