
The Amber System: Parallel Programming
on a

Network of Multiprocessors

Jeffrey S. Chase, Franz G. Amador, Edward D. Lazowska,
Henry M. Levy, and Richard J. Littlefield

Department of Computer Science and Engineering
University of Washington

Seattle, WA 98195

Abstract

This paper describes a programming system called Am-
ber that permits a single application program to use a
homogeneous network of computers in a uniform way,
making the network appear to the application as an in-
tegrated multiprocessor. Amber is specifically designed
for high performance in the case where each node in the
network is a shared-memory multiprocessor.

Amber shows that support for loosely-coupled mul-
tiprocessing can be efficiently realized using an object-
based programming model. Amber programs execute
in a uniform network-wide object space, with mem-
ory coherence maintained at the object level. Care-
ful data placement and consistency control are essen-
tial for reducing communication overhead in a loosely-
coupled system. Amber programmers use object mi-
gration primitives to control the location of data and
processing.

1 Introduction

Small-scale shared-memory multiprocessors are becom-
ing widely available in implementations ranging from
single-user workstations to mini-supercomputers. The
proliferation of multiprocessors means that local area
networks of these systems are likely to become com-
mon. This presents the opportunity to program a group
of these machines to work together on a single appli-
cation. For many applications, networks of small-scale
multiprocessors will have greater performance potential

This material is based on work supported by the National
Science Foundation (Grants CCR-8611390, CCR-8619663, CCR-
8700106, CCR8907666,and CCR-8703049), the Naval Ocean
Systems Center, U S WEST Advanced Technologies, the Wash-
ington Technology Center, and Digital Equipment Corporation
(the Systems Research Center, the External Research Program,
and the Graduate Engineering Education Program).

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
0 1989 ACM 089791-338-3/89/0012/0147 $1.50

than the fastest mainframes at significantly lower cost,
and with greater flexibility.

Amber was designed to take advantage of this trend
by supporting the development of parallel applications
that use multiple machines in a network of shared-
memory multiprocessors. Amber provides a set of pro-
gramming facilities and abstractions that isolate the
programmer from the low-level details of programming
in this environment. The abstractions are intended to
simplify communication, distribution, and parallelism,
while supporting a dynamic program structure that can
express and benefit from locality.

Amber is based on a model of computation in which
a collection of mobile objects distributed among nodes
in a network interact through location-independent in-
vocation. Amber objects are passive fine-grained enti-
ties consisting of private data and a set of public op-
erations that can be locally or remotely invoked. The
active entities in the system are thread objects, which
possess processor state and a runtime stack and can
execute on a CPU. A typical application might contain
many threads concurrently executing object operations
on different processors in a node and on different nodes
in the network. The threads in an Amber program exe-
cute in a flat network-wide shared object space. Object
references can be transmitted across node boundaries
and dereferenced on any node with consistent seman-
tics, allowing programs to operate on distributed data
structures in a uniform way.

Amber programs are written in an object-based sub-
set of the C++ programming language [Stroustrup 861,
supplemented with primitives for thread management
and object mobility. The system is composed of a
preprocessor to C++ and a runtime kernel which is
linked with the user’s program. Amber is implemented
on the Topaz operating system for the DEC Fire-
fly [Thacker et al. 881, a multiprocessor workstation
based on VAX microprocessors. Applications have been
executed on a group of eight Fireflies connected by a
IO-megabit/second Ethernet.

147

1 .l Research Goals and Issues

Amber explores issues in parallel programming at both
the system level and the application level. At the
system level, Amber explores the viability of using a
loosely-coupled network of small-scale multiprocessors
as a large-scale machine. This raises issues in. schedul-
ing, virtual memory management, distribution, and co-
herency. At the application level, Amber explores how
to structure an application to benefit from the target
architecture. Here we wish to understand the program-
ming primitives needed to express both loc.ality and
parallelism. Overall, Amber assesses the appropriate-
ness of the object-oriented programming model for solv-
ing problems at both levels.

A major goal of the Amber project is to provide
language-level support for concurrency and distribu-
tion using an existing programming language and op-
erating system. This reduces the development cost of
the system and makes it more attractive to program-
mers. We were able to achieve this goal using the fa-
cilities of the Topaz operating system and the C++
programming language. Topaz provides useful network
services, support for threads, and remote procedure
call [Birrell & Nelson 841. The extensible class hierar-
chy of Ct-t enabled us to implement Amber without
modifying the language or its compiler.

Amber’s programming model assumes that the user
will be aware of the network organization and will wish
to take advantage of it to achieve maximum applica-
tion speedup. This conflicts with the goal of network
transparency. The tension between uniformity and per-
formance is more pronounced in Amber than in other
distributed systems because high performance for par-
allel applications is the primary purpose of the system.
Good performance on a loosely-coupIed multiprocessor
demands careful attention to data placement, in order
to minimize remote references, which are three to four
orders of magnitude more expensive than local ones.
Our view is that data placement should be under the
control of the program rather than the runtime sys-
tem since the needs of different applications will vary
widely. This compromises the uniformity of the pro-
gramming model because it requires the programmer
to deal explicitly with location. Amber attempts to
strike a balance between uniformity and performance.
The programming model is designed to isolate areas
where the programmer must be concerned with loca-
tion, while providing means to tune program organiza-
tion for efficient execution.

1.2 Related Systems

Object-based models have frequently been used for dis-
tributed systems; examples include Hydra [Wulf 741,
Clouds [Allchin & McKendry 831, Argus [Liskov 881,
Eden [Almes et al. 851, and Cronus [Schantz et al. 8G].
Systems such as Eden and Argus provide support for
distributed objects at the programming language level
using a special-purpose language. Experiments with

this approach at the University of Washington led to
the development of Emerald [Black et al. 871, a dis-
tributed programming language with support for fine-
grained object mobility. Amber’s distribution model
and mobility primitives are derived from Emerald.

In contrast to these other systems, the goal of Amber
is to execute a single application that performs a par-
allel computation, computes a result, and terminates.
Amber does not support persistent objects, primitives
for reliable distributed computing, or communication
and cooperation between unrelated programs. In this
respect Amber is related to object-based systems for
concurrent programming on tightly-coupled machines.
Amber is in fact a direct descendent of one such sys-
tem, Presto [Bershad et al. SSa], a C++-based run-
time package for building medium-grained parallel ap-
plications on shared-memory multiprocessors. Amber’s
thread model and synchronization model follow those
of Presto.

Amber was developed to allow a network of ma-
chines to be treated as a loosely-coupled multiproces-
sor using a programming model based on distributed
objects. Recent systems with similar goals include
Sloop [Lucco 871 and Orca [Balk Tanenbaum 881.
Amber differs from these systems in that its program-
ming model and internal structure are designed to take
advantage of shared-memory multiprocessors. Am-
ber supports logical concurrency and true parallelism
within each node as well as across nodes in the net-
work. Concurrency within a mutable object is real-
ized by placing the object on a single node and clus-
tering all threads manipulating the object onto that
node. This allows the consistency of the object’s in-
ternal state to be efficiently managed by hardware-
based synchronization primitives and memory coher-
ence protocols. This organization of Amber programs
into closely-cooperating clusters is similar to the task
force structure in Medusa [Ousterhout et al. 801 and
StarOS [Jones et al. 791, but in Amber this clustering
is determined at run time and can change dynamically
as the computation progresses.

Other researchers have investigated the use of a net-
work as a loosely-coupled multiprocessor within the
context of more traditional programming models. The
Ivy system [Li 861 pioneered the use of network-wide
shared virtual memory for this purpose. This ap-
proach allows distributed applications to be written
using conventional programming techniques. Ivy main-
tains memory coherence by using virtual memory hard-
ware to implement page ownership schemes analogous
to hardware cache consistency protocols. One goal of
Amber is to explore the relative merits of object-based
versus shared-memory models for maintaining memory
coherence in a parallel and distributed environment.
This issue is discussed in Section 4.

148

2 The Programming Model

Amber provides the programmer with a set of pre-
defined object classes for managing threads, synchro
nization, and distribution. Amber’s abstractions are
supplied by means of existing C++ language mecha-
nisms such as subclasses and dynamic object creation.
The programming model demonstrates that support for
concurrency and distribution can be integrated into a
class-hierarchical language to produce a uniform sys-
tem with features that compose well.

The use of an object-oriented language provides
other benefits. Object classes can hide not only the
representation of objects but also the internal details of
their execution, synchronization, and location. Other
researchers have discovered similar benefits for imple-
menting features such as persistence and recovery prop-
erties for objects [Herlihy & Wing 871. Also, dynami-
cally typed subclasses are a convenient vehicle for tai-
loring system behavior to meet the needs of a specific
application. These ideas are made more concrete in
the next few subsections, which present the details of
Amber’s programming model.

2.1 Threads

Amber’s mechanisms for expressing concurrency are
derived from the thread facilities provided by Presto.
Presto was designed to make the use of threads inex-
pensive, allowing the programmer to efficiently man-
age more control streams than there are processors. In
Amber, threads have the advantage of allowing the pro-
grammer to maximize throughput by overlapping com-
putation with remote communication.

Like other objects, threads can be created dynami-
cally using the C++ new operator. The basic opera-
tions on threads are Start and Join. The Start primi-
tive starts a thread executing an operation on a spec-
ified object. Join blocks the caller until the specified
thread terminates, returning the result from the oper-
ation specified in the Start call.

Threads provide explicit support for concurrency,
in contrast to the implicit support provided by asyn-
chronous object invocation mechanisms in languages
such as Sloop. Amber invocations are synchronous,
but threads can be used by either the invoking object or
the invoked object to transparently provide asynchrony.
An invoked object can exploit parallelism transpar-
ently to its invoker by creating and starting additional
threads in response to an invocation. Alternatively, a
thread can execute an asynchronous invocation by cre-
ating another thread to perform the invocation.

Amber’s scheduler supports timeslicing and can be
customized to use priority-based or adaptive policies
tuned to the specific application. An application can
install a custom scheduling discipline at runtime by re-
placing the system scheduler object with a similar ob-
ject that supports the same interface but behaves dif-
ferently [Bershad et al. 88b].

2.2 Synchronization Objects

Amber provides a flexible set of classes for controlling
access to data shared by multiple threads. The sys-
tem supports relinquishing and non-relinquishing locks,
barrier synchronization, monitors and condition vari-
ables. Programmers can extend the class hierarchy to
define custom mechanisms for concurrency control us-
ing these primitive synchronization objects. The intent
is that programmers will select an appropriate concur-
rency control scheme for each user object and encapsu-
late the details of the synchronization within the class.

Amber’s approach to synchronization differs from
similar systems designed for networks of uniprocessors.
Most of these systems support monitored objects and
indivisible operations but no explicit lock primitives.
We believe that fine-grained synchronization using lock
primitives is desirable when the nodes in the network
are multiprocessors. Fine-grained locking reduces con-
tention and allows hardware-based spinlocks to be used
to reduce latency when appropriate. Lock objects have
additional advantages in a distributed environment be-
cause they are mobile and can be remotely invoked to
enforce concurrency constraints involving multiple ob-
jects on different nodes.

2.3 Controlling Object Location

In Amber, threads invoking operations on an object
move to the node where the object resides, so the di-
vision of computational load between the machines is
determined by the locations of the program’s data ob-
jects. Object location also has a significant effect on
the network overhead incurred by the program. In gen-
eral, interacting objects should be co-located in order
to avoid the cost of a remote procedure call on each
invocation. This must be balanced with the need to
place objects so as to evenly distribute the computa-
tional load between machines.

Amber programmers take advantage of locality by
using migration primitives to control object placement
as the program executes. Objects can be moved even
if they have active invocations: threads executing op-
erations on a moving object are identified and moved
with the object. Dynamic mobility is useful because
some applications will need to reorganize object loca-
tions following different computational phases of a pro-
gram, although static object placement is sufficient for
many applications.

Amber’s mobility primitives are modeled after mo-
bility in the Emerald system [Jul et al. 881. An Am-
ber object can be moved with MoveTo and its location
can be determined with Locate. Like Emerald, Am-
ber provides other mobility primitives that are useful
for improving program performance. The programmer
can Attach an object to another object or Unattach
an attached object. The attachment primitives allow
a programmer to dynamically create structures of ob-
jects that move together and are always guaranteed
to be co-located. Amber also supports replication of

149

readonly objects to reduce unnecessary communication
overhead. Objects may be marked as immutable at
runtime, indicating that they will never again be mod-
ified. Invoking MoveTo on an immutable object causes
the object to be copied rather than moved. The attach-
ment and immutability mechanisms in Amber are more
dynamic than in Emerald, where they are specified at
compile time.

Amber leaves all aspects of object location under
the direct control of the program. Data objeclts never
move unless the program explicitly moves them. Ob-
jects that are not explicitly designated as imlmutable
are never replicated, eliminating the complexity associ-
ated with keeping multiple copies of a writable object
consistent. This approach contrasts with other recent
experiments with language-level support for distributed
objects. The Orca language performs automatic object
placement and replication of mutable objects, but pro-
vides no primitives for explicit object migration. Sloop
includes advisory migration primitives, but the system
may override the programmer’s decisions under certain
conditions. Amber attempts to provide a model of shar-
ing and location that is uniform, predictable, and sim-
ple to implement. Our assumption is that the best
policy for managing location is application-specific and
is best left to the program or higher-level object place-
ment software.

3 Implementation Issues

Amber programs execute as a set of cooperatirrg Topaz
tasks distributed across the network, with one task
on each participating node. The tasks are created
at program startup using Topaz facilities for creating
remote processes. Each task is an execution of the
same program image read from a distributed file sys-
tem. Topaz supports multiple threads of control in
a single task and fast remote procedure call between
tasks [Schroeder SC Burrows 891, facilities that are used
to implement Amber thread scheduling, object migra-
tion, and internode object invocation,

The key implementation problem for Amber is the
abstraction of a single network-wide object space with
object mobility and transparent invocation of remote
objects. The following subordinate issues must be ad-
dressed in order to implement this model:

l naming, creating, and destroying objects

l moving objects

0 trapping nonlocal invocations

l finding remote objects

l migrating threads for remote invocations

Our goal was to implement Amber’s shared object ab-
straction within the confines of C++, using techniques
that perform little or no remote communicatio:n not di-
rectly requested by the program. We found that much

of the implementation was straightforward if we used
direct virtual addresses as the basis for object nam-
ing in the network, arranging each task’s address space
SO that virtual addresses have the same meaning on
all nodes. The next few subsections describe our im-
plementation for Amber, with an emphasis on how this
global virtual address space is managed and how it sim-
plifies the implementation of the shared object space
abstraction. Section 3.5 presents additional problems
caused by intranode parallelism, and Section 3.6 dis-
cusses our use of the C-l-+ language.

3.1 The Global Address Space

Object references and other pointers are frequently
transmitted across the network in Amber. This hap-
pens when arguments to a remote invocation are passed
by reference, or an object containing embedded point-
ers moves from one node to another. Also, any thread
executing an operation on a moving object will move
with the object and resume execution on the desti-
nation node, where it will continue to use addresses
stored in its stack and registers. The transmitted ad-
dresses may be object references, program code ad-
dresses, pointers into static data such as string con-
stants, or back links in the stack. It follows that all
code and data items are visible to all nodes and may
be referenced by any thread regardless of which node
it is running on. The references must be resolvable on
all nodes with uniform semantics.

One solution to this problem is to translate addresses
whenever they cross node boundaries. This is the so-
lution used in Emerald [Jul et al. 881. Such a scheme
permits each node to do independent memory manage-
ment, which is useful for Emerald because it assumes a
universe of long-lived objects created by multiple users.
The problem with this approach is that it requires ex-
tensive compiler support to aid in the address trans-
lation. This is incompatible with our goal of using an
existing widely-used language and compiler for Amber.

Amber avoids the need for address translation by en-
suring that addresses retain their meaning when trans-
mitted across node boundaries. The global virtual
memory is implemented by arranging the virtual ad-
dress space of each participating Topaz task identically.
Program code and statically initialized program data
are automatically replicated at the same addresses on
all nodes because the tasks are activations of the same
program image executed on homogeneous machines.
All dynamic objects (including thread objects and their
stacks) are assigned a distinct segment of the global
address space when they are created, and each object
occupies this same virtual address range on any node
that it visits during its lifetime. The segment of virtual
memory occupied by an object on one node is reserved
for that object on all other nodes.

Amber’s memory organization requires that nodes
use disjoint regions of the address space for heap al-
locations of dynamic objects. The system must guar-

150

antee that two nodes do not attempt to allocate the
same heap block, but it must do this without the ex-
pense of distributed agreement for each object alloca-
tion. Each node is assigned a private region of the
virtual address space at startup time for its local heap
allocations. Statically partitioning the entire address
space in this way is limiting because objects are not al-
located uniformly across nodes. For this reason, a large
part of the address space is left unallocated at startup
and is handed out later by an address space server as
nodes exhaust their initial pool. The cost of extending
the address space is not excessive because the regions
are large enough (currently 1M bytes) that extensions
are needed relatively rarely for applications that are
moderate in their use of memory.

3.2 Handling Remote References

Each Amber object is referenced by a virtual address
that is valid on any node, but the system must deter-
mine whether or not an object is local when it is in-
voked. To provide this information, each object has an
object descriptor on every node that indicates whether
or not the described object is locally resident. The de-
scriptor may contain other information about the ob-
ject, such as where to look for it if it is remote. Checks
inserted by the preprocessor examine an object’s local
descriptor on each invocation. If the descriptor indi-
cates that the object is remote, the invocation traps to
the Amber kernel and is handled by a remote procedure
call that moves the faulting thread to the node where
the invoked object resides.

An Amber object is implemented as a record, the
first part of which is its descriptor, and the remainder
of which is its representation (the data local to the ob-
ject). The virtual address of an object is therefore the
address of its descriptor. When a new object is created
it is allocated from the heap on a particular node. The
descriptor for the object is initialized on that node to
indicate that the object is resident so that it can be
invoked. If a mutable object is moved, its descriptor
is changed to indicate that it is not resident, and a
forwarding address is inserted in the descriptor.

Objects and their descriptors are managed so that an
uninitialized descriptor is detected and interpreted to
mean that the object is remote. This eliminates the ex-
pense of initializing remote descriptors for a newly cre-
ated object. An uninitialized descriptor is detected be-
cause unwritten pages of virtual memory are zero-filled
by the Topaz operating system, and object descriptors
are defined so that the resident flag is a one-valued
bit. References to objects occupying heap blocks that
were previously deallocated and reused are also han-
dled correctly. This requires that the heap allocation
algorithm be constrained so that heap blocks are never
divided once they have been returned to the free pool.

3.3 Locating Mobile Objects

When the kernel handles a trap on an invocation
of a remote object, it retrieves a forwarding ad-
dress [Fowler 85-J f rom the object’s local descriptor.
The forwarding address is left in an object’s local de-
scriptor when the object moves away from a node. The
forwarding address may be out of date if the object
moves frequently. In this case the object’s location can
be determined by following a chain of forwarding ad-
dresses, since the object leaves a new forwarding ad-
dress on each node that it visits. It is costly to locate
an object by following a forwarding tihain, but this hap-
pens rarely because the object’s last known location is
cached on all nodes along the chain so that the object
can be located quickly on subsequent references.

The situation is more complicated in the case of a
trap on an object with an uninitialized descriptor, in-
dicated by the presence of a null forwarding pointer.
Each task has complete knowledge of the assignment of
heap regions to nodes because a reference to the node
that owns each heap region is obtained from the ad-
dress space server when the region is first mapped by
a task. This allows the system to use a heap object’s
virtual address to identify the object’s home node, the
node on which it was created. When a reference to an
object with an uninitialized descriptor is detected, the
kernel forwards the request to the object’s home node.
The home node can determine where the object resides
by following the chain of forwarding addresses.

3.4 Object and Thread Migration

The global virtual address space simplifies object mi-
gration because it avoids the need to translate ad-
dresses stored in the moving object. Furthermore, there
is no need to allocate space on the target node for the
object since the address range that it will occupy is pre-
determined. Moving an object involves copying its con-
tents from the source node to the destination node and
updating its descriptors on both nodes. The implemen-
tation is complicated by the need to identify and move
threads that are actively executing operations on the
object. These bound threads must migrate with the ob-
ject in order to preserve the consistency of the object’s
contents. This problem is discussed in Section 3.5.

Amber remote invocations are performed by simply
moving the invoking thread to the remote node. In
principle this is no more complicated than any other ob-
ject move. The thread’s control information and pieces
of its stack are copied to the same address ranges on
the remote node, the object descriptors are updated,
and the thread is added to the scheduling queue on the
remote node. Addresses in its processor registers and
stack will continue to be valid on the destination node.
In pract.ice, thread migrations are handled slightly dif-
ferently from migrations of other objects in order to
optimize remote invocations made by the thread at the
expense of invocations made on the thread object itself
(e.g., a Join operation).

151

3.5 Object Mobility on Multiprocessors

Dynamic mobility is difficult to implement Ion multi-
processors because user threads may be attempting to
manipulate a moving object concurrently witlh the mo-
bility code running on another processor. This leads to
a number of implementation concerns that would not
arise on a uniprocessor. In uniprocessor object migra-
tion all threads on the node are implicitly suspended
while mobility code in the kernel is in control of the
single processor, making it a simple matter to deter-
mine which threads are bound to the moving object by
examining their stacks. Furthermore, the system can
preserve the atomicity of the invocation sequence by
preempting threads only at safe points in their execu-
tion, avoiding a context switch between the residency
check and the completion of the stack modifications in-
dicating that an invocation is active.

On multiprocessor hardware the atomicity of descrip-
tor checks can no longer be guaranteed. In a naive im-
plementation a thread could check the descriptor and
find that the object is local, but not actually com-
plete the local invocation until after a move operation
on the object has been initiated by another processor.
This race condition will always exist if the descriptor is
checked before the stack modifications associated with
the invocation are made. An analogous race condition
can occur on returns: a thread could check that an
object is still resident before its return, only to have
the object move after the check but before the actual
control transfer. A related problem is that the set of
active threads bound to a moving object is constantly
changing while the mobility code is running.

One approach to solving these problems is to lock the
invocation sequence and maintain a data structure that
records which threads are currently executing within
each object. This solution makes invocations expen-
sive because of the need to synchronize and update the
data structure. Another approach is to freeze all ac-
tivity on the node during a move operation and exam-
ine the stacks of all local threads to determine which
threads are bound to the moving object. This solu-
tion optimizes invocations but makes move operations
complex and expensive. There are many gradations
between these extremes.

Amber makes invocation-time residency checks at
the start of each operation, after the invocation stack
frame is pushed but before any user code is executed.
Return-time checks are made immediately after the
invocation frame that the thread is returning from
has been popped. This guarantees that the executing
thread can be identified as bound to the obj’ect before
it actually checks the descriptor and enters the object.
Threads already bound to a moving object are han-
dled by an additional residency check that is made on
each context switch into a preempted thread. Move op-
erations in Amber preempt and reschedule all threads
running on the source node, forcing them to make a
residency check before they continue. The preemptions
occur after the descriptor of the moving object has been

marked as non-resident but before the object’s contents
have been copied to the remote node.

Local invocations are efficient with this scheme be-
cause they require no synchronization over the object
descriptor, only a residency check consisting of a single
VAX branch-on-bit-set instruction. Also, there is no
need to halt all activity on a node during a move oper-
ation; at worst it will be necessary to briefly interrupt
each processor. One problem is that some concurrency
may be lost if the destination node is idle but the source
node is busy, since suspended threads which are bound
to the object will not move to the destination node un-
til they are rescheduled on the source node. An added
disadvantage is that the need to preempt all running
threads causes the cost of mobility to increase as pro-
cessors are added to a node. The assumptions behind
these tradeoffs are (1) object moves are much less fre-
quent than object invocations, and (2) improvements in
processor speeds will make thread preemptions cheap
relative to the network latency associated with a move
operation.

3.6 Experience With C++

Our choice of C++ was partly motivated by its avail-
ability and its popularity with programmers. Another
advantage of C++ is that it is efficiently implemented
with a minimum of runtime support. Most other ben-
efits of using C++ could have been obtained from any
object-oriented programming language with an exten-
sible class hierarchy and dynamic typing.

In our Amber prototype, object descriptors are allo-
cated and managed by deriving all user classes from a
single base class called Object whose private data items
include the descriptor. The constructor and destruc-
tor functions for the Object class maintain the descrip-
tor and ensure that object creation and deletion meet
the requirements discussed in Section 3.3. Threads
and synchronization objects are provided by introduc-
ing new subclasses of Object. The mobility primitives
are operations on instances of class Object. Amber’s
distributed heap allocation is implemented by redefin-
ing the runtime library routines for the C++ operators
new and delete.

One problem with C++ is that Amber’s distribution
model depends on the regularity of an object-oriented
programming language. Amber assumes that a thread
will never directly manipulate the internals of a remote
object, since references to remote objects are recog-
nized and trapped only on invocations. Furthermore,
all data items that may be referenced remotely must be
encapsulated in an object. The C++ language includes
many performance features that circumvent constraints
normally associated with an object-oriented program-
ming model. Examples of such features are friends,
public member elements, inline functions, unprotected
structures, and the ability to include arbitrary C code
in the program. These features can result in incor-
rect program behavior if they are used improperly in

152

a distributed environment. Nevertheless, they present
opportunities to optimize interactions between objects
that are known to reside on the same node.

There are a number of situations in which co-
residency guarantees make it possible to use these fea-
tures safely. Co-residency can be explicitly requested
using Amber’s attachment primitives. Also, C++
member objects (objects that are directly contained
within some other object) always move with their con-
taining object and are therefore c-resident with it,. Co-
residency guarantees can also be exploited to optimize
invocations of functions in base classes or invocations
of objects allocated from a thread’s stack. Intelligent
use of the performance features of C++ in situations
where cwresidency is assured can significantly improve
program performance. For example, consider a multi-
threaded object whose internal state is protected by a
non-relinquishing lock. If the lock is a member object
of the protected object then it can be safely acquired
and released using fast inline function calls.

4 Comparison with Shared Vir-
tual Memory

This section explores the relationships between page-
oriented and object-oriented shared memory models.
Both approaches offer uniformity relative to an RPC-
based programming model, but they differ in other re-
spects. The original motivation for an object-oriented
memory in Amber was that objects are a natural unit
for involving the programmer in data placement deci-
sions. In this section we shall argue that the object is
also a natural and efficient unit for maintaining coher-
ence of the global address space, and that object-level
coherence has a number of advantages over page-based
coherence.

The memory organization of a loosely-coupled sys-
tem is closely related to issues of consistency of the
data shared by multiple nodes. At the hardware level
each node can address only its private physical mem-
ory. Coherence of these private memories is diffi-
cult to maintain efficiently in a distributed environ-
ment. A similar problem is encountered by the de-
signers of programming support for NUMA multipro-
cessors, where the varying costs of referencing different
areas of memory motivate the use of caching, replica-
tion and data migration to improve program perfor-
mance. NUMA programming systems such as PLAT-
INUM [Cox & Fowler 891 make hidden data placement
and replication decisions while presenting the program-
mer with a view of memory that is uniform and coher-
ent at the byte level. This approach can work well
for NUMA multiprocessors because the cost of a poor
placement decision is typically not very high.

Similar shared memory models have been used to
allow a network of machines to be programmed as a
loosely-coupled multiprocessor. In Ivy, distributed pro-
cesses execute in a global virtual address space with

consistency of arbitrary bytes guaranteed across refer-
ences from multiple nodes. Coherence of the shared
memory is maintained by memory managers on each
node, which use page faults to detect shared accesses
and exchange coherency messages with other memory
managers fLi & Hudak 861. Remote references are han-
dled by moving or copying the referenced page to the
location of the faulting process. Distribution and load
balancing are achieved by explicit process migration.

Amber represents an alternative vision of uniform
and consistent memory in which the granularity of data
coherence is the object rather than the individual byte.
These systems present the programmer with a network-
wide object name space, with consistency maintained
by trapping invocations of remote objects. This mem-
ory model is uniform in the sense that it is unnecessary
for the programmer to deal explicitly with the locations
of objects when they are invoked, but it is more restric-
tive than the shared virtual memory approach because
it requires adherence to an object-oriented program-
ming discipline.

4.1 Function Shipping

A major difference between Amber and Ivy is that
Amber takes a function-shipping rather than a data-
shipping approach to coherence. Instead of attempting
to maintain the consistency of mutable objects across
references from multiple nodes, each object is placed on
a single node where access to it is controlled through
its operations. Function shipping is especially attrac-
tive when the nodes in the network are shared-memory
multiprocessors because it clusters the threads referenc-
ing a given object onto the same node, where hardware-
based synchronization and memory sharing can be used
to their fullest performance advantage. The program-
mer of a data-shipping system such as Ivy can obtain
the same advantages through an appropriate use of ex-
plicit process migration.

Distributed synchronization is simple and efficient in
a function-shipping system. For example, Amber locks
are objects which can be remotely invoked to synchro-
nize threads executing on different nodes. References to
a shared lock variable can cause a data-shipping system
to thrash by repeatedly shuttling the page containing
the lock variable between the nodes which are referenc-
ing it. Recent versions of Ivy have handled this problem
by deviating from the data-shipping model and access-
ing shared lock variables with remote procedure calls.

For a certain class of programs the behavior of the
function-shipping approach is more predictable than
that of the data-shipping approach. It is easy to pre-
dict the communication overhead incurred by an Am-
ber program that utilizes static object placement or
that moves objects at well-defined points. A similar
program for a data-shipping system can thrash when a
memory page is repeatedly referenced by processes on
different nodes. The Amber program can thrash when
a thread repeatedly invokes the same remote object,

153

but this effect is less dependent on the orders of events
and the timings of concurrent operations (exc.ept those
involving explicit object moves). In such a program
the location of an object can be determined from the
program structure and is independent of which threads
happen to be referencing the object at the moment.

4.2 Pages vs. Objects

The performance of a coherence policy is dependent
upon the degree to which memory references made by
the program are localized within the units used by the
system to maintain coherence. In a distributed object
system the granularity of coherence is the data object, a
problem-oriented unit, whereas in shared memory sys-
tems it is the page, a unit that is dependent upon the
hardware rather than the structure of the program.

The performance of a page-based coherency scheme
may suffer if the sizes of data items do not match well
with the page size. If a remote data item is larger than a
page, an operation that accesses the item in its entirety
will generate multiple page faults unless the process is
explicitly moved to the location of the data item. In
Amber, the thread moves to the location of the data
item and the operation executes with a single network
transaction. Alternatively, the Amber programmer can
choose to migrate the object explicitly, making use of
an efficient bulk transfer protocol.

If data items are smaller than a page, a page-based
coherency scheme incurs unnecessary communication
overhead when logically unrelated data items that hap-
pen to reside in the same page are referenced repeat-
edly by multiple nodes. The programmer for such a
system must be aware of page sizes and boundaries
to reduce this artificial sharing, just as programmers
of current shared-memory multiprocessors need to be
aware of cache line sizes in order to achieve the best per-
formance. Page-based systems can reduce these prob-
lems by depending on the compiler to structure the
data appropriately. This structuring comes for free in
an object-based system.

Another argument for object-level coherence is based
on a hypothesis that the memory reference patterns of
object-oriented programs are more localized than simi-
lar programs using more traditional models. The body
of an object operation can reference only the thread
stack and the contents of the object itself, so an exe-
cuting operation is likely to make a sequence of memory
references local to the current object. In effect, there
is knowledge implicit in the way the data .area is di-
vided into objects that can be exploited to make the
coherence algorithm more efficient.

5 Cost of Amber Operations

The true test of Amber’s performance is the behav-
ior of applications built with the system. Section 6
describes a simple application and discusses its per-
formance. It is also useful, though, to mceasure the

Operation Latency ms)
object create I 0.18
local invoke/return 0.012
remote invoke/return 8.32
object move 12.43
thread start/join 1.33

Table 1: Latency of Amber Operations

cost of the primitives for concurrency and distribution.
Table 1 presents some timings for basic Amber oper-
ations, as measured on Firefly workstations with four
CVAX processors available for running user threads.
The latency of these operations is highly sensitive to
a number of factors, but the benchmarks that pro-
duced these timings attempt to measure the cost of
the operations in the most common case. For example,
the benchmarks assume that all moving objects and
threads will fit in a network packet, and that the des-
tinations are found by following a forwarding chain for
one hop. These timings should be regarded as rough in-
dications of the cost of the operations under light load
conditions. Operations involving thread scheduling or
network communication are more expensive on a heav-
ily loaded system.

We expect that the CPU cost of these operations
will have less effect on program performance in the fu-
ture. As processors get faster the CPU overhead of
using any distributed system becomes less significant,
and the performance of the system is dominated by
network latency, which will remain roughly constant
despite the advent of new high-throughput networks.
The performance of a distributed system is best evalu-
ated not by the cost of basic network operations, but
by the degree to which the system prevents unnecessary
network communication.

6 An Amber Application

This section presents the structure and performance
of an Amber program that computes the steady-state
temperature over the interior of a square plate given
the temperatures around the plate’s boundary. The
behavior of this system is governed by Laplace’s equa-
tion, which states that the value at each point is the
average of the values of its neighbors. The algorithm
used is Red/Black Successive Over-Relaxation (SOR),
an iterative method that parallelizes well and is com-
monly used in practice [Ortega & Voigt 851. This algo-
rithm can be understood by analogy to a checkerboard.
Each point of the problem grid corresponds to a square
on the checkerboard. During each iteration, all of the
black points are updated first, followed by all of the red
points. After some number of iterations the computed
values converge and the algorithm terminates. Black
points have only red neighbors and vice versa, so each

154

Section Object 1

/

Communication

Section Object 2

Computing
Threads

ffooff

Communication
Threads

Section Object 3

Computing
Threads

0000

Communication

Master

Figure 1: Structure of the Amber Red/Black SOR Implementation

of the update phases is highly parallelizable.
The algorithm is partitioned for loosely-coupled par-

allel execution by breaking the grid into sections and
distributing the sections among the nodes. Some parti-
tionings are clearly inefficient. For example, placing the
entire grid in one object would result in unbalanced use
of the available processing power. Placing each point in
a separate object would involve excessive communica-
tion overhead. A more effective approach is to choose
the partitioning so that one section object can be as-
signed to each node. This balances the load and allows
the values for an entire edge of a section to be trans-
ferred in a single invocation.

The Amber SOR program has several sets of threads
associated with each section object. One set of threads
computes the values for the section’s points in parallel
on each iteration. Another set of threads is respon-
sible for exchanging edge data with neighboring sec-
tions. The exchange of values for edge points of one
color is overlapped with the computation for points of
the other color. After each iteration the nodes synchro-
nize at a barrier to determine if convergence has been
reached. One additional thread per section is respon-
sible for communicating with a single master thread
regarding convergence. Figure 1 displa.ys this structure
for a decomposition with three sections.

The SOR algorithm is well-suited to a loosely-
coupled multiprocessing model because the problem is
regular and static, which makes it easy to choose a pa.r-
titioning that balances the load evenly. The amount of
computing required per section on each iteration de-

pends only on the size of the section and is not affected
by the data contained there. Nevertheless, SOR is a
nontrivial algorithm which is typical of many iterative
methods involving nearest-neighbor interactions. Per-
formance measurements for the program are shown in
Figures 2 and 3.

Figure 2 plots measured speedup of the SOR program
as the number of nodes and the number of processors
increases. For the purposes of this experiment, we se-
lected a specific problem with a grid size of 122 by 842
points. Most of the partitionings were into eight sec-
tion objects, except for the experiments involving three
and six nodes, which were run with partitionings of six
section objects. A significant amount of remote com-
munication is required to solve this problem on mul-
tiple nodes. Each point in this figure represents the
mea.sured speedup for a particular experiment relative
to a sequential C+f implementation used as the base-
line case. Each point is labeled to indicate the number
of Firefly nodes used, and the number of processors per
node. For example, the point labeled “4Nx2P” corre-
sponds to an experiment in which the eight sections of
the grid were distributed among four Fireflies (two per
Firefly) and two processors per Firefly were used (for a
total of eight processors). A number of conclusions can
be drawn from Figure 2:

l Good speedups are possible in this environment.
The SOR program attains a speedup of 25 for the
8Nx4P case - eight Firefly workstations, each con-
tributing four processors to the overall solution.

155

32

28

24

Speedup
20-

16-

12-

t
6Nx4P

/*
8Nx4P,
with no overtap
between data
tranrler and
compuatlon

8-

4-

4 1; 16 2;) 2i 2; 3;
Total Processors

Figure 2: Measured Speedup for Amber Red/Black SOR Implementation

l Significant performance benefit comes from struc-
turing the program so that transfers of edge data
are overlapped with computation over the interiors
of sections. This is demonstrated by the different
performance of the two SNx4P cases. This shows
the importance of overlapping communication and
computation in a loosely-coupled environment.

l The overlapping of communication and computa-
tion makes it possible to keep all processors busy
doing useful work even while communication is
taking place. The performance of this applica-
tion is not degraded significantly by the cost of
remote communication. This is demonstrated by
the speedup of the Amber version, which is close to
the ideal speedup relative to the sequential version.
Also, nearly identical speedups are achieved for all
of the experiments involving a total of four proces-
sors (lNx4P, 2Nx2P, 4NxlP). Similar results were
obtained from the experiments with eight proces-
sors (2Nx4P, 4Nx2P).

To be fair, the ratio of computation to communi-
cation for this program is a function of the grid size.
Even if communication is highly efficient, for suIIl-
ciently small grids it will dominate computation and
limit speedup. For sufficiently large grids computa-
tion will dominate and speedup will be good even if
communication is relatively inefficient. Figure 3 shows
the effect of varying the problem size for the Iparticular
configuration of four nodes with four processors each
(4Nx4P in Figure 2). The horizontal axis in Figure 3 is
the number of points in the grid. The vertical axis gives
speedup relative to a sequential version of the program.
The point marked “x” corresponds to the X22 by 842
grid used in Figure 2.

We were able to achieve good performance in our
Amber SOR program for several reasons. A single net-
work exchange is required to transfer an entire row or
column of data between sections, regardless of how data
happens to be laid out in the address space. Second,
data transfers can be overlapped with computation by
running the respective threads in parallel. This re-
duces the effect of network latency. Third, computation
threads within a section can freely divide work among
themselves, without danger of causing network activity.

We have not implemented this application under a
system with a page-oriented distributed virtual mem-
ory, so it is impossible to make exact comparisons with
such a system. Certainly a shared memory version
under a system such as Ivy would have required less
coding effort initially. The performance of the result-
ing program ultimately depends on how efficiently data
can be shared between nodes. The methods for control-
ling sharing and communication using Amber, with its
object-oriented distributed virtual memory, and using
a system with a page-oriented distributed virtual mem-
ory, are quite different. Using a page-oriented system,
the programmer would optimize data reference patterns
by laying out data structures and partitioning the work
so as to make each node reference different sections of
the linear address space. If two nodes write-share the
same block of addresses, the virtual memory system
will thrash. It may not be obvious from the source
code that this can happen. Also, the layout of the data
in memory may incur the cost of multiple faults and
multiple page transmission latencies to transfer edge
data. With Amber the decomposition is addressed ex-
plicitly: the programmer has control over what data is
transferred and when.

156

References

2

0 100000 200000 300000
No. of Points

Figure 3: Effect of Varying SOR Problem Size (4Nx4P)

7 Summary

The Amber system permits a loosely-coupled network
of multiprocessors to be viewed as an integrated sys-
tem for executing a parallel application. This under-
lying hardware architecture is cost-effective for many
parallel applications. Processors can be added to a
computer system at small marginal cost, but packaging
constraints limit the practical size of a single system.
Therefore programmers will want to build parallel pro-
grams that cross machine boundaries.

With Amber we have shown that the distributed. ob-
ject model is useful for loosely-coupled multiprocess-
ing as well as for distributed programming and dis-
tributed operating systems. Amber’s object-oriented
model strikes a balance between the ease of program-
ming afforded by a page-oriented distributed virtual
memory and the performance benefits of explicit nnan-
agement of location. We have achieved a simple and ef-
ficient implementation using an existing programrning
language and an existing operating system. Our appli-
cation experience thus far indicates that the fundarnen-
tal goal of Amber - to allow the power of a network of
small-scale multiprocessors to be harnessed for a single
parallel application - has been achieved.

8 Acknowledgements

Norman Hutchinson and Eric Jul were involved in early
discussions of Amber’s memory model. Guy Carpenter
implemented several pieces of the Amber runtime sys-
tem. Brian Bershad and Jan Sanislo provided numer-
ous comments and helped with the operating system
and hardware of the Firefly. Reid Brown, Tom An-
derson, Jeff Bowden, and Ewan Temper0 comme:nted
on early versions of this paper. Hugh Lauer assisted
with final revisions. We would also like to thank the
DEC Systems Research Center for providing the Firefly
workstations and the Topaz operating system software.

[Allchin & McKendry 831 Allchin, J. and McKendry,
M. Synchronization and recovery of ac-
tions. In Proceedings of the 2nd ACM Sym-
posium on Principles of Distributed Comput-
ing, pages 31-44, August 1983.

[Almes et al. 851 Almes, G. T., Black, A. P., Lazowska,
E. D., and Noe, J. D. The Eden system:
A technical review. IEEE Transactions on
Sofiware Engineering, SE-11(1):43-59, Jan-
uary 1985.

[Bal & Tanenbaum 881 Bal, H. E. and Tanenbaum,
A. S. Distributed programming with shared
data. In Proceedings of the International
Conference on Computer Languages, pages
82-91, October 1988.

[Bershad et al. 88a] Bershad, B. N., Lazowska, E. D.,
and Levy, H. M. Presto: A system for
object-oriented parallel programming. Soft-
ware - Practice and Experience, 18(8), Au-
gust 1988.

[Bershad et al. 88b] Bershad, B. N., Lazowska, E. D.,
Levy, H. M., and Wagner, D. An open
environment for building parallel program-
ming systems. In Proceedings of the ACM
SIGPLA N Symposium on Parallel Program-
ming Environments, Applications, and Lan-
guages, July 1988.

[Birrell & Nelson 841 Birrell, A. D. and Nelson,
B. J. Implementing remote procedure calls.
ACM Transactions on Computer Systems,
2(1):39-59, February 1984.

[Black et al. 871 Black, A., Hutchinson, N., Jul, E.,
Levy, H., and Carter, L. Distribution and
abstract types in Emerald. IEEE Transac-
tions on Software Engineeting, 13(l), Jan-
uary 1987.

[Cox & Fowler 891 Cox, A. L. and Fowler, R. J. The
implementation of coherent memory ab-
straction on a NUMA multiprocessor: Ex-
periences with PLATINUM. In Proceedings
of the 12th ACM Symposium on Operating
Systems Principles, December 1989.

[Fowler 851 Fowler, R. J. Decentralized Object Find-
ing Using Forwarding Addresses. PhD dis-
sertation, University of Washington, Decem-
ber 1985. Department of Computer Science
Technical Report 85-12-1.

[Herlihy & Wing 871 Herlihy, M. P. and Wing, J. M.
Avalon: Language support for reliable dis-
tributed systems. In IEEE Fault-Tolerant
Computing Symposium Digest, July 1987.

157

[Jones et al. 791 Jones, A. K., Chansler, R. J.,
Durham, I., Schwans, I~., and Vegclahl, S. R.
StarOS, a multiprocessor operating system
for the support of task forces. In Proceed-
ings of the 7th ACM Symposium on Operat-
ing Systems Principles, pages 117-127, De-
cember 1979.

[Thacker et al. 881 Thacker, C. P., Stewart, L. C., and
Satterthwaite, Jr., E. H. Firefly: A multi-
processor workstation. IEEE Transadions
on Computers, 37(8):909-920, August 1988.

[Wulf 741 Wulf, W. Hydra: The kernel of a multipro-
cessor operating system. Communications of
the ACM, 17(6):337-345, June 1974,

[Jul et al. 881 Jul, E., Levy, H., Hutchinson., N., and
Black, A. Fine-grained mobility in the Emer-
ald system. A CM Transactions on Computer
Systems, 6(1):109-133, February 1988.

[Li & Hudak 861 Li, K. and Hudak, P. Memory coher-
ence in shared virtual memory systems. In
Proceedings of the 5th ACM Symposium on
Principles of Distributed Computing, pages
229-239, August 1986.

[Li 861 Li, K. Shared Virtual Memory on Loosely
Coupled Multiprocessors. PhD disserta-
tion, Yale University, September 1986.
YALEU/DCS/RR-492.

[Liskov 881 Liskov, B. Distributed programming in
Argus. Communications of the ACM,
31(3):300-312, March 1988.

[Lucco 871 Lucco, S. E. Parallel programming in a
virtual object space. In Proceedings of the
ACM Conference on Object-Oriented Pro-
gramming Systems, Languages and Applica-
tions, pages 26-34, October 1987.

[Ortega & Voigt 851 Ortega, J. and Voigt, R. Solu-
tion of partiaI differential equations on vec-
tor and parallel computers. SIAM Review,
pages 149-240, 1985.

[Ousterhout et al. SO] Ousterhout, J. K., Scelza, D. A.,
and Sindhu, P. S. Medusa: An experiment
in distributed operating system structure.
Communications of the ACM, 23(2):92-105,
February 1980.

[Schantz et al. 861 Schantz, R. E., Thomas, R. H., and
Bono, G. The architecture of the Cronus
distributed operating system. In Proceedings
of the 6th International Confereme on Dis-
tributed Computing Systems, pages 250-259,
May 1986.

[Schroeder & Burrows 891 Schroeder, M. D. and Bur-
rows, M. Performance of Firefly RPC. In
Proceedings of the 12th ACM Symposium
on Operating Systems Principles, December
1989.

[Stroustrup 861 Stroustrup, B. The C+S Programming
Language. Addison-Wesley, Reading, Mas-
sachusetts, 1986.

158

