
SHORT-TERM SCHEDULING IN MULTIPROGRAMMING SYSTEMS

Per Brinch Hansen
Carnegie-Mellon University
Pittsburgh, Pennsylvania

Abstract

This paper defines a set of scheduling primitives
which have evolved from multiprogramming systems de-
scribed by Dijkstra, Lampson, Saltzer, and the present
author. Compared to earlier papers on the same sub-
ject, the present one illustrates a more concise de-
scription of operating system principles by means of
algorithms. This is achieved by (i) describing the
primitives as the instructions of an abstract machine
which in turn is defined by its instruction execution
algorithm; (2) introducing a notation which distin-
guishes between the use of synchronizing variables
(semaphores) to achieve mutual exclusion of critical
sections, and to exchange signals between processes
which have explicit input/output relationships; (3)
considering the influence of critical sections on pre-
emption and resumption; and (4) using a programming
language, Pascal, which includes natural data types
(records, classes, and pointers) for the representa-
tion of process descriptions and scheduling queues.
The algorithms are written at a level of detail which
clarifies the fundamental problems of process schedul-
ing and suggests efficient methods of implementation.

KEYWORDS AND PHRASES: multiprogramming systems, oper-
ating systems, concurrent processes, process synchro-
nization, semaphores, critical sections, priority
scheduling, preemption and resumption, Pascal.

CR CATEGORIES: 1.52, 4.2, 4.3

I. Backsround

At an early stage in the design of the multipro-
gramming system for the RC 4000 computer I a distinc-
tion was made between those sequential processes which
control input/output and those which perform computa-
tions. This distinction, which was based on differ-
ences in process scheduling and storage addressing,
had a drastic influence on the real-time characteris-
tics of the system. On the one hand, input/output
processes could be initiated immediately by interrupts
and run without preemption for several milliseconds.
On the other hand, due to the use of fixed round-robin
scheduling, computational processes could only respond
to urgent, external events in i0-I00 milliseconds.
The extendability of the system was also strongly af-
fected by this decision. The input/output processes
enjoyed special privileges of addressing which enabled
them to enter a global critical section and execute
shared procedures. However, the smallest modification
of any of them required reassembly and testing of the
entire system nucleus. In contrast, computational
processes were unable to share procedures but were easy
to implement and test separately. The system nucleus
was indeed built to create, execute, and terminate
computational processes dynamically. This problem was
caused partly by the addressing characteristics of the
computer and partly by inadequate understanding of the
issues involved.

In the following, I describe a model of a multi-
programming system in which this mistake is avoided by
treating all processes in a uniform manner at the most
elementary level of scheduling. The paper serves two
purposes: it illustrates a concise description of
operating system principles by means of algorithms,
and it defines a set of scheduling primitives which
have evolved from recent multiprogramming systems de-
Scribed by E. W. Dijkstra, B. W. Lampson, J. H.

Saltzer, and myself I-4. The primitives are regarded as
the instructions of an abstract processor which is de-
fined by its instruction execution algorithm. The al-
gorithms are written at a level of detail which clari-
fies the fundamental problems of process scheduling
and suggests efficient methods of implementation.

The description language used is Pascal created by
N. Wirth 5. In the words of C. A. R. Hoare: "This is a
language which gives equal attention to the methods of
structuring data and of structuring program. It is a
very simple language, requiring a compiler as fast and
as small as a good Algol 60 implementation, and produc-
ing machine code of an efficiency and compactness typ-
ical of a good Fortran compiler. Treatment of program-
ming errors is excellent, fully adequate for its use as
a teaching tool." Pascal is easily understood by pro-
grarmners familiar with Algol 60. Pascal, however, is
a far more natural tool for the description of operat-
ing systems than Algol 60 due to the inclusion of data
structures of type record, class, and pointer.

2. Short-Term and Medium-Term Schedulin$

Our intellectual inability to analyze all aspects
of a complex problem in one step forces us to divide
the scheduling problem into a number of decisions which
are made at different levels of programming. The view
of scheduling presented here recognizes two main levels.
At the lower level, which may be called hardware manase-
ment or short-term schedulin$, the objective is to al-
locate physical resources to processes, as soon as they
become available, to maintain good utilization of the
equipment. This level of programming simulates a vir-
tual machine for each sequential process and a set of
primitives which enable cooperating processes to
achieve mutual exclusion of critical sections and com-
municate with each other.

At the higher level of scheduling, which may be
called user manasement or medium-term schedulin$, the
aim is to allocate virtual machines to users according
to the rules laid down by system management. Typical
tasks at this level are to establish the identity and
authority of users; to input and analyze their requests;
to initiate and control computations; to perform ac-
counting of resource usage; and to maintain system in-
tegrity in spite of occasional malfunction of the hard-
ware;

I owe the terms short-term and medium-term sched-
ulin$ to C. A. R. Hoare. The distinction between these 4
levels was clearly made in the thesis by J. H. Saltzer.

The ability to experiment with scheduling policies
at the user level is a vital requirement of extensible
operating systems. It will be shown that a suitable
choice of data structures and primitives at the short-
term level enables sequential processes to schedule
other processes according to any strategy desired at
the medium-term level (within the given technological
limits). From the RC 4000 system, we learned that the
decision about whether a certain process has the right
to schedule another process should be separated from
the decision about how the scheduling is done. The
rules of protection among processes are subject to ex-
perimenting just like the rules of scheduling. Pro-
cesses should not be born with certain rights of ac-
cess to shared objects, but should earn them by demon-
strating their own usefulness and correctness. Conse-
quently, I make no distinction in the following between

i01

processes which are part of operating systems and pro-
cesses which are part of user computations.

3. Process. States and Scheduling Primitives

I consider a computer system in which a limited
number of identical processors are multiplexed among a
(possibly larger) number of sequential processes. The
processors are connected to a sin$1e~ internal store
which is assumed to be large enough to satisfy all pro-
cesses at any time. The short-term problem of sched-
uling a limited internal store using a larger backing
store is not discussed here.

At the short-term level of scheduling, a process
is either running on a processor or waitin$ in a queue.
A process can wait for an idle processor or for a
timin$ sisnal from another process. In the former case,
the process is said to be ready, in ~he latter, it is
blocked. The synchronizing primitives for the latter
case are the by now familiar P and V operations on
semaphores introduced by E. W. Dijkstra 2. I use the
following notation to distinguish between the use of
semaphores to (i) achieve mutual exclusion of critical
sections, and (2) exchange signals between processes
which have explicit input/output relationships:

(i) critical v do S
(2) wait(v) ... signal(v)

where v is a variable of type semaphore and S is a
statement. The structured statement (i) clearly shows
that the semaphore is used to label S as a member of
the set v of statements which must exclude each other
in time. It forces the programmer to use P and V opera-
tions strictly in nested form just as the begin and end
of compound statements.

primitives, which create and terminate a process in the
stopped state, are not discussed here.

A graph of the process states and the possible
transitions between them is shown in figure i.

terminated
i create

B~ 2 start

3 initiate

stopped 4 examine

77~6 ~ 5 wait

ready blocked 6 signal

5 7 stop

8 terminate

runnlng

(a) (b)

Fig. i. A graph representation of the process
states (a), and the primitives that
cause the transitions between them (b).

The primitives initiate and examine are only executed
as part of the instruction execution algorithm of a
processor. The primitives create, start, wait, signal,
stop, and terminate, however, can be used by processes
to schedule other processes at the medium-term level.

4. Process Descriptions and Queues

The set of sequential processes will be represent-
- ed in Pascal by the following data structure: It prevents the undisciplined

use of P and V operations frequently seen, e.g.,

e(v);
...°,
if B then be~in V(v); P(w); end

else V(v);

which to my taste is like terminating a compound state-
ment by a conditional end deliminter~ One is tempted
to use this style of progratmning because the well-
structured alternative requires the use of a local
boolean b to transmit the value of expression B (in-
volving shared variables) outside the critical sec-
tion, e.g.,

critical v do
be$in b:= B; end
if b then wait(w);

This minor point of efficiency, however, can be solved
by the disciplined use of jumps as we shall see later.

The scheduling of processes in a given queue
should reflect the policy of system management towards
the type of work performed by the processes or the
group of users responsible for them rather than their
random order of arrival in the queue. Hence, we assume
that a priority number is assigned to each process and
that the queues are ordered accordingly. However, a
compromise must be made to avoid spending excessive
amounts of processor time inspecting and rearranging
queues. The present model assumes that priorities re-
main fixed over the intervals of time considered at
the short-term level of scheduling.

Dynamic priorities are obtained by stopping the
execution of processes, assigning updated values to
their priority variables, and starting them again.
Thus, we are led to the following scheduling primitives:

stop(p)
start(p, n)

where p and n are variables of type process description

and priority number, respectively. Two additional

var process set: class maxnum of
record pred, succ: Iprocess set;

state: statename;
priority: integer;
program pointer: address;

end

This declaration introduces a class of records. Each
record describes a process by its state, priority, and
program pointer. When the process is waiting in a
queue, its record is linked to the records of the p_r_e-
decessor and successor processes in the same queue.

Note, that a declaration in Pascal consists of an
identifier of a variable followed by its type, e.g.,

priority: integer;

The type inteser is predefined. Other scalar types
can be defined by enumerating a set of values (or,
more precisely, a set of identifiers denoting constants),
e.g.,

type statename = (stopped, waiting, running)

or by defining a range of values, e.g.,

type address = 0..65535

The components of a class are referenced through vari-
ables of type pointer. Each pointer variable is by its
declaration bound to the components of a particular
class, e.g.,

var process: tprocess set

Initially, a class is empty and its associated pointer
variables all have the value nil.

The standard procedure

alloc(process)

creates a new record in the process set and assigns its
pointer to the variable process. The record fields can
now be referenced through the pointer variable using
the notation

102

proeess~.pred ... processt.state ...

The record referenced by the pointer variable
~rocess can be removed by means of the standard pro-
cedure

reset(process)

which also assigns the value ni__~ to the pointer vari-
able.

The class concept closely mirrors the dynamic
creation and termination of process descriptions. The
value of a pointer variable can be assigned to other
pointer variables bound to the same class. This is
used here to implement a scheduling queue as a doubly-
linked list of process records as shown in figure 2.

head and process
roor

pointer variables

queue process

Fig. 2.Representation of a queue by a doubly-linked list

Each queue is headed ~y a dummy record which serves to
identify the first and last processes (if any) in the
queue. When the queue is empty, the head record is
linked to itself. The head and process records are
referenced through pointer variables.

It is a standard exercise to design Pascal proce-
dures which initialize an empty queue, insert a record
in a queue as the predecessor of another record already
in the queue, delete a record from its present queue,
and determine whether a queue is empty.

The process records in a queue can be enumerated
in their order of priority as follows:

var queue, process: ~process set;
begin process: = queue~.suec;

while process ~ queue do
process: = process%.suec;

end

5. Processor Algorithm

At the level of description used here, a proces-
sor is capable of operating directly on process rec-
ords and queues, and the synchronizing primitives wait,
signal, start, and sto~ are considered machine instruc-
tions. Furthermore, we do not distinguish between cen-
tral processors and peripheral devices. The latter are
just processors dedicated to the execution of fixed
processes. Synchronization of processes is controlled
by semaphores only. It may be necessary, at the most
primitive level of programming, to implement this ab-
straction by means of hardware registers and inter-
rupts. Once this has been done, however, these tech-
nological tools become as irrelevant to the programmer
as the logic circuits used to build an adder. The pit-
falls of forcing programmers to think in terms of in-
terrupts instead of semaphores have been aptly de-
scribed by N. Wirth 6. In fact, as several people have
pointed out, there are good reasons to consider even
semaphores as being too primitive and dangerous for
general use. I leave it as an exercise for the reader
to use Pascal to define a more appropriate synchroniz-
ing tool: a sequential file of messages in terms of
standard data types and semaphores.

The instruction execution algorithm of one of the
abstract processors is the following:

va__r process: tprocess set;
he--repeat

initiate(process, ready queue);
label idle
begin with process~ do

repeat
examine(process);
execute instruction(program pointer);
program pointer: = next(program pointer);

until false;
end

until false;
end

When the processor is idle, it initiates the execution
of the most urgent (i.e., first) process in the ready
queue and continues to execute it until it is time to
preempt it for one reason or another. Whether or not
a running process should be preempted is decided in-
side the procedure examine. The processor refers to
the description of its current process by means of a
local variable process. (In Pascal, local variables
are declared before the begin delimiter).

The structured statement

with r do S

where r is a record identifier, enables the statement
S to refer directly to identifiers of the record fields
without qualifying them with the record identifier,
e.g., using "program pointer" instead of "process~.
program pointer". The meaning of the label idle will
be explained later.

It is assumed that the computer system includes a
sequential switching circuit, called an @rbiter, to
which all processors are connected. This circuit and
two machine instructions, enter and leave section, are
the hardware implementation of a single critical sec-
tio__~_

critical mutex do S

which ensures that the examination and modification of
process records, performed by the concurrently operat-
ing processors, exclude each other in time. This crit-
ical section (which involves the busy form of waiting)
will be used only at the short-term level of scheduling.
On top of it, we construct the wait and signal primi-
tives which enable processes to establish an arbitrary
number of other critical sections (using the non-busy
form of waiting).

I can now define the behavior of an idle processor
which examines the re@dy queue repeatedly until it
finds a process which can be initiated:

procedure initiate(victim, queue: %process set);
va__.r busy: boolean;
begin busy:= false;

with queue% d_~
repeat

critical mutex do
if not empty(queue) then
begin victim: = succ;

remove(victim);
vietim%.state:= running;
busy:= true;

end
until busy;

end

When a processor must transfer a running process to a
queue of waiting processes, it scans the queue and in-
serts the process according to its priority:

103

procedure delay(victim, queue: tprocess set);
va_.~_ next: tprocess set;
begin with victim~ do

begin state:= waiting;
next:= queuet.succ;
while priority ~ nextt.priority do
next:= nextt.succ;

end
insert(victim, next);

end

This algorithm assumes that small numbers denote high
priority, and that the priority field of the head rec-
ord is so large that it always terminates the search
cycle.

6. Process Synchronization

The data type semaphore is a structure consisting
of a counter and a queue of waiting processes:

type semaphore = record counter: integer;
queue: tprocess set;

end

The wait operation is defined as follows:

procedure wait(s: semaphore);
begin critical mutex d__o

with s do
if counter > 0 then
counter:= counter - i else
begin delay(process, queue);

exit idle;
end

end

The exit statement, executed after the transfer
of a running process to the semaphore queue, causes a
jump to the end of the nearest enclosing compound
statement headed by the label idle, that is, to the
point in the instruction execution algorithm where the
processor will initiate the execution of another ready
process. This disciplined kind of jump is a restrict-
ed form of the goto statement defined in the Pascal
report 5. It was originally suggested by P. J. Landin 7
in a more general form which associates a procedure
with the label.

The sisnal operation follows below:

~rocedure signal(s: semaphore);
va___r victim: tprocess set;
begin critical mutex d__o

with s do
i_~ empty(queue) then
counter:= counter + I else
begin victim:= queuet.succ;

remove(victim);
delay(victim, ready queue);
with victimt do
program pointer:= next(program pointer);

end
end

Notice, that when a process executes a wait operation
the increase of its program pointer is delayed until
the process is allowed to continue. This ensures
that, if a process is stopped while it is waiting on
a semaphore, and, later, started again, it will auto-
matically repeat the incomplete wait operation.

7. Preemption and Resumption

Before a process is stopped, and possibly termi-
nated, we must be very careful to allow it to complete
the execution of all critical sections initiated by
it. In general, therefore, a process cannot be
stopped instantly. All one can do is to request that
its processor transfer it to the stopped state as

soon as possible. This problem is handled by extend-
ing each process record with a boolean and an integers
called the stop request and section depth, respective-
ly. The latter is a count of the number of incomplete
critical sections entered by the process. The reader
will notice, that these variables serve the same pur-
pose as the interrupt and inhibition bits at the hard-
ware level. Finally, each process record is extended
with a stop queue in which other processes can wait
until the process in question has stopped.

Preemption by means of the stop primitive makes
it useful to distinguish between semaphores used to
synchronize critical sections and input/output rela-
tionships. When a process enters a critical section,
its section depth must be increased by one to guaran-
tee that it will be able to complete that sections
and, when it leaves it again, the section depth must
be decreased by one. However, if we consider a set of
sender and receiver processes communicating through a
common semaphore, it is quite possible to stop one of
the receivers even though it may be waiting for a sig-
nal from a sender. Consequently, the depth counters
should not be changed in this case. This is another
motivation for choosing different notations for the
two uses of semaphores.

Our abstract processor examines the description
of its current process after each instruction in
order to determine whether another process wants to
stop it, or whether it should be preempted in favor of
a more urgent process in the ready queue. Again, we
notice in passing, that the processing time required
for this evaluation can be reduced to tolerable pro-
portions by the well-known technique of clock inter-
rupts.

prqcedure examine(process: tprocess set);
begi n critical mutex d_o q

with process~ d__o
if stop request & section depth = 0 then
begin complete stop(process); exit idle end
else
if not empty(ready queue) then
if priority > ready queuet.succt.priority then
besin delay(process, ready queue); exit idle end

end

The procedure complete stop is fairly trivial: it
resets the @top request of a given process, changes
state to stopped , and transfers all processes waiting
in its sto p queu ~ to the ready queue.

The stop and start operations work as follows:

procedure stop(victim: tprocess set);
begin critical mutex d_~.

with victimt do
if section depth = 0Estate = waiting then
complete stop(victim) else
if state ~ stopped the~
be$in stop request:= true;

delay(process, stop queue);
exit idle;

end
end

procedure start(victim: tprocess set; level: integer);
begin critical mutex do

with victimt do
if state = stopped then
begin priority: = level;

delay(victim, ready queue);
end

end

104

8. Timin$ Constraints

It was pointed out in the introduction that the
scheduling decisions taken at the short-term level
determine the rate at which the computer system is able
to respond to real-time events. As an example, consid-
er a computer system in which storage words can be ac-
cessed in i ~sec. An outline of the primitives wait,
signal, start, and stop in typical machine code shows
that they have roughly the same execution time. Assum-
ing that an average of ten processes must be examined
when a given process is transferred to a queue, I find
that the proposed system can respond to internal and
external signals within 100-300 ~sec. This means that
scheduling decisions taken by processes at the medium-
term level will take at least, say i msec each. Thus,
it is unrealistic to change priorities more frequently
than, say, every 20 msec.

Although these figures are acceptable in most en-
vironments, there are certainly applications which re-
quire response to more than 3000-10000 events per sec-
ond, e.g., speech recognition. The figures may, of
course, be improved by implementing the primitives in
hardware. Nevertheless, I believe it is a valid con-
clusion that decisions taken at the short-term level
of scheduling by no means are innocent, and a realistic
designer must be prepared also to change this part of
the system.

Acknowledsments

I wish to thank Nico Habermann, Anita Jones, Alan
Perlis, and Bill Wulf for constructive comments.

References

i. Brinch Hansen, P. The Nucleus of a Multiprogram-
ming System. Comm. A(~ 13, 4 (April 1970), 238-

2.

250.

Dijkstra, E. W.
granmaing System.
346.

3. Lampson, B. W.

4.

The Structure of THE Multipro-
Comm. ACM ii, 5 (May 1968), 341-

A Scheduling Philosophy for Multi-
processing Systems. Coram. ACM ii, 5 (May 1968)
347-360.

Seltzer, J. H. Traffic Control in a Multiplexed
Computer System. MAC-TR-30, Massachusetts Institute
of Technology, Cambridge, Mass., July 1966.

5. Wirth, N. The Progranmaing Language Pascal,

Aeta Informatica i, I (1971), 35-63.

6. Wirth, N. On Multiprogramming, Machine Coding,
and Computer Organization. Comm. ACM 12, 9
(September 1969), 489-498.

7. Landin, P. J. A Correspondence Between Algol 60
and Church's Lambda Notation, Parts I-II. Comm.
ACM 8, 2 (February 1965), 89-101, and 3 (March
1965), 158-165.

105

