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Abstract

We present a technique for moving objects and threads among het-
erogeneous computers at the native code level. To enable mobility
of threads running native code, we convert thread states among
machine-dependent and machine-independent formats. We intro-
duce the concept of bus stops, which are machine-independent rep-
resentations of program points as represented by program counter
values. The concept of bus stops can be used also for other purposes,
¢.g., to aid inspecting and debugging optimized code, garbage col-
lection elc. We also discuss techniques for thread mobility among
processors executing differently optimized codes.

We demonstrate the viability of our ideas by providing a proto-
type implementation of object and thread mobility among hetero-
gencous computers. The prototype uses the Emerald distributed
programming language without modification; we have merely ex-
tended the Emerald runtime system and the code generator of the
Emerald compiler. Our extensions allow object and thread mobility
among VAX, Sun-3, HP9000/300, and Sun SPARC workstations.
The excellent intra-node performance of the original homogeneous
Emerald is retained: migrated threads run at native code speed be-
fore and after migration; the same speed as on homogeneous Emer-
ald and close to C code performance. Our implementation of mobil-
ity has not been optimized: thread mobility and trans-architecture
invocations take about 60% longer than in the homogeneous imple-
mentation.

We believe this is the first implementation of full object and
thread mobility among heterogeneous computers with threads exe-
culing native code.

1 Introduction

A trend in distributed operating systems has been to either sup-
port communication and remote procedure call [BN84] among het-
erogeneous computers [BCLT87, Gib87] or to support object and
thread/process mobility among homogeneous computers [Jul89,
Dou87].  We have combined the two by extending the Emer-
ald system [BHJL86, BHI"87, Hut87, HRBT87, JLHBSS, Jui89,
RTL™91] to support object and native code thread mobility among
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Figure 1: A network of heterogeneous nodes. Sample configuration
of a local network with heterogeneous workstations among which
we are able to move both objects and native code threads in our
prototype implementation.

heterogeneous computers connected in a local network as shown in
Figure 1. ‘

In this paper, we describe the problems encountered when en-
hancing a homogeneous object system with mobility to support
heterogeneous architectures. We present the concrete techniques
used in our implementation and explain how these techniques are
special cases of more general methods for mapping program states
among machine-dependent and machine-independent formats. We
provide performance numbers for homogeneous and heterogeneous
thread migration between four different architectures.

By object mobiliry we mean that an object in an object based
programming system is able to physically change location within a
set of processor nodes (in our case: workstations). Mobility is fine-
grained in the sense that individual objects, regardless of size, can
move independent of other objects residing on the same processor
node. Mobility is not restricted to mobility of entire address spaces
as in, e.g., the Sprite operating system [Dou87] and the DEMOS/MP
operating system [PM83].

By a thread we mean a light-weight thread of control running



(pscudo-) concurrently with other threads within a single address
space.

By thread mobility in an object system we mean that a thread
is able to move among processor nodes. In the absence of object
mobility. thread mobility is nothing but the ability to perform remote
procedure calls. In the presence of object mobility, an active thread
may be exccuting an operation in an object that 15 being moved.
When an active thread is “inside” a moving object, the part of the
thread state (activation/call stack) describing the thread nside the
object must be moved with the object.

Example 1 Consider an object X residing on node A invoking
a operation 1n an object Y residing on node B, the effect of the
operation bemng that .\ is moved to node " A remote procedure
call 1s performed to invoke the operation in Y. When the thread
returns from executing the operation in Y, execution has to resume
on node (" where X" 1s now residing. The system has to move part
of the call stack of the existing thread from node 4 to node C'. 0

In our model of thread and object mobility, threads follow
objects around as the objects are moved. The reason for this is
that Emerald was designed for robust distributed computing: node
crashes are considered normal, expected events. We want to min-
imize residual dependencies [PM83], ¢.g.. by co-locating threads
with the objects within which they are executing. Our model dif-
{ers from the model used in Obligue {Car95] where the objects are
moved to where the threads are executing.

Object and thread mobility among heterogencous computers
is straightforward, if a system executes machine-independent bytc
codes and operates on machine-independent data. However. the
price of this painless migration is execution inefficiency due to in-
terpretation  Our goal. which we have achieved, is to offer object
and thread mobility while retaining the local efficiency of programs
that comes from executing native code and operating on machine-
dependent data Thus a thread should run no slower after migration
than before and no slower than a comparable thread in a compara-
ble homogeneous system. Furthermore, we provide heterogeneous
mobility without any language modification.

Object and native code thread mobility among heterogeneous
computers is non-trivial because code on heterogeneous computers
may differ in the use of rcgisters, number and type of available
registers. temporary values in registers or on the stack, instruction
sels. program counter values..data formats, and different levels of
optimizations.

The problems caused by differences in use of registers, number
and type of registers. temporary values in registers or on the stack,
and data formats can all be solved by meticulously keeping track
of where different values are placed in object data areas and acti-
vation record data areas on different platforms. Such meticulous
tracking requires extensive compiler and runtime support. How-
ever, this tracking is fundamentally no different than that which is
required for supporting homogeneous object and thread mobility.
Even in the homogeneous case, the compiler must produce exten-
sive information concerning the location and type of variables that
must be converted during the move [Hut87, Jul89]. The advantage
of such extensive compiler support is that node-local operations are
very efficient—as efficient as comparable C programs—because the
runtime overhead is restricted to actual migration operations while
non-migration operations are not affected at all.

The problems caused by differences in instruction sets, pro-
gram counter values, and levels of optimizations are non-trivial
because there is no immediate way of translating from code on one
architecture to code on another architecture. Two important obser-
vations point at a possible solution: 1) object and thread mobility
1s trivial if we execute machine-independent code and work on
machine-independent data, and 2) when moving ordinary data such
as numbers and strings among heterogeneous computers we can

69

convert the data to a machine-independent format at the originat-
ing node and then translate from the machine-independent format
to the machine-dependent format at the receiving node. [f we can
convert the native code and corresponding program counter values
{rom the machine-dependent format used on a given architecture
to a machine-independent format and vice versa then object and
thread mobility among heterogeneous computers becomes possible.
We introduce the concept of bus stops to represent program counter
values in a machine-independent” manner.

To demonstrate our ideas we have taken an existing object based
system with migration, the Emerald system (see [JLHB88]"), and
enhanced it with support for heterogeneous migration. The Emerald
language includes constructs for specifying object mobility (and
thereby also thread mobility) The language can be used without
modification. Our enhanced prototype supports object and native
code thread mobility among VAX?, Sun-3, HP9000/300, and Sun
SPARC workstations. The implementation is meant to demonstrate
the viability of the concept of object and native code mobility among
heterogeneous computers; we have made no attempt to optimize
inter-node performance. However. while providing native code
mobility we retain the performance advantage of executing native
code; intra-node performance on a given processor is independent
of whether the thread was created on the processor or migrated to
the processor, and is the same as on the original Emerald system,
which supports only homogeneous mobility.

We have not attempted to further justify the need for heteroge-
neous mobility; it should be obvious that any homogeneous migra-
tion system can take advantage of transparently becoming a hetero-
geneous migration system,

The rest of this paper consists of three parts In Section 2 we
discuss general issues related to object and thread mobility among
heterogeneous processors. In Section 3 we describe our prototype
implementation and present performance numbers. In Section 4 we
suggest future work on mobility among heterogeneous processors.
Finally. in Sections 5 and 6 we discuss related work and present our
conclusions.

2 Mobility Issues for Heterogeneous Systems

When discussing mobility of data and threads among processors, 1t
is important to specify the characteristics of the data and the threads
to be moved. It is. for example, easy to implement data and thread
mobility among heterogeneous processors, if both data and thread
states always are represented in machine-independent format. Mo-
bility is much harder. if data or thread states are represented in a
format tailored to a specific processor (e.g.. native code) as is the
case for most efficient systems. In this section, we describe impor-
tant characteristics of machine-dependent data and thread states and
in general discuss how to implement mobility given a certain set of
characteristics.

2.1 Migrating Data

For performance reasons, most systems use machine-dependent for-
mats for ordinary data such as numbers, structures, strings. and
vectors. For example. most systems use the processor’s native
representation for integers (little or big endian) and floating point
numbers (IEEE or non-1IEEE). A notable exception is Tcl [Ous94],
which represents all types of data as strings.

If data is represented in difterent machine-dependent formats on
two different processors, mobility of data among the processors is
typically done by converting the data representation to and from a

'Onginally presented at SOSP'87
2Untor tunatety. our lust VAX died duting this project so our petformance numbets
arg incomplete for the VAX case



commonly agreed upon format. For example, in UNIX implementa-
tions, it is common to convert 16 and 32 bit integers to network byte
order before sending them over the network (e.g., when performing
a remote procedure call) and converting them back to host byte
order at the receiving end, e.g., using the htons (3),ntohs (3},
htonl(3), and ntohl (3) library functions [Sun88]. Hetero-
geneous RPC implementations usually also support conversion of
more complicated data types [BCL187, Gib87. Sun84, 10894].

[tis also possible for each processor type to use its own machine-
dependent tormat and then convert data between machine-dependent
formats as required by each data transter [SC88]. Unfortunately,
the number of conversion routines required is quadratic in the num-
ber of data formats. Furthermore, supporting a new data format
requires modifying existing systems by adding the necessary data
conversion routines.

2.2 Migrating Threads

Moving a thread really amounts to moving a thread state. The thread
state is essentially composed of a data component representing the
values of local variables in the activation records on the call stack
and a code dependent component consisting of the thread’s exe-
cutable code and pointers into this code (program counter values).
Note, that in an object thread system, file descriptors and similar
operating system data is usually represented merely as references to
other objects and so is not part of the thread state. The interesting
part is the code dependent component because the data component
of an activation recored is really no different from normal data which
can be moved as described in the previous section.

There are two important characteristics of the code component.
The first characteristic concerns the executable code: is it machine-
dependent or is it machine-independent? Native machine code is
a typical example of machine-dependent code, while source code
and byte codes are typical examples of machine-independent code.
The second important characteristic is whether or not the code at the
originating processor has been subjected to the same transformations
and optimizations as the code on the destination processor.

2.2.1 Migrating Machine-dependent Code using Bus Stops

In this section, we discuss the problem of migrating machine-
dependent code and present the concept of bus stops as an im-
plementation technique.

If the code for a migrating object is machine-independent, e.g.,
byte code, the same code can be executed at both the originat-
ing node and the destination node. The issues related to mobility
among heterogeneous processors is then no different than mobility
among homogeneous processors and can be performed as described
in [JLHBS8S].

However, if the code is machine-dependent, e.g., native code, we
cannot execute the same code on heterogeneous processors unless
we implement interpreters of the various other machine-dependent
formats on each type of processor, which typically is very inefficient.
We must therefore have different versions of the code for execution
on different types of processors. For example, if we have a thread
running on a VAX processor and want to move it to a SPARC
processor, we need machine specific versions of the code for both
types of processors. How we obtain these machine specific versions
is irrelevant in this context.

We see three levels of thread states as illustrated in Figure 2.
The top level consists of thread states resulting from interpretation
of source code. The middle level represents lower-level machine-
independent thread states resulting from execution of, for example,
byte code representations of programs. The bottom level represents
machine-dependent thread states resulting from execution of, for
example, native code. Program execution lower in the hierarchy is
typically faster than program execution higher up.
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Figure 2: The thread state specialization hierarchy. The “MI” forms
are machine-independent forms, and the “MD” forms are machine-
dependent forms. The solid arrows illustrate how compilation can
statically specialize thread states. The dotted arrows indicate our
dynamic transformations of thread states.

The solid arrows illustrate how compiling can specialize pro-
gram code for efficiency purposes. This transformation is pertormed
statically before the program is executed. The dotted arrows indi-
cate how we implement thread state mobility by transforming a
machine-dependent thread state to a machine-independent thread
state and specializing the result to a different but semantically iden-
tical machine-dependent thread state. Such thread state transfor-
mations are performed during program execution when threads are
moved.

If the machine-dependent code is native machine code, likely
differences between the codes include: non-isomorphic sets of reg-
isters, different use of registers, different activation record layout,
different object code (different instructions), and program points
mapping to different program counter values.

The differences in available registers, use of registers, and layout
of activation records are essentially only differences in data repre-
sentation. If we have sufficient information about how registers
and temporary variables in activation records are being used at each
program point, we can convert the call stack with all the relevant
activation records to and from a machine-independent format.

The differences in program counter values for the same program
point are slightly more troublesome. To move program counter
values, we must compute program counter values on the destination
processor that correspond to the program counter values on the
origin processor. However, there may be program counter values for
one type of machine-dependent code that do not have corresponding
program counter values in a different type of machine-dependent
code. Even given the assumption that the same transformations
and optimizations have been performed on the different types of
code, non-correspondence may happen when certain operations are
non-atomic on some processors. Forexample, unlinking an element
from a doubly linked list is atomic on the VAX processor but requires
multiple instructions on the SPARC processor.

One way to avoid this problem is to simply prevent the mobility
layer of the runtime system from ever seeing such program counter
values. We say that the critical program counter values are made
invisible and that the remaining values are visible. Such restriction
of visibility be achieved in that multiple ways.

The Trellis/fOwl system [SCB™86] permitted transfer of control
to the runtime system at any time (e.g., by interrupts), but if the
transfer of control happened in a critical region, the top layer of
the runtime system would execute by interpretation the necessary
number of instructions to exit the critical region before calling the
lower layers of the runtime system that manipulated thread states.



Thus Trelhs/Owl simply avoids having to deal with seeing program
counters inside critical sections.

We may consider any program counter value to point into a crit-
ical region, 1f the program counter value does not have correspond-
ing program counter values for (at lcast) one different architecture.
By always interpreting instructions until reaching a “safe” program
counter value, the thread state manipulating parts of the runtime
system (e.g., the parts implementing thread mobility) will never see
a program counter value that does not have corresponding program
counter values in all other types of machine-dependent code.

The Emerald system relics on its compiler to generate code that
transfers control to the runtime system instead of having the runtime
system preempt the threads {Jul89]. Control can only be transferred
to the runtime system at suitable chosen points: at system calls,
operation invocation entry (procedure/function calls), and at the
bottom of loops. If the same transformations and optimizations
have been performed on all types of machine-dependent code then
choosing these points ensures that the runtime system only sees
program counter values that have corresponding program counter
values for different types of machine-dependent code. In Emerald,
this techmque is also used to provide the garbage collector with
well-defined states for easy pointer identification ([JLHBSS, 192,
Juu93)).

We can enumerate all the program counter values that have
corresponding program counter values in different types ot machine-
dependent code. The number of such program counter values will
be the same on all processor types. We can perform this enumeration
such that it is consistent across the different types of processors. The
assigned numbers then uniquely specify program points independent
of the type of code being executed. These numbers can therefore
be used as machine-independent specifications of program points.

We use the metaphor bus stops to describe the enumerated pro-
gram points. There may be many different sequences of basic
operation that can be performed between bus stops, we do not really
carc about all these different ways, as we only ever stop at the bus
stops. A compiler is free to reorder and optimize between bus stops.

Bus stops can be considered safe migration points where any
native code generator must ensure that the thread state can be trans-
lated to and from a machine-independent form. Given a set of bus
stops. the code generator is free to optimize code between bus stops
in any way, as the optimization transformations are not visible to
the runtime system In this respect, bus stops are related to the
synchromization points of ANSI C [Ame89].

Compiler support is necessary to generate both the information
needed to describe machine-dependent use of registers and tempo-
raries in activation records and the bus stop information. No change
to the generated code is necessary.

A considerable amount of data conversion has to be performed
by the runtime system when moving machine-dependent thread
state Mobility of machine-dependent thread state among hetero-
geneous processors is likely to be more expensive than mobility
of machine-independent thread states. However, the advantage of
converting between machine-dependent and machine-independent
formats is that native code performance can be achieved while thread
slates are not being moved. The solution therefore appears accept-
able when intra-node runtime performance is more important than
thread mobility performance Even when thread mobility perfor-
mance is important, our unoptimized implementation of heteroge-
neous thread mobulity is acceptable in many cases: it takes only
60% longer to perform a thread move as on the version supporting
homogeneous mobility.

In this section. we have presented our concept of bus stops and
described how this technique can be used to achieve heterogeneous
thread mobility while allowing for compiler optimizations between
bus stops. In the next section, we discuss allowing compiler opti-
mization across bus stops.
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abstract codel code2
opl; opl; op2;
op2; switch{}); op5;
op3; op2; switch();
switch(): op3; op4;
op4; op4; opl;
op5; op5; op3;
opb; op6; op6;
Figure 3. Bridging Code Example: Example of how a machine-

independent code sequence (abstract) may be optimized in two dif-
ferent ways by code motion (codel and code?)

2.2.2 Differences in Optimization

Orthogonal to the issue of machine-dependent vs. independent code,
is whether or not the code at the source processor is transformed and
optimized in exactly the same way as the code at the destination pro-
cessor. Even given homogeneous machines, possible differences in
transformations include code motion to change lifetimes of values,
strength reduction, etc.

Thread mobility is fairly easy using bus stops, if no visible
program counter value points into the code in question. So one
way to allow mobility among differently optimized codes is to only
permit code transformations between visible program points. How-
ever, this is likely too restrictive, allowing only small peep-hole
optimizations. Modern compiler techniques often result in more
general code reorganization. In this section we describe how to en-
able thread mobility in the presence of general code transformations
between the source and destination codes.

In contrast to the techniques described in the previous section,
the techniques described in this section are not backed up by a
prototype implementation demonstrating the validity of the tech-
niques. However, the issues are worth considering, and we believe
our suggested techniques to be applicable.

Many different types of program transformations and optimiza-
tions exist. For now. we will only consider various types of code mo-
tion transformations, data changing optimizations such as strength
teduction in loops. and RISCitying transformations, replacing a
complex operation with several simpler ones”. Generalizations are
possible but are outside the scope of this paper.

By code motion we mean reordering of instructions that may
occur on a given path through the program. From the perspective of
thread state mobility, code motion may have the eftect that instruc-
tions are moved around a potentially visible program point. The
instructions may have side effects, so 1t is important that the instruc-
tions are executed exactly once. One way to overcome code motion
differences between different compiled instances of the code is to
build bridging code between the origin and destination instances
of the code. The different instances of code can be viewed as
the super-blocks of Trace Scheduling [Fis81]; the bridging code is
then equivalent to the entry paths to and the exit paths from the
super-block, and the bridging code can be constructed using similar
techniques.

Example 2 Consider the code sequences shown in Figure 3. The
leftmost code sequence is the unoptimized code sequence handed
to the backend of the compiler. The two other code sequences are
examples of how the original code sequence can be modified by
code motion transformations.

Assume that codel is part of the code for an object to be moved,
and the program counter value corresponding to the switch () op-
eration is visible. The program counter may be visible, if switch ()

JRISCification 15 common in. ¢ £.. compilers for the Pentum processor JInt94]
where only a subset ot simple instructions may be executed simultancously with other
mstructions in the processor s other execution pipeline



codel bridge code2
opl; op2;
switch(); opb5;
op2; 777 ¥ op2; switch();
op3; opd; opd;
opd; opS5; opl;
op5; T > op3;
op6; op6;

Figure 4: Example of bridging code necessary to change from using
the code sequence “‘codel™ to using the code sequence “‘code2” at
the "switch ()" in“codel™.

is either a procedure call or a system call. The object is to be moved
to a processor where code2 1s to be used instead of codel. Because
of the code motion transformations, there is no direct correspondent
in code2 to the visible program point in codel (the program point
is not a bus stop). Therefore, we must generate bridging code to
overcome the differences Figure 4 illustrates the bridging code
necessary to overcome the differences between the code sequences
codel and code2.

Operation opl has already been executed at the time control
reaches the switch () operation in codel. There is a bus stop at
operation op6 in both codes, at which point we can start executing
the instructions trom code2. Before doing so, we have to ensure
that operations op2, op3. op4. and opb are executed exactly once.
Operation op3 can be executed in code2. To execute the remaining
operations. we generate anew code fragment containing op2, op4,
and op5. After op5, the code fragment jumps to op3 in code2.
The program counter value at switch () incodel is translated to
the program counter value indicating op2 in the new code fragment.

]

Code motion can be implemented by a very smatll set of primitive
operations on control flow graphs. Assume that the optimization
phase of the compiler is given an initial control flow graph. We
can then duplicate the control flow graph and create links between
identical program points in the two versions of the graph If the
optimization phase ot the compiler optimizes one of the two versions
of the control flow graph by the primitive code motion operations,
each such operation can automaticatly generate the bridging code in
both directions between the original and the optimized control flow
graph. If the primitive code motion operations are all reversible,
reversing the sequence of code motion operations and performing
the reverse of each code motion operation on the optimized version
of the control flow graph will yield the original control flow graph.

Guven the optimized code, the original code. the bridging code
between the two, and a specification of how to construct the bridging
code from the original code (in terms of primitive code editing
operations). it is possible to implement thread state mobility among
processors executing code that has been subject to different code
motion transformations  Assume that a thread has been temporarily
halted at a certain program point in the optimized code on the
originating processor. The program point can be specified by two
components 1) how to create the bridging code to the original.
unoptimized code, and 2) the point 1n the original code reached by
the bridging code At the destination processor. the bridging code
from the visible program point (at the source node) to the original
code can be constructed using the set of primitive editing operations
from 1) We then append to that, the bridging code from the reached
program point in the original, unoptimized code to the optimized
code on the destination processor. The result 1s bridging code from
the optimized code on the origin processor to the optimized code
on the destination processor. By making the thread start cxecuting
the bridging code on the destination processor, we ensure that each
operation 1s executed exactly once (as it should be) and that the
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thread eventually will execute optimized code on the destination
processor 1f it 1s not migrated while still executing the bridging
code.

Example 3 The bridging code shown in Figure 4 could be generated
by first generating bridging code from codel to ““abstract” shown in
Figure 3 and then generating bridging code from “abstract” to code2
The bridging code from codel to “abstract’” consists of operations
op?2 and op3. Bridging from “abstract” to code2 removes op3 and
inserts op4 and op5 in the bridging code. a

The thread state may, of course, be moved once more before it
has finished executing the bridging code. This is not a problem, if
we either avoid bus stops in bridging code or, more generally, if we
retain the description of how the bridging code was constructed (in
terms of primitive editing operations). Bridging code from bridging
code can be constructed the same way as the bridging code between
the original and the optimized control flow graphs.

Strength reduction in loops is an optimization that not only
requires transformation of code but also requires transformation
of data in the thread state. If the compiler provides a complete
description of the transformation. we can convert the thread state
data as necessary while constructing bridging code between the
different types of optimized code.

Instruction selection is a very fundamental operation during
code generation. Assume the compiler backend is given a control
flow graph representation of the program. Some of the operations
in the control flow graph may perhaps be implementable by single
machine code instructions on the processor we generate code for
Other operations (e.g.. unlinking an element from a doubly linked
list) may not be implementable by a single machine instruction.
These more complex operations may be replaced with a sequence
of other operations, which may be implemented by single machine
instructions. Replacing a complex instruction with several simpler
instructions may also be desirable for RISCification purposes.

In the context of thread state mobility, it 1s problematic if a vis-
ible program counter value indicates a program point where some.
but not all, of the instructions resulting from the instruction selec-
tion for a single operation have been executed. 1f the operation that
results in multiple instructions on the originating processor only re-
sults in a single instruction (or in multiple different instructions) on
the destination processor, there is no direct correspondence between
operations in the different codes. Again, a possible solution is to
generate bridging code based on instruction selection information
generated by the compiler.

As mentioned in the beginning of this section, the issue of mobil-
ity of threads between (processors with) code optimized in different
ways is orthogonal to the issue of mobility between heterogeneous
processors. They are independent system dimensions.

2.3 System Dimensions and Compiler Support

There are three system dimensions that are important when consid-
cring object and thread mobility among heterogeneous processors:

1. Machine-dependent vs. machine-independent data,
2 Machine-dependent vs machine-independent code,

3. Existence or non-existence of codes that visibly have been
transformed or optimized differently.

If data is represented in a machine-dependent form at any time on
any type of processor, compiler support is required to enable object
mobility, The type of information required is typically limited to
structure layout and the types of the values kept in the structure slots
Such information is usually also required by symbolic debuggers.
Typically, only a small amount of extra information is required to
support mobility.



To enable thread mobility when threads are executing machine-
dependent code, additional compiler support is required. The usual
debugging information will typically be sufficient to describe most
of the data component of the thread state Extra compiler support
may be nccessary to describe the use of temporary values at each
bus stop. Compiler support is also necessary to associate program
counter values with bus stop numbers. The necessary additional
compiler support is similar in extent to the usual debugging infor-
mation

To enable thread mobility when the executed code at origin and
destination processors may be optimized in different ways. exten-
sive comptler support is required. The backend of the compiler
must generate information completely describing the transforma-
tions performed during code generation. Also, the backend of the
compiler must be tied closely to the runtime systcm for the purpose
of dynamically generating the necessary bridging code. Whereas
the first two system dimensions only require compiler support to
enable the runtime system to transform the machine-dependent for-
mat into a machine-independent format, the possible existence of
codes optimized 1n different ways requires the runtime system to be
able to invoke parts of the compiler at runtime.

3 Implementing Heterogeneous Mobility in the Emerald
Prototype

We have an Emerald prototype implementation of our ideas which
shows that object and thread mobility is possible among hetero-
geneous processors, even if the processors operate on machine-
dependent data and have machine-dependent thread state. The ex-
ecuted code on all types of processors has. however, been subject
to exactly the same optimizations, so the prototype only demon-
strates the solution techniques for the first two of the three system
dimensions identified in the previous section.

The prototype is an extension of the Emerald programming sys-
tem. which originally supported object and thread mobility among
homogeneous processors [JLHB88. Jul89]. In the following sub-
sections, we will discuss the goals for our prototype implementation
(Section 3 1), the features of the original Emerald implementation
that are relevant for this paper (Section 3 2), what changes we had
to make to the Emerald compiler (Section 3 3), changes to the com-
pilation process (Section 3.4), and what changes we had to make
to the Emerald runtime system (Section 3.5). In the final subsec-
tion (Section 3.6) we describe our experience with the prototype
rmplementation.

3.1 Design Goals for Our Implementation

The original goal of the Emerald projects was to demonstrate that
object and thread mobility was possible without sacrificing the run-
time performance obtained by executing native machine code. This
goal was achieved. The goal for our prototype is the same. with
the addition that object and thread mobility must be possible among
heterogeneous processors as well as among homogeneous proces-
SOrs

For the prototype implementation, we did not want to focus on
the performance of the runtime system when performing object and
thread mobility The purpose of the prototype was to prove possible
the concept of native code thread mobility among heterogeneous
processors. Also. we did not find it important to retain the existing
performance of mobility among homogeneous processors. Previous
work has shown that multiple protocols can be used for RPC in a het-
erogeneous environment to avoid the extra overhead of converting
data to a machine-independent format (network format) when per-
forming RPC between homogeneous processors [SC88). The extra
effort to do this was considered unimportant for demonstrating our
points
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3.2 Features of the Original Emerald System

The original Emerald system supports both object and thread mo-
bility among homogeneous processors not using distributed shared
memory [JLHB88]. The processors are workstations connected in
a local network. Fine-grained objects can be extracted from the
address space of one processor and moved to another processor. All
activation records describing mnvocations of methods in the moved
objects are moved along with the objects, thereby implementing
thread mobility.

The original Emerald system supports object and thread mobility
on networks of homogeneous workstations of one of the following
four types: VAXen running BSD-Unix or Ultrix, Sun-3s running
SunOS. HP9000/300s running HP-UX, and Sun SPARC worksta-
tions running SunOS.

All data in Emerald consists of objects. Objects may refer to
objects on other workstations It is transparent to the programmer
(modulo performance) whether or not a given object resides on
the same processor as an object containing a reference to the ob-
ject. In the implementation, references are object identifiers. OIDs,
uniquely identifying objects regardless of their location. The only
way threads can share data is by having references to the same ob-
jects. Since references are network transparent, threads may move
independently of each other.

The Emerald compiler generates so-called templates which de-
scribe objects and activation records in sufficient detail to enable the
runtime system to perform the necessary pointer swizzling and to
update the distributed synchronization data structures when objects
are moved from one processor to another. The templates do not
distinguish between different forms of simple data, i.e.. integers,
floating point values, strings, etc. The Emerald calling conven-
tions include callee-saved registers, and the templates for activation
records include sufficient information to distinguish registers hold-
ing pointer values from registers holding simple data and to find
pointers in the callee-saved register area.

Only one template is used to describe activation records for in-
vocations of a particular method Both registers and slots in the
activation record structure may be used to hold values of different
types over the lifetime of the activation record. but the compiler en-
sures that a given slot will only hold either simple data or pointers
throughout the lifetime of the activation record. The initial design of
the Emerald system allowed for multiple templates for each activa-
tion record, each template being valid for a certain range of program
counter values. Initial experiments found that multiple templates
could be avoided by a combination of careful compiler design and
the bus stops technique [Jul89].

Apart from the template information necessary for the runtime
system to support mobility among homogeneous processors, the
Emerald compiler also generates debugging information for use by
a symbolic debugger. The debugging information identifies the
exact locations and types of both global object variables and local
variables.

Object code is encapsulated in code objects identified by OIDs.
Code objects are immutable objects and can therefore by “moved”
to another processor by duplication. Localization and mobility of
code objects are performed by the same mechanisms performing
localization and mobility of all other types of objects.

The Emerald runtime system only ever sees a restricted set of
program counter values. From the runtime system'’s perspective,
the object/user code is responsible for transferring control to the
runtime system by system calls. The compiler is responsible for
generating code that transfers control to the runtime system when
necessary’. Transfer of control is performed by a system call.

4An mterrupt handler can reset the stack linut pointer to indicate to the uset code
that control must be tansfenied to the runtime system  Checks for avarlable stack space
ate performed by the user code at procedure cally and at the bottom of loops  The code
sequence for method mnvocations must check for stack spuce avalability anyway, so



The only program counter values visible to the runtime system are
therefore at method invocations (the program counter values being
return addresses stored in activation records), at the bottom of loops,
and at system calls 1n the user code. Thus the original Emerald used
a simple version of the bus stop technique

3.3 Changes to the Emerald Compiler

To enable thread mobility among heterogeneous processors. the
compiler must generate information about bus stops, activation
records layout, object layout, etc. 1t 15 not necessary to make any
change to the generated machine code

The visible program counter values in the original Emerald sys-
tem fulfill all the requirements of bus stops. A bidirectional mapping
between program counter values and bus stop numbers is needed
by the runtime system to convert program counter vatues to bus
stop numbers and vice versa. To generate the bus stop mapping, we
changed the backend procedures for generating the procedure call
sequences and system call sequences to add entries to the mapping

While the debugging information generated by the Emerald
compiler 1s sufficient to identify the location of all local variables,
1t does not specity which variables are dead or alive at a given pro-
gram point  Consequently, it does not specify which of potentially
many variables are currently stored 1n a register or activation record
slot shared by multiple variables Also, the template information
does not indicate the number and types of temporary variables live
at a grven program point. The template information must therefore
be augmented with information for each bus stop on which vari-
ables currently “own" shared locations and the number and types of
temporary variables in use The code for adding an entry to the bus
stop mapping captures and saves information about the number and
types of live temporary variables and which local variables “own”
shared registers or slots in the activation record at that program
pont

With one exception, these were the only changes necessary to
the Emerald compuler!

The VAX processor can perform unlinking of a doubly linked
list as an atomic operation. The Motorola 68000 processors (used
in Sun-3 and HP9000/300 workstations) and SPARC processors
cannot perform the unlinking as an atomic operation. As unlinking
15 used to implement monitors [Hoa74] in Emerald, a system call
is required to ensure the atomicity of the unlinking operation The
bus stops on all types of processors must be isomorphic to each
other. We therefore have to add an entry to the bus stop mapping
for each unlink instruction on the VAX processor, even though no
system call 15 performed at that point in the code This bus stop is
an exit onfy program point meaning that conversion from the bus
stop number to the program counter value may be necessary, but
not the other way around. Again. no changes are made to the code
to be executed, we only need to generate template information on
the side describing the program point

3.4 Changes to the Emerald Compilation Process

Aside from the changes to the compiler described in Section 3.3,
we also made two crude changes to the compilation environment—
short-cuts which in a production system would be replaced by more
suitable compiler modifications.

The problem 15 that we need to have several compiled versions
of aprogram one for each architecture For our prototype. we chose
a primitive solution the programmer simply compiles the program
once on each architecture. However, for the implementation to
function correctly, it is necessary that the unique object identifiers,
OIDs, are the same for all versions of the program

most of the uset code polls are “fiee™ Roughly the same method 15 used to implement
stgnals in Standawnd ML ot New Jersey {Rep90]
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In a homogeneous processor environment, the same object code
can be used on all workstations, and it makes scnse to assign object
code OIDs. In a heterogeneous processor environment, only object
code compiled for a specific type of workstation can be used. It is
therefore no longer sufficient to describe object code with an OID
and expect the mobility subsystem to fetch the correct code It
is, however, desirable to retain the OIDs to describe the semantic
content of a code object We want the OIDs to be the same for
semantically equivalent code objects generated for different types
of workstations. We therefore need to augment OIDs with another
mechanism to distinguish code objects.

We did not add such a mechanism to our prototype In the proto-
type implementation, the programmer has to manually set the OID
counter to ensure synchronization. While this is clearly impractical,
the lack of this feature is not necessary to prove possible the concept
of mobility among heterogeneous processors

In a fully functional implementation, the compiler has to main-
tain synchronization between OIDs for 1somorphic object codes for
different processors One possible method for doing so0 is to use a
program database. When a file is compiled, the program is stored
in the program database. When it 1s subsequently compiled on an-
other processor, information from the program database 1s used to
ensure that exactly the same OIDs are used Storing programs in
a program database would also allow the runtime system to auto-
matically invoke the compiler to generate processor specific object
codes in case the programmer had not manually compiled the pro-
gram for all the used types of workstation In our prototype, the
programmer manually has to ensure the availability of object codes
for all the types of workstations that an object may possibly move
to, i.e., compile the program once on each type of workstation

When a node recerves an object for which it does not have any
code, it searches for the code. first by checking on its disk, thereafter
by searching the network We use NFS (SUN Network File System
[SGK™85]) to create the illusion that the object code always resides
in the local disk repository. When the kernel needs object code with
a specific OID 1t thus gets the correct version from disk instead of
from another (potentially heterogeneous) Emerald kernel.

3.5 Changes to the Emerald Runtime Kernel

The changes to the Emerald runtime kernel fall in two different
categories' addition of procedures to convert to and from network
format, and changes to the marshalling and unmarshalling code.

Conversion of ordinary data structures to and from network
format is performed by a set of hand-written conversion routines
The code is not optimized for speed but for easy of maintenance
Composite data structures are converted by recursive descent of the
structure. Depending on the processor type, 2-3 procedure calls
are performed to convert a simple integer value to or from network
format.

Conversion of program counter values to and from bus stop
numbers are performed using the bus stop tables generated by the
comptler New table lookup routines were necessary to perform
the conversion, as we wanted to extract the associated information
about local variables and temporaries at the same time.

Marshalling of data structures for transport over the network
already existed in the original Emerald system. The marshalling
code was instrumented to convert the data structures to and from
network format as part of the marshalling process.

An additional layer of marshalling was necessary to convert ac-
tivation records to and from a machine-independent format We 1n-
vented a new activation record format and used that as the machine-
mdependent format. The new activation record format stored all
local variables in the activation record rather than in registers. The
compiler generates sufficient template information to enable the
runtime Kernel to convert the machine-dependent activation records



to and from the machine-independent activation records. While
conceptually simple, this transformation requires a fair amount of
work and 15 easy to get wrong.

A machine-dependent activation record may require more or
fewer bytes than the corresponding machine-dependent activation
record. depending on the nature of the procedure (method) in ques-
tion. This created an extra problem at the destination processor,
as the tlemplate and debugging mformation required us to translate
the youngest activation records first. Since we could not know be-
forchand the size of the machine-dependent activation record stack
(thrcad fragment). we could not perform an initially correct place-
ment of the activation records in the allocated thread stack space. We
therefore had to do a relocation of all activation records within the
allocated stack space after the conversion to the machine-dependent
format

3.6 Experience with and Performance of the Prototype

The prototype has been implemented. It can move objects and
threads among all four types of workstations. The prototype has
been tested on a small number of test cases It is cumbersome to
ensure code object OID synchronization manually (as described in
Section 3 4) In a production system, this problem 1s readily solved
by a program database.

Our additions to the Emerald system have not affected the code
generated by the compiler. Intra-node computations will therefore
execute exactly the same instructions (and in the same order) on the
original Emerald system and our enhanced Emerald system. The
intra-node runtime performance (comparable to that provided by C
compilers [Hut87] and on the SPARC architectures at times even
better [Mar92]) should therefore in theory be exactly the same on
both systems Measurements on both systems verify this trivially.
Thus we have achieved one of our major goals: to provide hetero-
geneous thread mobility at the same time as preserving node-local
performance.

In contrast. there is a rather large difference in performance for
inter-node computations between the original Emerald system and
the enhanced Emerald system Table I shows the relative costs of
moving a small thread (13 variables in the fragment being moved)
among hosts in the original and the enhanced system. The cost is
given for moving a thread from a machine of one architecture to
a machine of a ditferent architecture and back, for a total of two
thread moves. The time costs for moving athread X -V — X
are the same as the cost for moving a thread Y — X — Y. The
SPARC machines are SparcStation SLC workstations with 20MHz
SPARC processors and 16MB RAM running SunOS 4.1.3. The
Sun3 machine is a Sun3/100 workstation with 16MB RAM running
SunOS 4.1.1 We only have one Sun3 machine left, so we cannot
include timings for Sun3<+Sun3 thread mobility. We no longer
have two identical HP9000/300 workstations, so we have instead
used the two we had that were most similar in terms of perfor-
mance HP9000/300; is an HP Apollo 9000 Series 400 Mode! 4335
with 72MB RAM. 1t is based on a 33MHz MC68040 processor.
HP9000/300; is an HP Apollo 9000 Series 300 Model 385 with
64MB RAM. It is based on a 25SMHz MC68030 processor. Both
workstations are running HP-UX 9.0 'We unfortunately lost our last
VAX workstation shortly after getting the enhanced Emerald sys-
tem up and running®. The performance figure for mobility among
VAX workstations on the original Emerald system was obtained on
VAXstation 2000 workstations running Ultrix 2.1. The workstations
are all connected by a 10Mbit/s Ethernet network.

We attribute the greater part of the difference in performance
to our inefficient implementation of the routines to convert simple
data structures between machine and network format. An average

Sy N . .
We have unfortunately presetved only prelinunary performance figures from when
the cnhanced system was running on VAX workstations
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Systems Original | Enhanced A
SPARC+SPARC 40 ms 63 ms | 57%
SPARC+»Sun3 N/A 122 ms -
SPARC+ HP9000/300, N/A 52 ms -
SPARC+»HP9000/300, N/A 57 ms -
SPARC+ VAX N/A N/A -
Sun-3Sun-3 65 ms N/A -
Sun-3»HP9000/300, N/A 109 ms -
Sun-3++HP9000/300, N/A 113 ms -
Sun-3&VAX N/A N/A -
HP9000/300, +>HP9000/300, 28 ms 44 ms | S7%
HP9000/300, <> VAX N/A N/A -
HP9000/300; > VAX N/A N/A | -
VAX < VAX 79 ms N/A -
VAX & VAX 48 ms 81 ms | 68%

Table 1' Thread Mobility Timings: Time costs of moving a small
thread (13 local variables in the fragment being moved) among
various types of machines on the original Emerald system and the
enhanced Emerald system. Each cost is for moving the thread from
one machine to another machine and back for a total of two thread
moves. Results marked N/A are not available because our last VAX
has died and we have only one Sun-3 left. The last line showing the
cost for VAX <> VAX thread migration is set apart. as the numbers are
for migration of a smaller thread from a different program between
more modern VAXen than VAXstation 2000 workstations running
an earlier version of our prototype

of 1-2 calls of conversion procedures are performed for each byte
being transferred over the network even when ignoring the cost of
converting activation records to and from a machine-independent
format. We believe the performance penalty of the enhanced system
would be much less if we used more efficient routines for conversion
of simple data structures.

We have not performed any experiments to clarify how much of
the performance penalty is caused by the way the conversion rou-
tines are implemented. Therefore, we can only guess that we could
reduce the performance penalty by 50% by using more efficient
routines.

In summary, we do pay for the ability to do cross architecture
invocations and thread and object mobility, but we retain the full
advantage of native code compilation, namely that applications run
at full speed locally.

3.7 Source Code

The source code for our prototype implementation is available on
the SOSP’95 CD and via either of the addresses shown in Figure 5.

Note, that there are two implementations of Emerald: one as
described here which we now call UC-Emerald and a newer but
non-distributed byte-coded version called BC-Emerald which has a
compiler written in Emerald. For further information refer to the
addresses listed in Figure S.

4  Future Work

Our prototype implementation demonstrates that object and thread
mobility among heterogeneous processors is possible. Our imple-
mentation is however inefficient and impractical to use  An obvious
next step is of course to perform an optimized implementation. so
the true overhead of converting object and thread states to and from
network formats can be measured.



e-mail emerald@diku.dk
FTP:

WwWw

ftp.diku.dk: /pub/diku/dists/emerald/
http://www.diku.dk/research-groups/distlab/emerald/

Figure 5: For further information on heterogencous Emerald, use either of the above addresses.

This work also suggests two possible directions for {urther re-
search.

1. Automatic generation of bridging code from transformation
descriptions.

2. Use of thread state transformations in other programming
tools

To our knowledge. there 1s no implementation demonstrating
that it 18 possible to convert (move) a thread fragment based on code
optimized 1n one way to a thread fragment based on code optimized
inadifferent way. We have suggested one technique to do this based
on the generatton of bridging code between machine-dependent and
machine-independent codes, but we have no prototype implemen-
tation to demonstrate the concept A prototype implementation
demonstrating that thread mobility is possible in the presence of
differently optimized code for the same methods would be the fi-
nal proot that native code thread mobility among processors with
heterogeneous code 1s possible with sufficient compiler support.

It may not be practical to generate bridging code at compile time
between all visible program points in the machine-dependent and
machine-independent object codes. Bridging code could instead be
generated on demand. It should be possible to generate the bridging
code from a description of the transformations performed by the
backend.

The techmque of generating bridging code when moving machine-
dependent thread state may find uses in other programming tools
The use of bus stops already has uses in debugging tools (see the
related work section).

The automatic generation of bridging code may also be useful
for debugging optimized code. A common problem with debugging
optimized code is that there is no one program counter value that
corresponds exactly to a given point in the program text In the
situation where a programmer wants to insert a breakpoint at a given
point in the program text for which there is no one program counter
value. the debugger could insert bridging code in the optimized
program to ensure that the desired thread state was created The
breakpoint would then be in the bridging code Using bridging code
to obtain the desired program points for inserting breakpoints does
nol solve the problem of debugging optimized code, as it cannot be
used to recreate thread states 1n post-mortem debugging.

5 Related Work

There is work on progress on other implementations demonstrating
that mobility of object and native code threads among heterogeneous
processors is possible. There is also work related to the techniques
discussed in this paper.

5.1 Mobility among Heterogeneous Processors

Jan Kelander at DIKU has modified the data conversion layer of
our prototype implementation. He used the ISODE suite of tools
to base the networking layer in Emerald on the 1SO protocols and
automatically generate code for conversion of data to a network
format. He also worked on an extension of the ISODE tools to
describe thread states in a machine-independent manner for the
purposes of transferring a thread state over the network [Kgl94].
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Peter Smith at the University of British Columbia, Canada, is
investigating techniques to implement a heterogeneous migration
package to be used primarily with C but which should be usable
for other languages [Smi95]. His system enables mobility of entire
(native code) processes among Sun-3 and Sun-4 workstations. The
programs must all be written in a type-safe subset of C and must be
compiled by a special C compiler The codes for a single program
compiled for heterogeneous processors have all been subject to
exactly the same transformations His preemption points are similar
to our bus stops.

Sgren Brandt at the University of Aarhus, Denmark, is plan-
mng a migration and checkpointing package [Bra%94] for the BETA
programming language [MMPN93]. The package should enable
checkpointing and migration of objects, including process objects.
among heterogeneous workstations running BETA. This work 1s
still in the design stage

5.2 Relevant Techniques

IN the Taos operating system [Pou91], all programs are compiled
to a machine-independent byte code representation. At load-time,
the byte code representation is compiled on the fly to native code.
Whtle we have no detailed information on the compuilation process,
we speculate it will be rather simple in order to be fast. Since the byte
code version 1s avatlable, 1t should be relatively easy to uncompile
the code, identify bus stops, and translate the code dependent part
of the activation records into a machine-independent format

If the byte code representation contains sufficient debugging
information to translate the data areas and the data component of the
machine state to and from a machine-independent form. it should be
relatively easy to implement process mobility among heterogeneous
processors in the Taos operating system

Java and TeleScript programs are also dynamically compiled
from a machine-independent format to a machine-dependent format
[Sun95. Tel95] It should be possible to implement mobility of Java
and TeleScript processes among heterogeneous processors under
the same conditions as for Taos processes. It is our understanding
that the Taos, Java, and TeleScript compilers differ from the SELF
compiler [HU94, Hol195] by not being very aggressive with respect
to optimizations

The OSF’s Architecture-Neutral Distribution Format (ANDF
[TNO94)) is a low-level machine-independent program representa-
tion. Programs are statically specialized to specific processors by in-
stallers. 1t should be possible to implement process mobility among
heterogeneous processors using ANDF as the machine-independent
format

The use of bus stops is already in use in several program-
ming tools (e.g., interrupt points in [DS84] and [H6195] and stop-
ping powis 1n [Hen82]), and garbage collection (e.g., the Emer-
ald Garbage Collector [JLHBS88, JJ92. Juu93}], and GC-points in
[DMH92]). In some systems, coarse-graind bus stops have been
used for migration, e.g., mobility in Eden was achieved by check-
pomnting an object, which dumped the object to stable storage, and
subsequently moving the stored image and restarting it on another
node {ABLN85, Bla85].

Mobility of threads/processes among heterogeneous processors
relies on mapping information from a machine-dependent program
format to a machine-independent program format and vice versa.
Program slicing using optimized program representations also relies



on maintaining relationships between an optimized representation
of the program and the onginal program representation (the source
code or a parse tree) [Tip95. Ern94]. We expect future work in
this area to develop techniques to maintain relationships between
abstract values describing the unoptimized and optimized program
representations respectively. even in the presence of data changing
transformations such as strength reduction in loops Such tech-
miques are likely to be directly useful for generating bridging code
1n the presence of data changing transformations.

Dynamic translation of optimized code to unoptimized code is
performed in the latest version of the SELF system [Ho195]. They
limit the number of optimizations they perform in order to be able
10 do the deoptimization.

A number of other systems offer native code process or thread
mobility, e.g.. Sprite [Dou87] and DEMOS/MP [PM83], but they
only support such mobility among homogeneous processors.

6 Conclusion

We have shown how object and thread mobility among heteroge-
neous computers can be implemented by converting both normal
data and program state to and from a machine-independent format
during move operations. We have presented the bus stop technique
for handling migration of active threads. We have a prototype im-
plementation in Emerald, which demonstrates the general technique
for 1dentically optimized code on all architectures. To the Emerald
programmer, heterogeneity is transparent—the Emerald langauge
1s unchanged. Our prototype implementation retains the intra-node
efficiency of the original Emerald. i.c., node-local threads run at
full native code speed We have also outlined techniques to enable
mobility even for threads executing code generated with different
optimization levels.
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