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Abstract 

This paper describes a programming system called Am- 
ber that permits a single application program to use a 
homogeneous network of computers in a uniform way, 
making the network appear to the application as an in- 
tegrated multiprocessor. Amber is specifically designed 
for high performance in the case where each node in the 
network is a shared-memory multiprocessor. 

Amber shows that support for loosely-coupled mul- 
tiprocessing can be efficiently realized using an object- 
based programming model. Amber programs execute 
in a uniform network-wide object space, with mem- 
ory coherence maintained at the object level. Care- 
ful data placement and consistency control are essen- 
tial for reducing communication overhead in a loosely- 
coupled system. Amber programmers use object mi- 
gration primitives to control the location of data and 
processing. 

1 Introduction 

Small-scale shared-memory multiprocessors are becom- 
ing widely available in implementations ranging from 
single-user workstations to mini-supercomputers. The 
proliferation of multiprocessors means that local area 
networks of these systems are likely to become com- 
mon. This presents the opportunity to program a group 
of these machines to work together on a single appli- 
cation. For many applications, networks of small-scale 
multiprocessors will have greater performance potential 
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than the fastest mainframes at significantly lower cost, 
and with greater flexibility. 

Amber was designed to take advantage of this trend 
by supporting the development of parallel applications 
that use multiple machines in a network of shared- 
memory multiprocessors. Amber provides a set of pro- 
gramming facilities and abstractions that isolate the 
programmer from the low-level details of programming 
in this environment. The abstractions are intended to 
simplify communication, distribution, and parallelism, 
while supporting a dynamic program structure that can 
express and benefit from locality. 

Amber is based on a model of computation in which 
a collection of mobile objects distributed among nodes 
in a network interact through location-independent in- 
vocation. Amber objects are passive fine-grained enti- 
ties consisting of private data and a set of public op- 
erations that can be locally or remotely invoked. The 
active entities in the system are thread objects, which 
possess processor state and a runtime stack and can 
execute on a CPU. A typical application might contain 
many threads concurrently executing object operations 
on different processors in a node and on different nodes 
in the network. The threads in an Amber program exe- 
cute in a flat network-wide shared object space. Object 
references can be transmitted across node boundaries 
and dereferenced on any node with consistent seman- 
tics, allowing programs to operate on distributed data 
structures in a uniform way. 

Amber programs are written in an object-based sub- 
set of the C++ programming language [Stroustrup 861, 
supplemented with primitives for thread management 
and object mobility. The system is composed of a 
preprocessor to C++ and a runtime kernel which is 
linked with the user’s program. Amber is implemented 
on the Topaz operating system for the DEC Fire- 
fly [Thacker et al. 881, a multiprocessor workstation 
based on VAX microprocessors. Applications have been 
executed on a group of eight Fireflies connected by a 
IO-megabit/second Ethernet. 
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1 .l Research Goals and Issues 

Amber explores issues in parallel programming at both 
the system level and the application level. At the 
system level, Amber explores the viability of using a 
loosely-coupled network of small-scale multiprocessors 
as a large-scale machine. This raises issues in. schedul- 
ing, virtual memory management, distribution, and co- 
herency. At the application level, Amber explores how 
to structure an application to benefit from the target 
architecture. Here we wish to understand the program- 
ming primitives needed to express both loc.ality and 
parallelism. Overall, Amber assesses the appropriate- 
ness of the object-oriented programming model for solv- 
ing problems at both levels. 

A major goal of the Amber project is to provide 
language-level support for concurrency and distribu- 
tion using an existing programming language and op- 
erating system. This reduces the development cost of 
the system and makes it more attractive to program- 
mers. We were able to achieve this goal using the fa- 
cilities of the Topaz operating system and the C++ 
programming language. Topaz provides useful network 
services, support for threads, and remote procedure 
call [Birrell & Nelson 841. The extensible class hierar- 
chy of Ct-t enabled us to implement Amber without 
modifying the language or its compiler. 

Amber’s programming model assumes that the user 
will be aware of the network organization and will wish 
to take advantage of it to achieve maximum applica- 
tion speedup. This conflicts with the goal of network 
transparency. The tension between uniformity and per- 
formance is more pronounced in Amber than in other 
distributed systems because high performance for par- 
allel applications is the primary purpose of the system. 
Good performance on a loosely-coupIed multiprocessor 
demands careful attention to data placement, in order 
to minimize remote references, which are three to four 
orders of magnitude more expensive than local ones. 
Our view is that data placement should be under the 
control of the program rather than the runtime sys- 
tem since the needs of different applications will vary 
widely. This compromises the uniformity of the pro- 
gramming model because it requires the programmer 
to deal explicitly with location. Amber attempts to 
strike a balance between uniformity and performance. 
The programming model is designed to isolate areas 
where the programmer must be concerned with loca- 
tion, while providing means to tune program organiza- 
tion for efficient execution. 

1.2 Related Systems 

Object-based models have frequently been used for dis- 
tributed systems; examples include Hydra [Wulf 741, 
Clouds [Allchin & McKendry 831, Argus [Liskov 881, 
Eden [Almes et al. 851, and Cronus [Schantz et al. 8G]. 
Systems such as Eden and Argus provide support for 
distributed objects at the programming language level 
using a special-purpose language. Experiments with 

this approach at the University of Washington led to 
the development of Emerald [Black et al. 871, a dis- 
tributed programming language with support for fine- 
grained object mobility. Amber’s distribution model 
and mobility primitives are derived from Emerald. 

In contrast to these other systems, the goal of Amber 
is to execute a single application that performs a par- 
allel computation, computes a result, and terminates. 
Amber does not support persistent objects, primitives 
for reliable distributed computing, or communication 
and cooperation between unrelated programs. In this 
respect Amber is related to object-based systems for 
concurrent programming on tightly-coupled machines. 
Amber is in fact a direct descendent of one such sys- 
tem, Presto [Bershad et al. SSa], a C++-based run- 
time package for building medium-grained parallel ap- 
plications on shared-memory multiprocessors. Amber’s 
thread model and synchronization model follow those 
of Presto. 

Amber was developed to allow a network of ma- 
chines to be treated as a loosely-coupled multiproces- 
sor using a programming model based on distributed 
objects. Recent systems with similar goals include 
Sloop [Lucco 871 and Orca [Balk Tanenbaum 881. 
Amber differs from these systems in that its program- 
ming model and internal structure are designed to take 
advantage of shared-memory multiprocessors. Am- 
ber supports logical concurrency and true parallelism 
within each node as well as across nodes in the net- 
work. Concurrency within a mutable object is real- 
ized by placing the object on a single node and clus- 
tering all threads manipulating the object onto that 
node. This allows the consistency of the object’s in- 
ternal state to be efficiently managed by hardware- 
based synchronization primitives and memory coher- 
ence protocols. This organization of Amber programs 
into closely-cooperating clusters is similar to the task 
force structure in Medusa [Ousterhout et al. 801 and 
StarOS [Jones et al. 791, but in Amber this clustering 
is determined at run time and can change dynamically 
as the computation progresses. 

Other researchers have investigated the use of a net- 
work as a loosely-coupled multiprocessor within the 
context of more traditional programming models. The 
Ivy system [Li 861 pioneered the use of network-wide 
shared virtual memory for this purpose. This ap- 
proach allows distributed applications to be written 
using conventional programming techniques. Ivy main- 
tains memory coherence by using virtual memory hard- 
ware to implement page ownership schemes analogous 
to hardware cache consistency protocols. One goal of 
Amber is to explore the relative merits of object-based 
versus shared-memory models for maintaining memory 
coherence in a parallel and distributed environment. 
This issue is discussed in Section 4. 

148 



2 The Programming Model 

Amber provides the programmer with a set of pre- 
defined object classes for managing threads, synchro 
nization, and distribution. Amber’s abstractions are 
supplied by means of existing C++ language mecha- 
nisms such as subclasses and dynamic object creation. 
The programming model demonstrates that support for 
concurrency and distribution can be integrated into a 
class-hierarchical language to produce a uniform sys- 
tem with features that compose well. 

The use of an object-oriented language provides 
other benefits. Object classes can hide not only the 
representation of objects but also the internal details of 
their execution, synchronization, and location. Other 
researchers have discovered similar benefits for imple- 
menting features such as persistence and recovery prop- 
erties for objects [Herlihy & Wing 871. Also, dynami- 
cally typed subclasses are a convenient vehicle for tai- 
loring system behavior to meet the needs of a specific 
application. These ideas are made more concrete in 
the next few subsections, which present the details of 
Amber’s programming model. 

2.1 Threads 

Amber’s mechanisms for expressing concurrency are 
derived from the thread facilities provided by Presto. 
Presto was designed to make the use of threads inex- 
pensive, allowing the programmer to efficiently man- 
age more control streams than there are processors. In 
Amber, threads have the advantage of allowing the pro- 
grammer to maximize throughput by overlapping com- 
putation with remote communication. 

Like other objects, threads can be created dynami- 
cally using the C++ new operator. The basic opera- 
tions on threads are Start and Join. The Start primi- 
tive starts a thread executing an operation on a spec- 
ified object. Join blocks the caller until the specified 
thread terminates, returning the result from the oper- 
ation specified in the Start call. 

Threads provide explicit support for concurrency, 
in contrast to the implicit support provided by asyn- 
chronous object invocation mechanisms in languages 
such as Sloop. Amber invocations are synchronous, 
but threads can be used by either the invoking object or 
the invoked object to transparently provide asynchrony. 
An invoked object can exploit parallelism transpar- 
ently to its invoker by creating and starting additional 
threads in response to an invocation. Alternatively, a 
thread can execute an asynchronous invocation by cre- 
ating another thread to perform the invocation. 

Amber’s scheduler supports timeslicing and can be 
customized to use priority-based or adaptive policies 
tuned to the specific application. An application can 
install a custom scheduling discipline at runtime by re- 
placing the system scheduler object with a similar ob- 
ject that supports the same interface but behaves dif- 
ferently [Bershad et al. 88b]. 

2.2 Synchronization Objects 

Amber provides a flexible set of classes for controlling 
access to data shared by multiple threads. The sys- 
tem supports relinquishing and non-relinquishing locks, 
barrier synchronization, monitors and condition vari- 
ables. Programmers can extend the class hierarchy to 
define custom mechanisms for concurrency control us- 
ing these primitive synchronization objects. The intent 
is that programmers will select an appropriate concur- 
rency control scheme for each user object and encapsu- 
late the details of the synchronization within the class. 

Amber’s approach to synchronization differs from 
similar systems designed for networks of uniprocessors. 
Most of these systems support monitored objects and 
indivisible operations but no explicit lock primitives. 
We believe that fine-grained synchronization using lock 
primitives is desirable when the nodes in the network 
are multiprocessors. Fine-grained locking reduces con- 
tention and allows hardware-based spinlocks to be used 
to reduce latency when appropriate. Lock objects have 
additional advantages in a distributed environment be- 
cause they are mobile and can be remotely invoked to 
enforce concurrency constraints involving multiple ob- 
jects on different nodes. 

2.3 Controlling Object Location 

In Amber, threads invoking operations on an object 
move to the node where the object resides, so the di- 
vision of computational load between the machines is 
determined by the locations of the program’s data ob- 
jects. Object location also has a significant effect on 
the network overhead incurred by the program. In gen- 
eral, interacting objects should be co-located in order 
to avoid the cost of a remote procedure call on each 
invocation. This must be balanced with the need to 
place objects so as to evenly distribute the computa- 
tional load between machines. 

Amber programmers take advantage of locality by 
using migration primitives to control object placement 
as the program executes. Objects can be moved even 
if they have active invocations: threads executing op- 
erations on a moving object are identified and moved 
with the object. Dynamic mobility is useful because 
some applications will need to reorganize object loca- 
tions following different computational phases of a pro- 
gram, although static object placement is sufficient for 
many applications. 

Amber’s mobility primitives are modeled after mo- 
bility in the Emerald system [Jul et al. 881. An Am- 
ber object can be moved with MoveTo and its location 
can be determined with Locate. Like Emerald, Am- 
ber provides other mobility primitives that are useful 
for improving program performance. The programmer 
can Attach an object to another object or Unattach 
an attached object. The attachment primitives allow 
a programmer to dynamically create structures of ob- 
jects that move together and are always guaranteed 
to be co-located. Amber also supports replication of 
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readonly objects to reduce unnecessary communication 
overhead. Objects may be marked as immutable at 
runtime, indicating that they will never again be mod- 
ified. Invoking MoveTo on an immutable object causes 
the object to be copied rather than moved. The attach- 
ment and immutability mechanisms in Amber are more 
dynamic than in Emerald, where they are specified at 
compile time. 

Amber leaves all aspects of object location under 
the direct control of the program. Data objeclts never 
move unless the program explicitly moves them. Ob- 
jects that are not explicitly designated as imlmutable 
are never replicated, eliminating the complexity associ- 
ated with keeping multiple copies of a writable object 
consistent. This approach contrasts with other recent 
experiments with language-level support for distributed 
objects. The Orca language performs automatic object 
placement and replication of mutable objects, but pro- 
vides no primitives for explicit object migration. Sloop 
includes advisory migration primitives, but the system 
may override the programmer’s decisions under certain 
conditions. Amber attempts to provide a model of shar- 
ing and location that is uniform, predictable, and sim- 
ple to implement. Our assumption is that the best 
policy for managing location is application-specific and 
is best left to the program or higher-level object place- 
ment software. 

3 Implementation Issues 

Amber programs execute as a set of cooperatirrg Topaz 
tasks distributed across the network, with one task 
on each participating node. The tasks are created 
at program startup using Topaz facilities for creating 
remote processes. Each task is an execution of the 
same program image read from a distributed file sys- 
tem. Topaz supports multiple threads of control in 
a single task and fast remote procedure call between 
tasks [Schroeder SC Burrows 891, facilities that are used 
to implement Amber thread scheduling, object migra- 
tion, and internode object invocation, 

The key implementation problem for Amber is the 
abstraction of a single network-wide object space with 
object mobility and transparent invocation of remote 
objects. The following subordinate issues must be ad- 
dressed in order to implement this model: 

l naming, creating, and destroying objects 

l moving objects 

0 trapping nonlocal invocations 

l finding remote objects 

l migrating threads for remote invocations 

Our goal was to implement Amber’s shared object ab- 
straction within the confines of C++, using techniques 
that perform little or no remote communicatio:n not di- 
rectly requested by the program. We found that much 

of the implementation was straightforward if we used 
direct virtual addresses as the basis for object nam- 
ing in the network, arranging each task’s address space 
SO that virtual addresses have the same meaning on 
all nodes. The next few subsections describe our im- 
plementation for Amber, with an emphasis on how this 
global virtual address space is managed and how it sim- 
plifies the implementation of the shared object space 
abstraction. Section 3.5 presents additional problems 
caused by intranode parallelism, and Section 3.6 dis- 
cusses our use of the C-l-+ language. 

3.1 The Global Address Space 

Object references and other pointers are frequently 
transmitted across the network in Amber. This hap- 
pens when arguments to a remote invocation are passed 
by reference, or an object containing embedded point- 
ers moves from one node to another. Also, any thread 
executing an operation on a moving object will move 
with the object and resume execution on the desti- 
nation node, where it will continue to use addresses 
stored in its stack and registers. The transmitted ad- 
dresses may be object references, program code ad- 
dresses, pointers into static data such as string con- 
stants, or back links in the stack. It follows that all 
code and data items are visible to all nodes and may 
be referenced by any thread regardless of which node 
it is running on. The references must be resolvable on 
all nodes with uniform semantics. 

One solution to this problem is to translate addresses 
whenever they cross node boundaries. This is the so- 
lution used in Emerald [Jul et al. 881. Such a scheme 
permits each node to do independent memory manage- 
ment, which is useful for Emerald because it assumes a 
universe of long-lived objects created by multiple users. 
The problem with this approach is that it requires ex- 
tensive compiler support to aid in the address trans- 
lation. This is incompatible with our goal of using an 
existing widely-used language and compiler for Amber. 

Amber avoids the need for address translation by en- 
suring that addresses retain their meaning when trans- 
mitted across node boundaries. The global virtual 
memory is implemented by arranging the virtual ad- 
dress space of each participating Topaz task identically. 
Program code and statically initialized program data 
are automatically replicated at the same addresses on 
all nodes because the tasks are activations of the same 
program image executed on homogeneous machines. 
All dynamic objects (including thread objects and their 
stacks) are assigned a distinct segment of the global 
address space when they are created, and each object 
occupies this same virtual address range on any node 
that it visits during its lifetime. The segment of virtual 
memory occupied by an object on one node is reserved 
for that object on all other nodes. 

Amber’s memory organization requires that nodes 
use disjoint regions of the address space for heap al- 
locations of dynamic objects. The system must guar- 
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antee that two nodes do not attempt to allocate the 
same heap block, but it must do this without the ex- 
pense of distributed agreement for each object alloca- 
tion. Each node is assigned a private region of the 
virtual address space at startup time for its local heap 
allocations. Statically partitioning the entire address 
space in this way is limiting because objects are not al- 
located uniformly across nodes. For this reason, a large 
part of the address space is left unallocated at startup 
and is handed out later by an address space server as 
nodes exhaust their initial pool. The cost of extending 
the address space is not excessive because the regions 
are large enough (currently 1M bytes) that extensions 
are needed relatively rarely for applications that are 
moderate in their use of memory. 

3.2 Handling Remote References 

Each Amber object is referenced by a virtual address 
that is valid on any node, but the system must deter- 
mine whether or not an object is local when it is in- 
voked. To provide this information, each object has an 
object descriptor on every node that indicates whether 
or not the described object is locally resident. The de- 
scriptor may contain other information about the ob- 
ject, such as where to look for it if it is remote. Checks 
inserted by the preprocessor examine an object’s local 
descriptor on each invocation. If the descriptor indi- 
cates that the object is remote, the invocation traps to 
the Amber kernel and is handled by a remote procedure 
call that moves the faulting thread to the node where 
the invoked object resides. 

An Amber object is implemented as a record, the 
first part of which is its descriptor, and the remainder 
of which is its representation (the data local to the ob- 
ject). The virtual address of an object is therefore the 
address of its descriptor. When a new object is created 
it is allocated from the heap on a particular node. The 
descriptor for the object is initialized on that node to 
indicate that the object is resident so that it can be 
invoked. If a mutable object is moved, its descriptor 
is changed to indicate that it is not resident, and a 
forwarding address is inserted in the descriptor. 

Objects and their descriptors are managed so that an 
uninitialized descriptor is detected and interpreted to 
mean that the object is remote. This eliminates the ex- 
pense of initializing remote descriptors for a newly cre- 
ated object. An uninitialized descriptor is detected be- 
cause unwritten pages of virtual memory are zero-filled 
by the Topaz operating system, and object descriptors 
are defined so that the resident flag is a one-valued 
bit. References to objects occupying heap blocks that 
were previously deallocated and reused are also han- 
dled correctly. This requires that the heap allocation 
algorithm be constrained so that heap blocks are never 
divided once they have been returned to the free pool. 

3.3 Locating Mobile Objects 

When the kernel handles a trap on an invocation 
of a remote object, it retrieves a forwarding ad- 
dress [Fowler 85-J f rom the object’s local descriptor. 
The forwarding address is left in an object’s local de- 
scriptor when the object moves away from a node. The 
forwarding address may be out of date if the object 
moves frequently. In this case the object’s location can 
be determined by following a chain of forwarding ad- 
dresses, since the object leaves a new forwarding ad- 
dress on each node that it visits. It is costly to locate 
an object by following a forwarding tihain, but this hap- 
pens rarely because the object’s last known location is 
cached on all nodes along the chain so that the object 
can be located quickly on subsequent references. 

The situation is more complicated in the case of a 
trap on an object with an uninitialized descriptor, in- 
dicated by the presence of a null forwarding pointer. 
Each task has complete knowledge of the assignment of 
heap regions to nodes because a reference to the node 
that owns each heap region is obtained from the ad- 
dress space server when the region is first mapped by 
a task. This allows the system to use a heap object’s 
virtual address to identify the object’s home node, the 
node on which it was created. When a reference to an 
object with an uninitialized descriptor is detected, the 
kernel forwards the request to the object’s home node. 
The home node can determine where the object resides 
by following the chain of forwarding addresses. 

3.4 Object and Thread Migration 

The global virtual address space simplifies object mi- 
gration because it avoids the need to translate ad- 
dresses stored in the moving object. Furthermore, there 
is no need to allocate space on the target node for the 
object since the address range that it will occupy is pre- 
determined. Moving an object involves copying its con- 
tents from the source node to the destination node and 
updating its descriptors on both nodes. The implemen- 
tation is complicated by the need to identify and move 
threads that are actively executing operations on the 
object. These bound threads must migrate with the ob- 
ject in order to preserve the consistency of the object’s 
contents. This problem is discussed in Section 3.5. 

Amber remote invocations are performed by simply 
moving the invoking thread to the remote node. In 
principle this is no more complicated than any other ob- 
ject move. The thread’s control information and pieces 
of its stack are copied to the same address ranges on 
the remote node, the object descriptors are updated, 
and the thread is added to the scheduling queue on the 
remote node. Addresses in its processor registers and 
stack will continue to be valid on the destination node. 
In pract.ice, thread migrations are handled slightly dif- 
ferently from migrations of other objects in order to 
optimize remote invocations made by the thread at the 
expense of invocations made on the thread object itself 
(e.g., a Join operation). 
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3.5 Object Mobility on Multiprocessors 

Dynamic mobility is difficult to implement Ion multi- 
processors because user threads may be attempting to 
manipulate a moving object concurrently witlh the mo- 
bility code running on another processor. This leads to 
a number of implementation concerns that would not 
arise on a uniprocessor. In uniprocessor object migra- 
tion all threads on the node are implicitly suspended 
while mobility code in the kernel is in control of the 
single processor, making it a simple matter to deter- 
mine which threads are bound to the moving object by 
examining their stacks. Furthermore, the system can 
preserve the atomicity of the invocation sequence by 
preempting threads only at safe points in their execu- 
tion, avoiding a context switch between the residency 
check and the completion of the stack modifications in- 
dicating that an invocation is active. 

On multiprocessor hardware the atomicity of descrip- 
tor checks can no longer be guaranteed. In a naive im- 
plementation a thread could check the descriptor and 
find that the object is local, but not actually com- 
plete the local invocation until after a move operation 
on the object has been initiated by another processor. 
This race condition will always exist if the descriptor is 
checked before the stack modifications associated with 
the invocation are made. An analogous race condition 
can occur on returns: a thread could check that an 
object is still resident before its return, only to have 
the object move after the check but before the actual 
control transfer. A related problem is that the set of 
active threads bound to a moving object is constantly 
changing while the mobility code is running. 

One approach to solving these problems is to lock the 
invocation sequence and maintain a data structure that 
records which threads are currently executing within 
each object. This solution makes invocations expen- 
sive because of the need to synchronize and update the 
data structure. Another approach is to freeze all ac- 
tivity on the node during a move operation and exam- 
ine the stacks of all local threads to determine which 
threads are bound to the moving object. This solu- 
tion optimizes invocations but makes move operations 
complex and expensive. There are many gradations 
between these extremes. 

Amber makes invocation-time residency checks at 
the start of each operation, after the invocation stack 
frame is pushed but before any user code is executed. 
Return-time checks are made immediately after the 
invocation frame that the thread is returning from 
has been popped. This guarantees that the executing 
thread can be identified as bound to the obj’ect before 
it actually checks the descriptor and enters the object. 
Threads already bound to a moving object are han- 
dled by an additional residency check that is made on 
each context switch into a preempted thread. Move op- 
erations in Amber preempt and reschedule all threads 
running on the source node, forcing them to make a 
residency check before they continue. The preemptions 
occur after the descriptor of the moving object has been 

marked as non-resident but before the object’s contents 
have been copied to the remote node. 

Local invocations are efficient with this scheme be- 
cause they require no synchronization over the object 
descriptor, only a residency check consisting of a single 
VAX branch-on-bit-set instruction. Also, there is no 
need to halt all activity on a node during a move oper- 
ation; at worst it will be necessary to briefly interrupt 
each processor. One problem is that some concurrency 
may be lost if the destination node is idle but the source 
node is busy, since suspended threads which are bound 
to the object will not move to the destination node un- 
til they are rescheduled on the source node. An added 
disadvantage is that the need to preempt all running 
threads causes the cost of mobility to increase as pro- 
cessors are added to a node. The assumptions behind 
these tradeoffs are (1) object moves are much less fre- 
quent than object invocations, and (2) improvements in 
processor speeds will make thread preemptions cheap 
relative to the network latency associated with a move 
operation. 

3.6 Experience With C++ 

Our choice of C++ was partly motivated by its avail- 
ability and its popularity with programmers. Another 
advantage of C++ is that it is efficiently implemented 
with a minimum of runtime support. Most other ben- 
efits of using C++ could have been obtained from any 
object-oriented programming language with an exten- 
sible class hierarchy and dynamic typing. 

In our Amber prototype, object descriptors are allo- 
cated and managed by deriving all user classes from a 
single base class called Object whose private data items 
include the descriptor. The constructor and destruc- 
tor functions for the Object class maintain the descrip- 
tor and ensure that object creation and deletion meet 
the requirements discussed in Section 3.3. Threads 
and synchronization objects are provided by introduc- 
ing new subclasses of Object. The mobility primitives 
are operations on instances of class Object. Amber’s 
distributed heap allocation is implemented by redefin- 
ing the runtime library routines for the C++ operators 
new and delete. 

One problem with C++ is that Amber’s distribution 
model depends on the regularity of an object-oriented 
programming language. Amber assumes that a thread 
will never directly manipulate the internals of a remote 
object, since references to remote objects are recog- 
nized and trapped only on invocations. Furthermore, 
all data items that may be referenced remotely must be 
encapsulated in an object. The C++ language includes 
many performance features that circumvent constraints 
normally associated with an object-oriented program- 
ming model. Examples of such features are friends, 
public member elements, inline functions, unprotected 
structures, and the ability to include arbitrary C code 
in the program. These features can result in incor- 
rect program behavior if they are used improperly in 
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a distributed environment. Nevertheless, they present 
opportunities to optimize interactions between objects 
that are known to reside on the same node. 

There are a number of situations in which co- 
residency guarantees make it possible to use these fea- 
tures safely. Co-residency can be explicitly requested 
using Amber’s attachment primitives. Also, C++ 
member objects (objects that are directly contained 
within some other object) always move with their con- 
taining object and are therefore c-resident with it,. Co- 
residency guarantees can also be exploited to optimize 
invocations of functions in base classes or invocations 
of objects allocated from a thread’s stack. Intelligent 
use of the performance features of C++ in situations 
where cwresidency is assured can significantly improve 
program performance. For example, consider a multi- 
threaded object whose internal state is protected by a 
non-relinquishing lock. If the lock is a member object 
of the protected object then it can be safely acquired 
and released using fast inline function calls. 

4 Comparison with Shared Vir- 
tual Memory 

This section explores the relationships between page- 
oriented and object-oriented shared memory models. 
Both approaches offer uniformity relative to an RPC- 
based programming model, but they differ in other re- 
spects. The original motivation for an object-oriented 
memory in Amber was that objects are a natural unit 
for involving the programmer in data placement deci- 
sions. In this section we shall argue that the object is 
also a natural and efficient unit for maintaining coher- 
ence of the global address space, and that object-level 
coherence has a number of advantages over page-based 
coherence. 

The memory organization of a loosely-coupled sys- 
tem is closely related to issues of consistency of the 
data shared by multiple nodes. At the hardware level 
each node can address only its private physical mem- 
ory. Coherence of these private memories is diffi- 
cult to maintain efficiently in a distributed environ- 
ment. A similar problem is encountered by the de- 
signers of programming support for NUMA multipro- 
cessors, where the varying costs of referencing different 
areas of memory motivate the use of caching, replica- 
tion and data migration to improve program perfor- 
mance. NUMA programming systems such as PLAT- 
INUM [Cox & Fowler 891 make hidden data placement 
and replication decisions while presenting the program- 
mer with a view of memory that is uniform and coher- 
ent at the byte level. This approach can work well 
for NUMA multiprocessors because the cost of a poor 
placement decision is typically not very high. 

Similar shared memory models have been used to 
allow a network of machines to be programmed as a 
loosely-coupled multiprocessor. In Ivy, distributed pro- 
cesses execute in a global virtual address space with 

consistency of arbitrary bytes guaranteed across refer- 
ences from multiple nodes. Coherence of the shared 
memory is maintained by memory managers on each 
node, which use page faults to detect shared accesses 
and exchange coherency messages with other memory 
managers fLi & Hudak 861. Remote references are han- 
dled by moving or copying the referenced page to the 
location of the faulting process. Distribution and load 
balancing are achieved by explicit process migration. 

Amber represents an alternative vision of uniform 
and consistent memory in which the granularity of data 
coherence is the object rather than the individual byte. 
These systems present the programmer with a network- 
wide object name space, with consistency maintained 
by trapping invocations of remote objects. This mem- 
ory model is uniform in the sense that it is unnecessary 
for the programmer to deal explicitly with the locations 
of objects when they are invoked, but it is more restric- 
tive than the shared virtual memory approach because 
it requires adherence to an object-oriented program- 
ming discipline. 

4.1 Function Shipping 

A major difference between Amber and Ivy is that 
Amber takes a function-shipping rather than a data- 
shipping approach to coherence. Instead of attempting 
to maintain the consistency of mutable objects across 
references from multiple nodes, each object is placed on 
a single node where access to it is controlled through 
its operations. Function shipping is especially attrac- 
tive when the nodes in the network are shared-memory 
multiprocessors because it clusters the threads referenc- 
ing a given object onto the same node, where hardware- 
based synchronization and memory sharing can be used 
to their fullest performance advantage. The program- 
mer of a data-shipping system such as Ivy can obtain 
the same advantages through an appropriate use of ex- 
plicit process migration. 

Distributed synchronization is simple and efficient in 
a function-shipping system. For example, Amber locks 
are objects which can be remotely invoked to synchro- 
nize threads executing on different nodes. References to 
a shared lock variable can cause a data-shipping system 
to thrash by repeatedly shuttling the page containing 
the lock variable between the nodes which are referenc- 
ing it. Recent versions of Ivy have handled this problem 
by deviating from the data-shipping model and access- 
ing shared lock variables with remote procedure calls. 

For a certain class of programs the behavior of the 
function-shipping approach is more predictable than 
that of the data-shipping approach. It is easy to pre- 
dict the communication overhead incurred by an Am- 
ber program that utilizes static object placement or 
that moves objects at well-defined points. A similar 
program for a data-shipping system can thrash when a 
memory page is repeatedly referenced by processes on 
different nodes. The Amber program can thrash when 
a thread repeatedly invokes the same remote object, 
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but this effect is less dependent on the orders of events 
and the timings of concurrent operations (exc.ept those 
involving explicit object moves). In such a program 
the location of an object can be determined from the 
program structure and is independent of which threads 
happen to be referencing the object at the moment. 

4.2 Pages vs. Objects 

The performance of a coherence policy is dependent 
upon the degree to which memory references made by 
the program are localized within the units used by the 
system to maintain coherence. In a distributed object 
system the granularity of coherence is the data object, a 
problem-oriented unit, whereas in shared memory sys- 
tems it is the page, a unit that is dependent upon the 
hardware rather than the structure of the program. 

The performance of a page-based coherency scheme 
may suffer if the sizes of data items do not match well 
with the page size. If a remote data item is larger than a 
page, an operation that accesses the item in its entirety 
will generate multiple page faults unless the process is 
explicitly moved to the location of the data item. In 
Amber, the thread moves to the location of the data 
item and the operation executes with a single network 
transaction. Alternatively, the Amber programmer can 
choose to migrate the object explicitly, making use of 
an efficient bulk transfer protocol. 

If data items are smaller than a page, a page-based 
coherency scheme incurs unnecessary communication 
overhead when logically unrelated data items that hap- 
pen to reside in the same page are referenced repeat- 
edly by multiple nodes. The programmer for such a 
system must be aware of page sizes and boundaries 
to reduce this artificial sharing, just as programmers 
of current shared-memory multiprocessors need to be 
aware of cache line sizes in order to achieve the best per- 
formance. Page-based systems can reduce these prob- 
lems by depending on the compiler to structure the 
data appropriately. This structuring comes for free in 
an object-based system. 

Another argument for object-level coherence is based 
on a hypothesis that the memory reference patterns of 
object-oriented programs are more localized than simi- 
lar programs using more traditional models. The body 
of an object operation can reference only the thread 
stack and the contents of the object itself, so an exe- 
cuting operation is likely to make a sequence of memory 
references local to the current object. In effect, there 
is knowledge implicit in the way the data .area is di- 
vided into objects that can be exploited to make the 
coherence algorithm more efficient. 

5 Cost of Amber Operations 

The true test of Amber’s performance is the behav- 
ior of applications built with the system. Section 6 
describes a simple application and discusses its per- 
formance. It is also useful, though, to mceasure the 

Operation Latency ms) 
object create I 0.18 
local invoke/return 0.012 
remote invoke/return 8.32 
object move 12.43 
thread start/join 1.33 

Table 1: Latency of Amber Operations 

cost of the primitives for concurrency and distribution. 
Table 1 presents some timings for basic Amber oper- 
ations, as measured on Firefly workstations with four 
CVAX processors available for running user threads. 
The latency of these operations is highly sensitive to 
a number of factors, but the benchmarks that pro- 
duced these timings attempt to measure the cost of 
the operations in the most common case. For example, 
the benchmarks assume that all moving objects and 
threads will fit in a network packet, and that the des- 
tinations are found by following a forwarding chain for 
one hop. These timings should be regarded as rough in- 
dications of the cost of the operations under light load 
conditions. Operations involving thread scheduling or 
network communication are more expensive on a heav- 
ily loaded system. 

We expect that the CPU cost of these operations 
will have less effect on program performance in the fu- 
ture. As processors get faster the CPU overhead of 
using any distributed system becomes less significant, 
and the performance of the system is dominated by 
network latency, which will remain roughly constant 
despite the advent of new high-throughput networks. 
The performance of a distributed system is best evalu- 
ated not by the cost of basic network operations, but 
by the degree to which the system prevents unnecessary 
network communication. 

6 An Amber Application 

This section presents the structure and performance 
of an Amber program that computes the steady-state 
temperature over the interior of a square plate given 
the temperatures around the plate’s boundary. The 
behavior of this system is governed by Laplace’s equa- 
tion, which states that the value at each point is the 
average of the values of its neighbors. The algorithm 
used is Red/Black Successive Over-Relaxation (SOR), 
an iterative method that parallelizes well and is com- 
monly used in practice [Ortega & Voigt 851. This algo- 
rithm can be understood by analogy to a checkerboard. 
Each point of the problem grid corresponds to a square 
on the checkerboard. During each iteration, all of the 
black points are updated first, followed by all of the red 
points. After some number of iterations the computed 
values converge and the algorithm terminates. Black 
points have only red neighbors and vice versa, so each 

154 



Section Object 1 

/ 

Communication 

Section Object 2 

Computing 
Threads 

ffooff 

Communication 
Threads 

Section Object 3 

Computing 
Threads 

0000 

Communication 

Master 

Figure 1: Structure of the Amber Red/Black SOR Implementation 

of the update phases is highly parallelizable. 
The algorithm is partitioned for loosely-coupled par- 

allel execution by breaking the grid into sections and 
distributing the sections among the nodes. Some parti- 
tionings are clearly inefficient. For example, placing the 
entire grid in one object would result in unbalanced use 
of the available processing power. Placing each point in 
a separate object would involve excessive communica- 
tion overhead. A more effective approach is to choose 
the partitioning so that one section object can be as- 
signed to each node. This balances the load and allows 
the values for an entire edge of a section to be trans- 
ferred in a single invocation. 

The Amber SOR program has several sets of threads 
associated with each section object. One set of threads 
computes the values for the section’s points in parallel 
on each iteration. Another set of threads is respon- 
sible for exchanging edge data with neighboring sec- 
tions. The exchange of values for edge points of one 
color is overlapped with the computation for points of 
the other color. After each iteration the nodes synchro- 
nize at a barrier to determine if convergence has been 
reached. One additional thread per section is respon- 
sible for communicating with a single master thread 
regarding convergence. Figure 1 displa.ys this structure 
for a decomposition with three sections. 

The SOR algorithm is well-suited to a loosely- 
coupled multiprocessing model because the problem is 
regular and static, which makes it easy to choose a pa.r- 
titioning that balances the load evenly. The amount of 
computing required per section on each iteration de- 

pends only on the size of the section and is not affected 
by the data contained there. Nevertheless, SOR is a 
nontrivial algorithm which is typical of many iterative 
methods involving nearest-neighbor interactions. Per- 
formance measurements for the program are shown in 
Figures 2 and 3. 

Figure 2 plots measured speedup of the SOR program 
as the number of nodes and the number of processors 
increases. For the purposes of this experiment, we se- 
lected a specific problem with a grid size of 122 by 842 
points. Most of the partitionings were into eight sec- 
tion objects, except for the experiments involving three 
and six nodes, which were run with partitionings of six 
section objects. A significant amount of remote com- 
munication is required to solve this problem on mul- 
tiple nodes. Each point in this figure represents the 
mea.sured speedup for a particular experiment relative 
to a sequential C+f implementation used as the base- 
line case. Each point is labeled to indicate the number 
of Firefly nodes used, and the number of processors per 
node. For example, the point labeled “4Nx2P” corre- 
sponds to an experiment in which the eight sections of 
the grid were distributed among four Fireflies (two per 
Firefly) and two processors per Firefly were used (for a 
total of eight processors). A number of conclusions can 
be drawn from Figure 2: 

l Good speedups are possible in this environment. 
The SOR program attains a speedup of 25 for the 
8Nx4P case - eight Firefly workstations, each con- 
tributing four processors to the overall solution. 
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Figure 2: Measured Speedup for Amber Red/Black SOR Implementation 

l Significant performance benefit comes from struc- 
turing the program so that transfers of edge data 
are overlapped with computation over the interiors 
of sections. This is demonstrated by the different 
performance of the two SNx4P cases. This shows 
the importance of overlapping communication and 
computation in a loosely-coupled environment. 

l The overlapping of communication and computa- 
tion makes it possible to keep all processors busy 
doing useful work even while communication is 
taking place. The performance of this applica- 
tion is not degraded significantly by the cost of 
remote communication. This is demonstrated by 
the speedup of the Amber version, which is close to 
the ideal speedup relative to the sequential version. 
Also, nearly identical speedups are achieved for all 
of the experiments involving a total of four proces- 
sors (lNx4P, 2Nx2P, 4NxlP). Similar results were 
obtained from the experiments with eight proces- 
sors (2Nx4P, 4Nx2P). 

To be fair, the ratio of computation to communi- 
cation for this program is a function of the grid size. 
Even if communication is highly efficient, for suIIl- 
ciently small grids it will dominate computation and 
limit speedup. For sufficiently large grids computa- 
tion will dominate and speedup will be good even if 
communication is relatively inefficient. Figure 3 shows 
the effect of varying the problem size for the Iparticular 
configuration of four nodes with four processors each 
(4Nx4P in Figure 2). The horizontal axis in Figure 3 is 
the number of points in the grid. The vertical axis gives 
speedup relative to a sequential version of the program. 
The point marked “x” corresponds to the X22 by 842 
grid used in Figure 2. 

We were able to achieve good performance in our 
Amber SOR program for several reasons. A single net- 
work exchange is required to transfer an entire row or 
column of data between sections, regardless of how data 
happens to be laid out in the address space. Second, 
data transfers can be overlapped with computation by 
running the respective threads in parallel. This re- 
duces the effect of network latency. Third, computation 
threads within a section can freely divide work among 
themselves, without danger of causing network activity. 

We have not implemented this application under a 
system with a page-oriented distributed virtual mem- 
ory, so it is impossible to make exact comparisons with 
such a system. Certainly a shared memory version 
under a system such as Ivy would have required less 
coding effort initially. The performance of the result- 
ing program ultimately depends on how efficiently data 
can be shared between nodes. The methods for control- 
ling sharing and communication using Amber, with its 
object-oriented distributed virtual memory, and using 
a system with a page-oriented distributed virtual mem- 
ory, are quite different. Using a page-oriented system, 
the programmer would optimize data reference patterns 
by laying out data structures and partitioning the work 
so as to make each node reference different sections of 
the linear address space. If two nodes write-share the 
same block of addresses, the virtual memory system 
will thrash. It may not be obvious from the source 
code that this can happen. Also, the layout of the data 
in memory may incur the cost of multiple faults and 
multiple page transmission latencies to transfer edge 
data. With Amber the decomposition is addressed ex- 
plicitly: the programmer has control over what data is 
transferred and when. 
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7 Summary 

The Amber system permits a loosely-coupled network 
of multiprocessors to be viewed as an integrated sys- 
tem for executing a parallel application. This under- 
lying hardware architecture is cost-effective for many 
parallel applications. Processors can be added to a 
computer system at small marginal cost, but packaging 
constraints limit the practical size of a single system. 
Therefore programmers will want to build parallel pro- 
grams that cross machine boundaries. 

With Amber we have shown that the distributed. ob- 
ject model is useful for loosely-coupled multiprocess- 
ing as well as for distributed programming and dis- 
tributed operating systems. Amber’s object-oriented 
model strikes a balance between the ease of program- 
ming afforded by a page-oriented distributed virtual 
memory and the performance benefits of explicit nnan- 
agement of location. We have achieved a simple and ef- 
ficient implementation using an existing programrning 
language and an existing operating system. Our appli- 
cation experience thus far indicates that the fundarnen- 
tal goal of Amber - to allow the power of a network of 
small-scale multiprocessors to be harnessed for a single 
parallel application - has been achieved. 
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