
Sharing Data and Services in a Virtual Machine System 

J. D. Bagley, E. R. Floto, S. C. Hsieh and V. Watsont 
Computer Science Department 

IBM Thomas J. Watson Research Center 
Yorktown Heights, New York 10598 

Experimental additions have been made to a conventional virtual machine system (VM/370) in order 
to support a centralized program library management service for a group of  interdependent users. 
These additions enable users to share read/write access to a data base as well as processing services. 
Although the primary motivation was the enhancement of performance, considerable attention was given 
to retaining the inherent advantages of  the virtual machine system. Extended applications of  the basic 
technique are described and the implications of such extensions on operating system design are 
considered. 

Key Words and Phrases: Operating systems, file sharing, virtual machines, muhiprogramming, virtual 
machine monitor, data security, intermachine communication, multiprocessors 

CR Categories: 4.32, 4.34, 4.35 

Introduction 

Virtual machine systems have found application in two 
rather distinct areas; system program development and 
general purpose conversational time sharing. Here we are 
concerned mainly with the latter application area.Experi- 
mental additions have been made to a conventional virtual 
machine system (VM/370) in order to support a central- 
ized program library management service for a group of 
interdependent users. The emphasis is on the utility of the 
enhancements while retaining the advantages of virtual 
machine systems such as simplicity, understandability and 
efficiency. 

One way of approaching modem computing systems is 
to take a user's view of the interface that the system pres- 
ents to the world. Buzen and Gagliardi [2] have described 
this interface as an Extended Machine which is the "bare 
(hardware) machine" plus the "privileged software 
nucleus". Figure 1 is an abstract diagram of a computer 
which shows the symbolic notation used in this paper. 
That notation is used in figure 2 to illustrate the extended 
machine concept. Most programmers (those who are not 
specifically systems programmers) work with the extended 
machine interface. This concept of a hypothetical extend- 
ed machine is closely related to the notion of an abstract 
machine [6~7], akhough the emphasis is somewhat differ- 
ent. 

fPresent address: 
IBM Research Laboratory 
San Jose, California 95193 

I 
I 

PROGRAM I 

PROCESSOR 

STORAGE 
I 
I 

Figure 1. 

PRIVILEGED 
SOFTWARE NUCLEUS 

f 
f fff 

USER I 
PROGRAM 

Figure 2. 

MACHINE 

Symbolic Computer Notation. 

'BARE" 
MACHINE 

• . .  I 
PROGRAM 

The Extended Machine Conce 

EXTENDED 
MACHINES 

)t. 

82 



In the special case in which the extended machine is 
identical, or nearly identical, tO some real machine it has 
been described in the style of a Principles of Operation or 
a Reference Manual of the type used to describe real hard- 
ware products. In this case, the extended machine is 
termed a virtual machine. 

In this paper, a Virtual Machine System (VMS) is a 
combination of hardware, the Host Machine (HM) and 
software, the Virtual Machine Monitor, (VMM) which 
provides an interface to the user which can conveniently be 
described by a Principles of Operation document. The 
term Virtual Machine Operating System (VMOS) is 
used to refer to operating systems that run in virtual ma- 
chines. Figure 3 is an illustration of a standard VMS. 
Although the VMM occupies the same position as a nucle- 
us or kernel [12,23] in the system structure, its function 
has usually been defined differently. Note that if the virtu- 
al machine in question happens to be identical to some real 
machine, then the virtual machine operating system can be 
any operating system that can be run in the real machine. 

Applications of  Virtual Machine Systems 

The first application for virtual machines is in the area 
of the development, testing, and measurement of software 
(generally operating systems) which would otherwise re- 
quire the exclusive use of a real machine. In this applica- 
tion, it is essential that the virtual machine be identical to 
the real machine that is the intended host for the software 
that is being developed. With certain exceptions [20], 
current VMS's meet this requirement and provide a facility 
that is the equal of the real machine and may even be 
superior to it because of the added functional convenience 
that the VMM can provide in its implementation of a simu- 
lated system control panel. Goldberg [9] lists many virtual 
machine applications in the software development area 
and gives a comprehensive survey of research in the field 
of Virtual Machine Systems. 

I 
I 

VMM I 
I 
I 

/ 
/ 

/ 
/ 

/ 
/ 

MY USER 
0 PROGRAM 
S 

\ 
\ 
\ 
\ 

\ 
\ 
\ 

VM USER 
0 PROGRAM 
S 

HOST 
MACHINE 

VIRTUAL 
MACHINES 

Figure 3. A Conventional Virtual Machine System. 

The second application for virtual machine systems is 
the area of general purpose, conversational, time sharing. 
Here, it is of little consequence that the extended machine 
is identical to some real machine, because the user's inter- 
face is likely to be a secondary extended machine provided 
by a VMOS. The VMOS (for example, CMS in a 
VM/370  system) is designed to supply convenient, effi- 
cient and high quality services to a single user. It is limited 
in the quantity of user services that it can provide by the 
amount of computer resources which are allocated to its 
virtual machine by the VMM. These are limited by the 
efficiency of the VMM and thus questions of efficiency 
and performance are important to the general user and it is 
appropriate to consider them here, 

VMS Performance  

A prerequisite for the efficiency of a VMM is that the 
virtual machine interface which is supported be sufficiently 
similar to the real host machine on which it is implemented 
that the vast majority of the instructions of the virtual 
machine are executed by the real machine rather than 
being simulated by programs resident in it. In fact, in some 
instances, the underlying machine has been altered in order 
to make it more like the desired virtual machine [13,22]. 
Virtual machine systems derive a great deal of their effi- 
ciency from two other facets of their basic design: speciali- 
zation and simplicity. 

The specialization arises from the combination of the 
VMM, which controls the multiprogramming and the dis- 
tribution of the real resources, with the VMOS, which 
supplies services and the man-machine interface to the end 
user. This separation of function makes it possible for 
each of these aspects to be optimized independently. The 
functional independence does not imply operational inde- 
pendence. That is, the performance of the VMOS de- 
pends directly on the allocation decisions made by the 
VMM, and if the VMM makes the wrong decisions per- 
formance may be severely crippled. The VMM does its 
resource management on the basis of the information it 
receives across the interface from its virtual machines. If 
this information is insufficient or erroneous, the efficiency 
of the system will be impaired. 

Simplicity is provided by the stable, well designed 
interface which is supported by the VMM. The existence 
of this interface eases the job of the VMM system designer 

• considerably. For not only is the interface relatively un- 
complicated, but, more importantly, it is defined in ad- 
vance by the Pnnciples of Operation of the virtual machine 
it supports. This means that the environment that the 
VMM must provide is well defined, tested, and stable. 
Note that this may be considerably different from the 
situation faced by many software designers who are forced 
to implement toward an extended machine interface whose 
definition is very complex, possibly incomplete and incon- 
sistent, and inevitably destined to change before the sched- 
uled delivery date. 

There is bound to be some tension between specializa- 
tion and simplicity of virtual machine Systems, for in order 
to increase the amount of information available to the 
VMM so that efficient resource allocation decisions can be 
made, it may be necessary to complicate the interface. 
This must be done with great care and is part of the art 

83 



and science of operating systems design. The extensions 
described herein have been carefully designed to add mini- 
mal complication to the virtual machine interface while 
preserving the facets of VMS's which lead to good per- 
formance for the general user. 

Sharing In a Virtual Machine System 

All general purpose time sharing systems offer their 
users software resources as well as a share of the hardware 
resource. In a VMS, the software resources are supplied 
by the VMOS component while the hardware resources 
are supplied by the VMM component. In general purpose 
time sharing systems of the "computer utility" type 
[1,17,21], the management of software and hardware 
resources is integrated. One of the consequences of this 
integration is that sharing of software resources (programs 
and data) among independent users is facilitated. In con- 
trast, the isolation of resource control from user services 
that characterizes a VMS makes the task of sharing these 
resources more difficult. 

The user interface to a general purpose time sharing 
system normally provides a set of functions for symbolic 
file management which enable the user to create, manipu- 
late and share his programs and data. In a VMS like CP- 
67/CMS or VM/370,  those functions are provided by the 
file mechanism of the VMOS (CMS). In time, the user 
becomes accustomed to manipulating programs and data in 
the form of VMOS files and it is these files that he wishes 
to share with other users of the same time sharing system. 
Unfortunately, the VMM component of the VMS "knows" 
about the other users of the system, but it is ignorant of the 
user's file structure; while the VMOS component of the 
VMS "knows" about the user's file structure, but it is 
ignorant of the other users of the system. The division of 
labor of the VMS, which proved to be an advantage as far 
as implementation is concerned, proves to be a disadvan- 
tage when it comes to the importanl: service of sharing 
files. 

The VMM, which manages the virtual resources of all 
of the users, can be used to implement modes of sharing 
among virtual machines. These modes of sharing may be 
thought of as the sharing of the virtual hardware and have 
been implemented in VM/370 both for the main storage 
(shared segments) and for the auxiliary storage (shared 
mini-disks) of a user's virtual machine [15]. A recent 
experimental system [10] has introduced read-write shared 
virtual storage segments. Although the sharing of virtual 
hardware can suffice for many purposes, additional func- 
tion must be added to provide true logical sharing. 

Mini-disks are virtual disks which differ from real 
disks only in that they may have fewer cylinders than a 
physical disk. They be shared among several users and the 
sharing may be initiated dynamically on the initiative of the 
users themselves. Mini-disks are owned by users and the 
owner may specify passwords to give others various de- 
grees of access (read-only, read-write, etc.). In VM/370 
the process of attaching a mini-disk to a virtual machine is 
called "linking". 

But the ability to read from or write to a mini-disk is 
of limited value if the contents and location of the files it 
contains are not known to the VMOS. One standard me- 

thod of resolving this difficulty is to store a directory to the 
disk contents at a fixed location on the disk itself. Then 
the VMOS must initially read the directory into its virtual 
memory before it can access the files on the disk. In CMS, 
this process is called "accessing" the disk. 

Application To SBS 

As part of an effort to provide software tools for the 
use of the developers of an experimental operating system, 
an extensive software system for ~.utomating the manage- 
ment of programming development called SBS [5] was 
created. It is concerned with the automation of the in- 
formation collection and dissemination that accompanies a 
large program development project. It contains a data 
base which encompasses source, object, and load files as 
well as information relating versions, ownership, the com- 
position of systems and subsystems. SBS was constructed 
to support a user community which shares and contributes 
to a common and growing data base. In addition, SBS 
contains facilities to aid in maintaining administrative con- 
trol over the developing project. 

SBS was initially implemented on a CP-67/CMS 
[18,19] base and used the basic features of that system to 
share programs and data among its users. Experience with 
the system led to the conclusion that a substantial perform- 
anee improvement could be obtained by altering the man- 
ner in which this sharing was accomplished. To perform 
an SBS function in the initial implementation, the user 
entered an SBS command through CMS, the VMOS. This 
loaded an SBS object program from a shared file into the 
user's virtual memory and executed it. The SBS program 
in turn issued commands to CP, the VMM, which linked 
the SBS data disks to the user's virtual machine as shown 
in figure 4. If the SBS data disks were unavailable (usually 
because they were linked to some other user), the program 
waited for them to become free because uncontrolled mul- 
tiple write links could not be permitted to the SBS data 
disks. Once the SBS data disks were linked to the user's 
virtual machine, the CMS files on them were accessed by 
the user's version of CMS. 

USER 
0 

I USER 2 USER 3 USER N 

Figure 4. 

I VIRTUAL 
MACHINES 

Sharing Data By Sequential Disk Linking. 

After this initialization, SBS processing was begun and 
files were created and transferred to or from the user's 
minidisk and the SBS data disks using standard CMS disk 
operations. When the processing was completed, the SBS 
data disks were detached from the user's virtual machine 

84 



and control was returned to the CMS command interpret- 
er. 

Several opportunities for performance improvement 
were identified and are noted here. The first involves the 
practice of loading the SBS program modules into the 
user's virtual machine for each command. The SBS mo- 
dules tend to be quite large (megabytes) and the time and 
resources required to load them into the user's address 
space can be considerable even though relocation is unnec- 
essary. The second area where the promise for improve- 
ment exists lies in the way in which CMS gains access to 
the disks. Since the disks containing SBS data are shared 
by all users and and may be changed by other users be- 
tween the SBS commands issued by any given user, each 
SBS user must access all of the SBS data disks each time 
he executes an SBS command. The third consideration is 
security. Since the user is allowed to put fries on the SBS 
data disks, they must be linked to his machine with write 
privilege. In the event of an error or an asynchronous in- 
terrupt, control of an SBS disk may be given directly to the 
user (without the intermediary SBS routines). Clearly, this 
intolerable situation could not be allowed to exist. The 
fourth problem is lockout. Since the unit of sharing is an 
entire SBS data disk, only a single user can be given access 
to the disk at any one time. All other users must wait until 
that user has finished even though none of them may refer- 
ence the same fries. 

A Proposed Configuration 

The outline of a proposed configuration is illustrated 
in figure 5. It shows a VMS which contains a dedicated 
virtual machine (the SBS machine) which alone has access 
to all of the SBS files. The SBS machine contains all of the 
SBS modules and the SBS file directories already loaded 
within its address space. When a user wants to perform an 
SBS function, he sends his request to the SBS machine and 
accompanies that request by the data necessary for its 
fulfillment. The SBS machine then carries out the request- 
ed function and returns the results to the user. 

USER I USER 2 

? 

Figure 5. 

SBS USER N 

Data And Services Provided By A 
Dedicated SBS Machine. 

VIRTUAL 
MACHINES 

In order to implement this configuration, two addition- 
al functions must be provided by the VMS. The first al- 
lows independent machines access to each other's address 
space in a way which is controlled, but less restricted than 
through preplanned shared segments. This function may 
be implemented by changes within the VMM and provides 
for the exchange of data between address spaces in an 

efficient manner by changing page table entries and not by " 
actually moving the data. Second, a resource transfer 
function must be provided to enable the user to transfer 
some of his resources (i.e. his time slice) to the SBS ma- 
chine. This is a special function which is executed by a 
users virtual machine in order to influence the VMM in its 
allocation and attribution of the resources of the real ma- 
chine. The resource transfer function serves three purpos- 
es: first, it enables the SBS machine to obtain exactly the 
class of service to which its current user is entitled; second, 
it allows the resources consumed by the SBS machine to be 
charged to its current user; and third, it allows the re- 
sources of the system to be distributed in an equitable 
manner, since if 25% of the VMS's users are using the SBS 
machine, it should be given 25% of the systems resources 
and not merely the resources which would normally be 
allotted to another virtual machine. 

This configuration offers the potential for improve- 
ment in all of the areas enumerated above. The SBS mo- 
dules stay loaded in the SBS machine since that machine is 
used for the sole purpose of executing SBS routines. In 
addition since each disk is referred to by one and only one 
machine, there is no need continually to regain access. 
The user's files remain-in his machine and the SBS files in 
the SBS machine, and as a result the SBS routines have the 
means to enforce their security restrictions. Finally, since 
the fries are referred to by only one machine, many files 
may be opened simultaneously without confusion. The 
implication is that the SBS machine can process requests 
on behalf of many users concurrently. 

The Multi-User Problem 

There is, however, still a lockout problem since when 
the SBS machine is occupied with the request of one user, 
it must make other users wait for service. This occurs 
because SBS was built on CMS, a single user operating 
system that has no provision for multiprogramming. This 
means that the SBS machine can be doing work for only 
one user at a time and that it can not begin work for a 
second user while it is waiting for the completion of an 
I / O  operation for the first one. 

One way to attack the multiuser problem is to install a 
multiprogrammed VMOS in the SBS machine. This may 
be done by altering CMS to handle multiprogramming or 
by altering SBS so that it works with an existing multipro- 
gramming operating system. The first alternative involves 
a good deal of labor, since CMS was designed specifically 
to be a single user operating system. The second alterna- 
tive is also unattractive because SBS is closely tied to 
CMS. In addition, this course has certain inherent disad- 
vantages, since multiprogramming operating systems may 
to cause performance problems for VMMs [24,8]. This 
occurs because, among other reasons, the multiprogram- 
ruing of the VMOS may work at cross purposes to the 
multiprogramming of the VMM. 

In order to attack the multiuser situation while avoid- 
ing the problems the configuration illustrated in figure 6 
was proposed. The intent of this method is to take advan- 
tage of the multiprogramming inherently provided by the 
VMM subcomponent of the VMS rather than opposing it. 
In order to implement this alternative, it is necessary to 
create another class of independently dispatchable virtual 

85 



machines.  These machines,  called "s laves" ,  are created by 
the SBS machine and assigned to users for the durat ion of 
the SBS command or the for the length of an SBS session. 
The slave shares SBS da ta  and modules  with the master  
SBS machine and it shares the user 's  files with the user 's  
machine.  The SBS command  is given to a master  SBS 
machine which obtains a slave and assigns it to the user. 

USER I SLAVE A SBS MASTER 

/ASSIGNED 

9 9 
I f" ,, C ' , I '  i, I C 

,, SBS ~" "" 
,i I'" OGRAM ', 
, i  I l l  L 

USER 2 SLAVE B 
/ASSIGNED 

I I i I iii 
I I  I I  

C ; I  I I  
I I  I I  SBS " i, 

,' S 'J ,, 
| l  II 1[ 

l It_ 
Q 

Figure 6. Centralized Data And Services Provided By 
Slave Machines. 

The command is executed in the slave machine but its 
resources are charged to the user. The sharing implies that  
there is only one copy of the modules and one copy of the 
various file directories.  More  than one slave may be active 
concurrent ly and more than one may access the SBS disk 
concurrent ly.  However ,  two slaves must  be p reven ted  
from changing the same file at the same time. Fo r  this 
reason,  a system of file locks must  be provided in the 
VMOS.  

It was decided to implement  the configuration shown 
in f igure 6 to provide increased per formance  for  SBS. 
Doing so meant  that  a number  of addi t ional  funct ional  
capabili t ies had to be added  to the virtual machine system. 
The following sections contain descriptions of the building 
blocks which have been implemented  both in the V M M  
and in the VMOS.  Of  course,  there is a cer tain amount  of 
pract ical  t rade-off  involved in the decisions taken here. It 
has been our  intention to make  as few changes to the 
V M M  and the to the VMOS as possible and still accom- 
plish our  objectives.  

Addit ional  VMM Funct ions  

l n t e r m a c h i n e  Communicat ion  Funct ions  
These  funct ions faci l i ta te  the t ransfer  of da ta  be- 

tween independent  virtual machines.  They are described 
fully in a paper  by S. Hsieh [14]. The data  are t ransferred 
directly between address spaces and not through the paths; 
provided by the s tandard architecture as through a shared 

virtual I / O  device or virtual channel to channel adaptor .  
Both the sender  and the receiver  must  coopera te  in the 
transfer  of data  and the interface functions are carefully 
designed to insure protect ion and mainta in  synchronism. 
A machine which wishes to send data  to another  machine 
must  first get its at tent ion by executing an instruction 
which causes a special external  interrupt  to be generated 
for the other  machine.  That  machine responds by causing 
an external  interrupt  in reply. Messages are passed with 
each interrupt  which convey information such as the size 
and location of the da ta  block to be t ransferred.  The actu- 
al t ransfer  is accompl ished only when both  par t ies  have 
given their approval .  

Slave Funct ions  
Users  who have been gran ted  a special  "creator" 

privilege by the system adminis t ra tor  have the power  to 
create  o ther  independent  virtual  machines  and exert  a 
limited amount  of control  over them. One of these users 
can specify the parameters  of the slave machine he wishes 
to create  by specifying a slave prototype  which is the name 
of a user a l ready admit ted to the system. The slave that  is 
created then is identical to the pro to type  except  that  it has 
a different  name and it is owned by its creator .  The cre- 
a tor  can assign the slave machine  to a new owner  ( to 
whom its resources  will be charged)  or  i t c a n  maintain 
ownership of the slave itself. The owner  of a slave can 
stop and start  the slave machine and can read and write 
the contents of its internal storage (PSW, registers, etc.) .  
The creator  of the slave retains the power  to reassign it to 
a different  owner  at any time. The power  to create  a slave 
machine and start  it executing a program is precisely the 
power  to initiate a process [6,12]. 

Miscel laneous  Funct ions  
The most  impor tan t  addi t ional  funct ion is the AU-  

T H O R I Z E  function. If this function is executed by a virtu- 
al machine,  it permits  o ther  machines  in the system to 
cause an ex tended  external  in terrupt  for  the authorizing 
machine.  Conversely,  if a virtual machine (a user) has not 
authorized the special extended external  interrupts,  it can- 
not  be called by another  machine  and communica t ion  
cannot occur between them. It is this function which con- 
trois the selective breaching of the walls of protect ion [ 16] 
provided by the V M M  between  independent  virtual  ma- 
chines. 

Addit ional  VMOS Funct ions  

R e m o t e  Fi les  
Remote  files provide a way for  a V M O S  to manipu-  

late files that  reside on a device belonging to a second 
virtual machine and accessed by its VMOS.  Close cooper-  
ation is required between the VMOS ' s  in the two machines 
so that  file requests  of the using machine are t ranslated 
into messages which are t ransmit ted  to the owning m a -  
chine. The owning machine then performs the appropr ia te  
file action and transmits the results back to the using ma- 
chine. The user  programs in the using machine obtain 
precisely the same results as if the file had actually been 
owned and accessed by the using machine.  

Nothing happens  in the owning machine unless that  
machine has issued the A U T H O R I Z E  function.  Af te r  
that,  it is liable to receive an interrupt  requesting a record 
from one of its files. The interrupt  identifies the requester  

86 



and the owner can check whether the requester has been 
authorized to receive the requested data and whether it 
can be safely sent (it may have been opened for writing by 
another requester). If all is well, the requested data are 
sent by means of the transfer function. All of this process- 
ing is accomplished in the owner's virtual machine by an 
additional interrupt routine which services the new class of 
external interrupts and does not require the conscious 
attention of the owner after he has authorized the use of 
his file by another user's virtual machine. 

Master Machine Control Program 
Besides being the formal owner of the SBS data base, 

the SBS master machine assists users by acting as the man- 
ager of the SBS resources. Programs residing in the master 
machine assign slaves to SBS users and create, activate, 
delete, and deactivate slaves as needed. In addition, they 
prepare the slaves for assignment by initializing them with 
the appropriate programs and obtaining for them the au- 
thorizations necessary for them to carry out their func- 
tions. 

Conclusions and Extent ions  

This project may be viewed as an instance of adding a 
function (file sharing) to an operating system (VM/370)  
in an evolutionary manner. This runs counter to experi- 
ence with much of operating system development where all 
of the needed functions must be designed into the system 
initially and the system is bound forever by the limitations 
of the vision of the initial design. From a broader view- 
point, the VMM has been extended to implement the cre- 
ation and control of processes and communication and 
synchronism among processes. The result is to give the 
VMM the capabilities of a nucleus or kernel [12,23] of a 
general purpose multiprogrammed operating system. 

A second purpose of this project was to capitalize on 
the clean interfaces of the VMS but to add shared services 
characteristic of a general purpose time-sharing system. 
This really brings to the fore a basic philosophical problem 
in operating system design which is: "How is the division 
to be made between those services that are provided cen- 
trally for all users of the system and those services that are 
provided locally for individual users?". On the one hand, 
if services are shared, the avoidance of duplication intro- 
duces certain economies. On the other hand, the more 
services that are shared, the more system overhead is re- 
quired to manage them. One way in which the system 
overhead is made apparent is in supporting a complex 
interface. The wider the range of centralized services that 
are made available to users, the smaller the probability that 
any of them will be in use by more than one user concur- 
rently, but the design must allow for the possibility of con- 
currency. In more general terms, this decision concerns 
the assignment of user functions to the appropriate level of 
abstract machine. 

The net result is that the character of the operating 
system has been changed in the direction of providing 
more centralized services (ie. services have been moved to 
a lower level abstract machine). Instead of providing r a w  
virtual machines (CP) and user services through an exten- 
sive local operating system (CMS), the altered system 
supplies many services by providing access to specialized 
virtual machines (the SBS machine, the communications 

machine, etc.) which may contain specialized operating 
systems. Extensions consist of providing additional com- 
mon functions and perhaps replacing some of the functions 
currently provided by CMS (eg. language processors-) by 
means of specialized virtual machines: Adding a function 
involves supplying a master machine to provide the basic 
function and synchronization and supplying additional 
slave machines to provide the multiprogramming features 
needed. 

A third point of view sees this work as a simulation of 
a system which includes a hardware file processor [3]. 
The SBS machine and its slaves may be considered to be 
independent machines. This is similar to systems which 
include peripheral processors [4] or microprogrammable 
processors [11] to perform some portion of the file man- 
agement function. The difference is that here the architec- 
ture of the file processor is identical to the architecture of 
the main processor, and the functions which it performs 
are "out in the open" in code rather than being buried in 
another processor or in hardware or microcode. The ad- 
vent of LSI and the consequent reduction in cost of logic 
and storage has placed a greater premium on factors other 
than maximum utilization of hardware resources. This 
provides ample justification for the exploration of systems 
which are cleaner in design, more flexible and extendible, 
more reliable, and easier to understand. 

This suggests a structure for systems which allow a 
rather fine gradation of cost and performance while retain- 
ing a fixed user interface. While there are only a relatively 
few users of a service, it can be implemented in each user's 
VMOS as was the initial implementation of SBS. As the 
usage increases, an enhanced system which includes dedi- 
cated single function virtual machines and slaves can be 
employed. Then as the usage increases even further, there 
may come a time when it is feasible to increase perform- 
ance by adding a dedicated real machine which is specifi- 
cally designed to perform the service. Extensions along 
these lines involve adding additional Virtual or real proc- 
essors for communications, display support, and terminal 
support. In order to provide for the possibility of such 
extensions, the interprocess communication functions must 
be carefully designed so that they support remote or exter- 
nal processes as well as local or internal processes. The 
CMS EXEC mechanism, which provides command lan- 
guage procedures, has proved to be sufficiently powerful 
to provide compatibility at the command level. 

Acknowledgments. D .  P. Rozenberg provided the 
initial impetus and many helpful suggestions in the prepa- 
ration of this paper. P. G. Capek, W. E. Daniels Jr., S. P. 
DeJong, and C . J .  Stephenson contributed a number of 
ideas. A. N. Chandra assumed the management of the 
project and saw it through to its termination. We are in- 
debted to the referees for their constructive suggestions. 

References  

1. Bobrow, D.G., Burchfiel, J.D., Murphy, D.L., and Tomlinson, 
R.S. "TENEX, a Paged Time Sharing System for the PDP-10", 
Comm. of the ACM, 15, 3, (Mar. 1972), 135-143. 

2. Buzen, J.P., and Gagliardi, U.O. "The Evolution of Virtual Ma- 
chine Architecture", AFIPS Conf. Proc. 42 (1973), 291-300. 

87 



3. Canaday, R.H., Harrison, R.D., Ivie, E.L., Ryder, J.L., and Wehr, 
L.A. "A Back-end Computer for Data Base Management", Comm. 
of the ACM, 17, 10, (Oct. 1974), 575-582. 

4. Control Data Corporation. Control Data 6400/6500/6600 
Computer Systems SCOPE Reference Manual Pub. No. 
60189400. 

5. DeJong, S.P. "The System Building System (SBS)", RC 4486, 
IBM Research, Yorktown Heights, NY, (Aug. 1973). 

6. Dijkstra, E.W., "The Structure of the "THE"-Multiprogramming 
System", Comm. of the ACM, 11, 5, (May 1968), 341-346. 

7. Dijkstra, E.W., "Hierarchical Ordering of Sequential Processes", 
Acta Informatica, 1, (1971), 115-138. 

8. Goldberg, R.P., and Hassinger, R., "The Double Paging Anoma- 
ly", AFIPS 1974 NCC Conference Proceedings, 43, (May 1974), 
AFIPS Press, Montvale, N. J., 195-199. 

9. Goldberg, R.P. "Survey of Virtual Machine Research", 
Computer, 7, (6), (June 1974), 34-45. 

10. Gray, J.N., and Watson, V. "A Shared Segment and Interpro- 
cess Communication Facility for VM/370", RJ 1596, IBM Research, 
San Jose, California, (May 6, 1975). 

11. Hancock, R.J. "Microprogrammed Disk Peripheral Control 
Units", 1971 IEEE International Computer Society Conference 
Proceedings, (Sept. 1971), 113-114. 

12. Hansen, P.B. "The Nucleus of a Multiprogramming System", 
Comm. of the ACM, 13, 4, (Apr. 1970), 238-241,250. 

13. Horton, F.R., Wagler, D.W., and Tallman, P.H., "Virtual Ma- 
chine Assist: Performance and Architecture", Technical Report TR 
75.0006, IBM New England Programming Center, Burlington, Mass. 
(April 22, 1974). 

14. Hsieh, S.C. "Inter-Virtual Machine Communication Under 
VM/370", RC 5147, IBM Research, Yorktown Heights,/flY, (Nov. 
1974). 

15. IBM Corporation. IBM Virtual Machine Facility~370: 
Introduction. System Reference Library, Form GC20-1800. 

16. Lampson, B.W. "Protection", Proc. Fifth Princeton Symposi- 
um on Information Sciences and Systems, Princeton University, 
(Mar. 1971), 437-443. repnnted in: Operating Systems Review, 8, 
1, (Jan. 1974), 18-34. 

17. Lett, A.S. and Konigsford, W.L. "TSS/360: A T~ime-Shared 
Operating System", AFIPS FJCC Conference Proceedings, 33, 1, 
(Dec. 1968), The Thompson Book Company, Washington, D.C., 
15-28. 

18. Meyer, R.A., and Seawright, L.H. "A Virtual Machine Time 
Sharing System", IBM Systems Journal, 9, 3, (1970), 199-218. 

19. Parmelee, R.P., Peterson, T.I., TiUman, C.C., and Hatfield, D.J. 
"Virtual Storage and Virtual Machine Concepts", IBM Systems 
Journal, 11, 2, (1972), 99-130. 

20. Popek, G.P., and Goldberg, R.P. "Formal Requirements for 
Virtualizable Third Generation Architectures", Comm. of the 
ACM, 17, 7, (July 1974),412-421. 

21. Saltzer, J.H. "Protection and the Control of Information Shar- 
ing in Multics", Comm. of the ACM, 17, 7, (July 1974), 388-402. 

22. Tallman, P.H., Denson, R.A., Gilbert, T.A., Nichols, J.M., and 
Stucki, D.E., "Virtual Machine Assist Feature Architecture Descrip- 
tion", Technical Report TR 00.2506, IBM Poughkeepsie Laboratory, 
(Jan. 9, 1974). 

23. Wulf, W., Cohen, E., Corwin, W., Jones, A., Levin, R., Pierson, 
C., and Pollack, F., "HYDRA: The Kernel of a Multiprocessor 
Operating System", Comm. of the ACM, 17, 6, (June 1974), 
337-345. 

24. Young, C.J. "Extended Architecture and Hypervisor Perform- 
anee", Proc. ACM SIGARCH-SIGOPS Workshop on Virtual 
Computer Systems, Cambridge, MA, (Mar. 1973), 177-183. 

88 


