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Abstract 

This paper defines a set of scheduling primitives 
which have evolved from multiprogramming systems de- 
scribed by Dijkstra, Lampson, Saltzer, and the present 
author. Compared to earlier papers on the same sub- 
ject, the present one illustrates a more concise de- 
scription of operating system principles by means of 
algorithms. This is achieved by (i) describing the 
primitives as the instructions of an abstract machine 
which in turn is defined by its instruction execution 
algorithm; (2) introducing a notation which distin- 
guishes between the use of synchronizing variables 
(semaphores) to achieve mutual exclusion of critical 
sections, and to exchange signals between processes 
which have explicit input/output relationships; (3) 
considering the influence of critical sections on pre- 
emption and resumption; and (4) using a programming 
language, Pascal, which includes natural data types 
(records, classes, and pointers) for the representa- 
tion of process descriptions and scheduling queues. 
The algorithms are written at a level of detail which 
clarifies the fundamental problems of process schedul- 
ing and suggests efficient methods of implementation. 
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I. Backsround 

At an early stage in the design of the multipro- 
gramming system for the RC 4000 computer I a distinc- 
tion was made between those sequential processes which 
control input/output and those which perform computa- 
tions. This distinction, which was based on differ- 
ences in process scheduling and storage addressing, 
had a drastic influence on the real-time characteris- 
tics of the system. On the one hand, input/output 
processes could be initiated immediately by interrupts 
and run without preemption for several milliseconds. 
On the other hand, due to the use of fixed round-robin 
scheduling, computational processes could only respond 
to urgent, external events in i0-I00 milliseconds. 
The extendability of the system was also strongly af- 
fected by this decision. The input/output processes 
enjoyed special privileges of addressing which enabled 
them to enter a global critical section and execute 
shared procedures. However, the smallest modification 
of any of them required reassembly and testing of the 
entire system nucleus. In contrast, computational 
processes were unable to share procedures but were easy 
to implement and test separately. The system nucleus 
was indeed built to create, execute, and terminate 
computational processes dynamically. This problem was 
caused partly by the addressing characteristics of the 
computer and partly by inadequate understanding of the 
issues involved. 

In the following, I describe a model of a multi- 
programming system in which this mistake is avoided by 
treating all processes in a uniform manner at the most 
elementary level of scheduling. The paper serves two 
purposes: it illustrates a concise description of 
operating system principles by means of algorithms, 
and it defines a set of scheduling primitives which 
have evolved from recent multiprogramming systems de- 
Scribed by E. W. Dijkstra, B. W. Lampson, J. H. 

Saltzer, and myself I-4. The primitives are regarded as 
the instructions of an abstract processor which is de- 
fined by its instruction execution algorithm. The al- 
gorithms are written at a level of detail which clari- 
fies the fundamental problems of process scheduling 
and suggests efficient methods of implementation. 

The description language used is Pascal created by 
N. Wirth 5. In the words of C. A. R. Hoare: "This is a 
language which gives equal attention to the methods of 
structuring data and of structuring program. It is a 
very simple language, requiring a compiler as fast and 
as small as a good Algol 60 implementation, and produc- 
ing machine code of an efficiency and compactness typ- 
ical of a good Fortran compiler. Treatment of program- 
ming errors is excellent, fully adequate for its use as 
a teaching tool." Pascal is easily understood by pro- 
grarmners familiar with Algol 60. Pascal, however, is 
a far more natural tool for the description of operat- 
ing systems than Algol 60 due to the inclusion of data 
structures of type record, class, and pointer. 

2. Short-Term and Medium-Term Schedulin$ 

Our intellectual inability to analyze all aspects 
of a complex problem in one step forces us to divide 
the scheduling problem into a number of decisions which 
are made at different levels of programming. The view 
of scheduling presented here recognizes two main levels. 
At the lower level, which may be called hardware manase- 
ment or short-term schedulin$, the objective is to al- 
locate physical resources to processes, as soon as they 
become available, to maintain good utilization of the 
equipment. This level of programming simulates a vir- 
tual machine for each sequential process and a set of 
primitives which enable cooperating processes to 
achieve mutual exclusion of critical sections and com- 
municate with each other. 

At the higher level of scheduling, which may be 
called user manasement or medium-term schedulin$, the 
aim is to allocate virtual machines to users according 
to the rules laid down by system management. Typical 
tasks at this level are to establish the identity and 
authority of users; to input and analyze their requests; 
to initiate and control computations; to perform ac- 
counting of resource usage; and to maintain system in- 
tegrity in spite of occasional malfunction of the hard- 
ware; 

I owe the terms short-term and medium-term sched- 
ulin$ to C. A. R. Hoare. The distinction between these 4 
levels was clearly made in the thesis by J. H. Saltzer. 

The ability to experiment with scheduling policies 
at the user level is a vital requirement of extensible 
operating systems. It will be shown that a suitable 
choice of data structures and primitives at the short- 
term level enables sequential processes to schedule 
other processes according to any strategy desired at 
the medium-term level (within the given technological 
limits). From the RC 4000 system, we learned that the 
decision about whether a certain process has the right 
to schedule another process should be separated from 
the decision about how the scheduling is done. The 
rules of protection among processes are subject to ex- 
perimenting just like the rules of scheduling. Pro- 
cesses should not be born with certain rights of ac- 
cess to shared objects, but should earn them by demon- 
strating their own usefulness and correctness. Conse- 
quently, I make no distinction in the following between 
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processes which are part of operating systems and pro- 
cesses which are part of user computations. 

3. Process. States and Scheduling Primitives 

I consider a computer system in which a limited 
number of identical processors are multiplexed among a 
(possibly larger) number of sequential processes. The 
processors are connected to a sin$1e~ internal store 
which is assumed to be large enough to satisfy all pro- 
cesses at any time. The short-term problem of sched- 
uling a limited internal store using a larger backing 
store is not discussed here. 

At the short-term level of scheduling, a process 
is either running on a processor or waitin$ in a queue. 
A process can wait for an idle processor or for a 
timin$ sisnal from another process. In the former case, 
the process is said to be ready, in ~he latter, it is 
blocked. The synchronizing primitives for the latter 
case are the by now familiar P and V operations on 
semaphores introduced by E. W. Dijkstra 2. I use the 
following notation to distinguish between the use of 
semaphores to (i) achieve mutual exclusion of critical 
sections, and (2) exchange signals between processes 
which have explicit input/output relationships: 

(i) critical v do S 
(2) wait(v) ... signal(v) 

where v is a variable of type semaphore and S is a 
statement. The structured statement (i) clearly shows 
that the semaphore is used to label S as a member of 
the set v of statements which must exclude each other 
in time. It forces the programmer to use P and V opera- 
tions strictly in nested form just as the begin and end 
of compound statements. 

primitives, which create and terminate a process in the 
stopped state, are not discussed here. 

A graph of the process states and the possible 
transitions between them is shown in figure i. 
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Fig. i. A graph representation of the process 
states (a), and the primitives that 
cause the transitions between them (b). 

The primitives initiate and examine are only executed 
as part of the instruction execution algorithm of a 
processor. The primitives create, start, wait, signal, 
stop, and terminate, however, can be used by processes 
to schedule other processes at the medium-term level. 

4. Process Descriptions and Queues 

The set of sequential processes will be represent- 
- ed in Pascal by the following data structure: It prevents the undisciplined 

use of P and V operations frequently seen, e.g., 

e(v); 
...°, 
if B then be~in V(v); P(w); end 

else V(v); 

which to my taste is like terminating a compound state- 
ment by a conditional end deliminter~ One is tempted 
to use this style of progratmning because the well- 
structured alternative requires the use of a local 
boolean b to transmit the value of expression B (in- 
volving shared variables) outside the critical sec- 
tion, e.g., 

critical v do 
be$in ..... b:= B; end 
if b then wait(w); 

This minor point of efficiency, however, can be solved 
by the disciplined use of jumps as we shall see later. 

The scheduling of processes in a given queue 
should reflect the policy of system management towards 
the type of work performed by the processes or the 
group of users responsible for them rather than their 
random order of arrival in the queue. Hence, we assume 
that a priority number is assigned to each process and 
that the queues are ordered accordingly. However, a 
compromise must be made to avoid spending excessive 
amounts of processor time inspecting and rearranging 
queues. The present model assumes that priorities re- 
main fixed over the intervals of time considered at 
the short-term level of scheduling. 

Dynamic priorities are obtained by stopping the 
execution of processes, assigning updated values to 
their priority variables, and starting them again. 
Thus, we are led to the following scheduling primitives: 

stop(p) 
start(p, n) 

where p and n are variables of type process description 

and priority number, respectively. Two additional 

var process set: class maxnum of 
record pred, succ: Iprocess set; 

state: statename; 
priority: integer; 
program pointer: address; 

end 

This declaration introduces a class of records. Each 
record describes a process by its state, priority, and 
program pointer. When the process is waiting in a 
queue, its record is linked to the records of the p_r_e- 
decessor and successor processes in the same queue. 

Note, that a declaration in Pascal consists of an 
identifier of a variable followed by its type, e.g., 

priority: integer; 

The type inteser is predefined. Other scalar types 
can be defined by enumerating a set of values (or, 
more precisely, a set of identifiers denoting constants), 
e.g., 

type statename = (stopped, waiting, running) 

or by defining a range of values, e.g., 

type address = 0..65535 

The components of a class are referenced through vari- 
ables of type pointer. Each pointer variable is by its 
declaration bound to the components of a particular 
class, e.g., 

var process: tprocess set 

Initially, a class is empty and its associated pointer 
variables all have the value nil. 

The standard procedure 

alloc(process) 

creates a new record in the process set and assigns its 
pointer to the variable process. The record fields can 
now be referenced through the pointer variable using 
the notation 
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proeess~.pred ... processt.state ... 

The record referenced by the pointer variable 
~rocess can be removed by means of the standard pro- 
cedure 

reset(process) 

which also assigns the value ni__~ to the pointer vari- 
able. 

The class concept closely mirrors the dynamic 
creation and termination of process descriptions. The 
value of a pointer variable can be assigned to other 
pointer variables bound to the same class. This is 
used here to implement a scheduling queue as a doubly- 
linked list of process records as shown in figure 2. 

head and process 
roor 

pointer variables 

queue process 

Fig. 2.Representation of a queue by a doubly-linked list 

Each queue is headed ~y a dummy record which serves to 
identify the first and last processes (if any) in the 
queue. When the queue is empty, the head record is 
linked to itself. The head and process records are 
referenced through pointer variables. 

It is a standard exercise to design Pascal proce- 
dures which initialize an empty queue, insert a record 
in a queue as the predecessor of another record already 
in the queue, delete a record from its present queue, 
and determine whether a queue is empty. 

The process records in a queue can be enumerated 
in their order of priority as follows: 

var queue, process: ~process set; 
begin process: = queue~.suec; 

while process ~ queue do 
process: = process%.suec; 

end 

5. Processor Algorithm 

At the level of description used here, a proces- 
sor is capable of operating directly on process rec- 
ords and queues, and the synchronizing primitives wait, 
signal, start, and sto~ are considered machine instruc- 
tions. Furthermore, we do not distinguish between cen- 
tral processors and peripheral devices. The latter are 
just processors dedicated to the execution of fixed 
processes. Synchronization of processes is controlled 
by semaphores only. It may be necessary, at the most 
primitive level of programming, to implement this ab- 
straction by means of hardware registers and inter- 
rupts. Once this has been done, however, these tech- 
nological tools become as irrelevant to the programmer 
as the logic circuits used to build an adder. The pit- 
falls of forcing programmers to think in terms of in- 
terrupts instead of semaphores have been aptly de- 
scribed by N. Wirth 6. In fact, as several people have 
pointed out, there are good reasons to consider even 
semaphores as being too primitive and dangerous for 
general use. I leave it as an exercise for the reader 
to use Pascal to define a more appropriate synchroniz- 
ing tool: a sequential file of messages in terms of 
standard data types and semaphores. 

The instruction execution algorithm of one of the 
abstract processors is the following: 

va__r process: tprocess set; 
he--repeat 

initiate(process, ready queue); 
label idle 
begin with process~ do 

repeat 
examine(process); 
execute instruction(program pointer); 
program pointer: = next(program pointer); 

until false; 
end 

until false; 
end 

When the processor is idle, it initiates the execution 
of the most urgent (i.e., first) process in the ready 
queue and continues to execute it until it is time to 
preempt it for one reason or another. Whether or not 
a running process should be preempted is decided in- 
side the procedure examine. The processor refers to 
the description of its current process by means of a 
local variable process. (In Pascal, local variables 
are declared before the begin delimiter). 

The structured statement 

with r do S 

where r is a record identifier, enables the statement 
S to refer directly to identifiers of the record fields 
without qualifying them with the record identifier, 
e.g., using "program pointer" instead of "process~. 
program pointer". The meaning of the label idle will 
be explained later. 

It is assumed that the computer system includes a 
sequential switching circuit, called an @rbiter, to 
which all processors are connected. This circuit and 
two machine instructions, enter and leave section, are 
the hardware implementation of a single critical sec- 
tio__~_ 

critical mutex do S 

which ensures that the examination and modification of 
process records, performed by the concurrently operat- 
ing processors, exclude each other in time. This crit- 
ical section (which involves the busy form of waiting) 
will be used only at the short-term level of scheduling. 
On top of it, we construct the wait and signal primi- 
tives which enable processes to establish an arbitrary 
number of other critical sections (using the non-busy 
form of waiting). 

I can now define the behavior of an idle processor 
which examines the re@dy queue repeatedly until it 
finds a process which can be initiated: 

procedure initiate(victim, queue: %process set); 
va__.r busy: boolean; 
begin busy:= false; 

with queue% d_~ 
repeat 

critical mutex do 
if not empty(queue) then 
begin victim: = succ; 

remove(victim); 
vietim%.state:= running; 
busy:= true; 

end 
until busy; 

end 

When a processor must transfer a running process to a 
queue of waiting processes, it scans the queue and in- 
serts the process according to its priority: 
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procedure delay(victim, queue: tprocess set); 
va_.~_ next: tprocess set; 
begin with victim~ do 

begin state:= waiting; 
next:= queuet.succ; 
while priority ~ nextt.priority do 
next:= nextt.succ; 

end 
insert(victim, next); 

end 

This algorithm assumes that small numbers denote high 
priority, and that the priority field of the head rec- 
ord is so large that it always terminates the search 
cycle. 

6. Process Synchronization 

The data type semaphore is a structure consisting 
of a counter and a queue of waiting processes: 

type semaphore = record counter: integer; 
queue: tprocess set; 

end 

The wait operation is defined as follows: 

procedure wait(s: semaphore); 
begin critical mutex d__o 

with s do 
if counter > 0 then 
counter:= counter - i else 
begin delay(process, queue); 

exit idle; 
end 

end 

The exit statement, executed after the transfer 
of a running process to the semaphore queue, causes a 
jump to the end of the nearest enclosing compound 
statement headed by the label idle, that is, to the 
point in the instruction execution algorithm where the 
processor will initiate the execution of another ready 
process. This disciplined kind of jump is a restrict- 
ed form of the goto statement defined in the Pascal 
report 5. It was originally suggested by P. J. Landin 7 
in a more general form which associates a procedure 
with the label. 

The sisnal operation follows below: 

~rocedure signal(s: semaphore); 
va___r victim: tprocess set; 
begin critical mutex d__o 

with s do 
i_~ empty(queue) then 
counter:= counter + I else 
begin victim:= queuet.succ; 

remove(victim); 
delay(victim, ready queue); 
with victimt do 
program pointer:= next(program pointer); 

end 
end 

Notice, that when a process executes a wait operation 
the increase of its program pointer is delayed until 
the process is allowed to continue. This ensures 
that, if a process is stopped while it is waiting on 
a semaphore, and, later, started again, it will auto- 
matically repeat the incomplete wait operation. 

7. Preemption and Resumption 

Before a process is stopped, and possibly termi- 
nated, we must be very careful to allow it to complete 
the execution of all critical sections initiated by 
it. In general, therefore, a process cannot be 
stopped instantly. All one can do is to request that 
its processor transfer it to the stopped state as 

soon as possible. This problem is handled by extend- 
ing each process record with a boolean and an integers 
called the stop request and section depth, respective- 
ly. The latter is a count of the number of incomplete 
critical sections entered by the process. The reader 
will notice, that these variables serve the same pur- 
pose as the interrupt and inhibition bits at the hard- 
ware level. Finally, each process record is extended 
with a stop queue in which other processes can wait 
until the process in question has stopped. 

Preemption by means of the stop primitive makes 
it useful to distinguish between semaphores used to 
synchronize critical sections and input/output rela- 
tionships. When a process enters a critical section, 
its section depth must be increased by one to guaran- 
tee that it will be able to complete that sections 
and, when it leaves it again, the section depth must 
be decreased by one. However, if we consider a set of 
sender and receiver processes communicating through a 
common semaphore, it is quite possible to stop one of 
the receivers even though it may be waiting for a sig- 
nal from a sender. Consequently, the depth counters 
should not be changed in this case. This is another 
motivation for choosing different notations for the 
two uses of semaphores. 

Our abstract processor examines the description 
of its current process after each instruction in 
order to determine whether another process wants to 
stop it, or whether it should be preempted in favor of 
a more urgent process in the ready queue. Again, we 
notice in passing, that the processing time required 
for this evaluation can be reduced to tolerable pro- 
portions by the well-known technique of clock inter- 
rupts. 

prqcedure examine(process: tprocess set); 
begi n critical mutex d_o q 

with process~ d__o 
if stop request & section depth = 0 then 
begin complete stop(process); exit idle end 
else 
if not empty(ready queue) then 
if priority > ready queuet.succt.priority then 
besin delay(process, ready queue); exit idle end 

end 

The procedure complete stop is fairly trivial: it 
resets the @top request of a given process, changes 
state to stopped , and transfers all processes waiting 
in its sto p queu ~ to the ready queue. 

The stop and start operations work as follows: 

procedure stop(victim: tprocess set); 
begin critical mutex d_~. 

with victimt do 
if section depth = 0Estate = waiting then 
complete stop(victim) else 
if state ~ stopped the~ 
be$in stop request:= true; 

delay(process, stop queue); 
exit idle; 

end 
end 

procedure start(victim: tprocess set; level: integer); 
begin critical mutex do 

with victimt do 
if state = stopped then 
begin priority: = level; 

delay(victim, ready queue); 
end 

end 
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8. Timin$ Constraints 

It was pointed out in the introduction that the 
scheduling decisions taken at the short-term level 
determine the rate at which the computer system is able 
to respond to real-time events. As an example, consid- 
er a computer system in which storage words can be ac- 
cessed in i ~sec. An outline of the primitives wait, 
signal, start, and stop in typical machine code shows 
that they have roughly the same execution time. Assum- 
ing that an average of ten processes must be examined 
when a given process is transferred to a queue, I find 
that the proposed system can respond to internal and 
external signals within 100-300 ~sec. This means that 
scheduling decisions taken by processes at the medium- 
term level will take at least, say i msec each. Thus, 
it is unrealistic to change priorities more frequently 
than, say, every 20 msec. 

Although these figures are acceptable in most en- 
vironments, there are certainly applications which re- 
quire response to more than 3000-10000 events per sec- 
ond, e.g., speech recognition. The figures may, of 
course, be improved by implementing the primitives in 
hardware. Nevertheless, I believe it is a valid con- 
clusion that decisions taken at the short-term level 
of scheduling by no means are innocent, and a realistic 
designer must be prepared also to change this part of 
the system. 
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