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Abstract

We present a technique for moving objects and threads among het-

erogeneous computers at the native code level. To enable mobility

of threads running native code, we convert thread states among
machine-dependent and machine-independent formats. We intro-

duce the concept of bLts stops, which are machine-independent rep-
resentations of program points as represented by program counter
values, The concept of bus stops can be used also for other purposes,

<~.g., to aid inspecting and debugging optimized code, garbage col-
lection e~c. We also discuss techniques for thread mobility among
processors executing differently optimized codes.

We demonsti-ate the viabi lily of our ideas by providing a proto-
type implementation ot’ object and thread mobility among hetero-
gWCOUS computers, The prototype uses the Emerald distributed

progt-amming language without modification; we have merely ex-

tended the Emerald runtime system and the code generator of the

Emerald compiler. Our extensions allow object and thread mobility
among VAX, Sun-3, HP9000/300, and Sun SPARC workstations.

The excellent intra-node performance of the original homogeneous

Emerald is retained: migrated threads run at native code speed be-
t’ore and after migration; the same speed as on homogeneous Emer-

alci and close to C code performance. Our implementation of mobil-
ity hm not been optimized: thread mobility and trans-architecture
invocations take about 60% longer than in lhe homogeneous imple-

mentation.
We believe this is the first implementation of full object and

[hrcad mobility among heterogeneous computers with threads exe-
cu(ing native code.

1 Introduction

A trend in distributed operating systems has been to either sLlp-

porl communication and remote procedure call [BN84] among het-
erogeneous computers [BCL+87, Gib87] or to support object and

thread/process mobility among homogeneous computers [Ju189,
Dou87]. We have combined the two by extending the Emer-
ald system [B HJL86, BHJ+87, Hut87, HRB+87, JLHB88, Ju189,
RTL+91 ] to support object and native code thread mobility among
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Figure I: A network of heterogeneous nodes. Sample configuration

of a local network with heterogeneous workstations among which
we are able to move both objects and native code threads in our

prototype implementation.

heterogeneous computers connected in a local network as shown in
Figure 1.

In this paper, we describe the problems encountered when en-

hancing a homogeneous object system with mobility to support
heterogeneous architectures, We present the concrete techniques
used in our implementation and explain how these techniques are

special cases of more, general methods for mapping program states
among machine-dependent and machine-independent formats. We
provide performance numbers for homogeneous and hetet-ogeneous
dwead migration between four different architectures,

By objecf )nobility we mean that an object in an object based

programming system is able to physically change location within a
set of processor nodes (in our case: workstations), Mobility is fine-

grained in the sense that individual objects, regardless of size, can
move independent of other objects residing on the same processor

node. Mobility is not restricted to mobility of entire address spaces
as in, e.g., the Sprite operating system [Dou87] and the DEMOS/MP

operating system [PM83].
By a thread we mean a light-weight thread of control running
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(pscLKIo- ) concurrently with other threads within a single address

Spocc,

By 1/7wad mobdi~y in an object system we mean that a thread
is ,trlc m move ,unrmg processor nodes. In the absence of object
mobility. thrcacl nmbI Iity is nothing but the abillty to perform remote
procedure calls In the presence of object tnoblllty, an active thread
may be executing an operation in an object that IS being moved.

When an active thread is “inside” a moving object, the parl of the

[hrcaci state (activation/cali stack) describing tbe thread Inside the
object most be moved with the object.

Example 1 Consider an object .Y residing on node A invoking

a opwotion In on object 1- residing on node B, the effect of tbe
opcmtlon being tha~ .Y is moved to node C’ A remote procedure

call IS pei-t’ormcd to invoke the operation in }’. When the thread
returns from execuling (he operation in Y, execution has to resume

on node (“’ where l’ IS now residing. The system bas to move part
of the c.]11stack of the existing thread from node .4 to node C’. ❑

In our model of thread and object mobility, threads follow

objects around as the objects are moved. The reason for this is
that Emerald was designed for robust distributed computing: node

crashes are considered normal, expected events. We want to min-
imize residual dependencies [PM83], e.g., by co-locating threads

with the objects within which they are executing, Our model dif-

fers from the model used in Oblique [Car95] where the objects are

moved to where the threads are executing.
Object and thread mobility among heterogeneous computers

is straightforward, it’ a system executes machine-independent byte

codes and operates on machine-independent data. However. the
price ot’ this painless migration is execution inefficiency due to in-
terpretation Oor goal. which we have achieved, is to offer object
and thread mobility whi Ie retaining the local efficiency of programs

that comes from executing native code and opemting on machine-
dependent data Thus a thread should run no slower after migration
than bet’ore and no slower than a comparrtbie thread in a compma-

ble homogeneous system. Furthermore, we provide heterogeneous

mobility without {my language modification,

Object ancl Oalive code thread mobility among heterogeneous

computers is non-trivial because code on heterogeneous computers
may differ in the use 01’ registers, number and type of available
rcglsters, temporary values in registers or on the stack, instruction
~c[s, program counter values,. data formats, and different levels of

opumizations.
The problems caused by differences in use of registers. number

and type of registers, temporary values in registers or on the stack,

and data formats can all be solved by meticulously keeping track

of where different values are placed in object data areas and acti-
vahon record data areas on different platforms. Such meticulous

tracking requires extensive compiler and runtime support, How-

ever, this tracking is fundamentally no different than that which is
required for supporting homogeneous object and thread mobility.

Even in the homogeneous case, the compiler must produce exten-
sive tnforrnation concerning the location and type ot’ variables that
most be converted during the move [Hut87, Ju189]. Tbe advantage
of such extensive compiler support is that node-local operations are

very efficient-as etlicient as comparable C programs—because the
ruo[ime overbead is restricted to actual migration operations while
non-migration operations are not affected at all.

The problems caused by differences in instruction sets, pro-
gram counter values, and levels of optimization are non-trivial
because there is no immediate way of translating from code on one
architecture to code on another architecture, Two Important obser-
vations point at a possible solution: 1) object and thread mobi Iity
IS trivial i f we execute machine-independent code and work on
machine-independent data, and 2) when movirrg ordinary data such
as numbers and strings among heterogeneous computers we can

convert the data to a machine-independent format at the originat-

ing node and then translate from tbe machine-independent format

to the machine-dependent format at the receiving node. If we can
convert the native code und corresponding program counter values
from the machine-dependent format used on a given ‘wchitecture

to a machine-independent format and vice versa then object and

thread mobility among heterogeneous computers becomes possible.
We introduce the concept of /m.s stops to represent program counter

values in a machine-i ndependent*manner.

To demonstrate our ideas we have taken an existing object based

system with migration, the Emerald system (see [JLHB881’ ). and
enhanced it with support for heterogeneous migration. Tbe Emerald

language includes constructs for specifying object mobility (and

thereby also thread mobi Iity) The language can be used without
modification. Our enhanced prototype supporls objecl and native

code thread mobillty among VAX?, Sun-3, HP9000/300,” and Sun
SPARC workstations. The implementation is meant to demonstrate

the viability of the concept of object and native code mobility among
heterogeneous computers: we have made no attempt to optimize
inter-node performance. However, while providing native code

mobility we retain the performance advantage of executing native

code; intra-nocle performance on a given processor is independent
of whether the thread was created on the processor or migrated to
the processor, and is the same as on the original Emerald system,

which supports only homogeneous mobility.
We have not attempted to further justify the need for heteroge-

neous mobility; it should be obvious that any homogeneous migra-
tion system can take advantage of transparently becoming a hetero-
geneous migtzmon system..

The rest of this paper consists of three parts Jn Section 2 we
discuss general issues related to object and thread mobility among
heterogeneous processors. In Section 3 we describe our prototype

implementation and present performance numbers. In Section 4 we
suggest future work on mobility among heterogeneous processors.
Finally. in Sections 5 and 6 we discuss related work and present our

conclusions.

2 Mobility Issues for Heterogeneous Systems

When discussing mobi Iity of data and threads among processors, It
is important to specify the characteristics of the data and the threads

to be moved, It is. for example, easy to implement data and thread

mobi Iity among heterogeneous processors, if both data and thread
states always are represented in machine-independent format. Mo-

bility is much harder. if data or thread states are represented in a

format tailored to a specific processor (e.g.. native code) as is the
case for most efficient systems. In this section, we describe impor-

tant characteristics of machine-dependent data and thread states and

in general discuss how to Implement mobility given a certain set of

characteristics.

2.1 Migrating Data

For performance reasons, most systems use machine-dependent for-
mats for ordinary data such as numbers, structures, strings. and
vectors, For example. most systems use the processor’s native
representation for integers (little or big endian) and tloating point
numbers (IEEE or non-IEEE). A notable exception is Tcl [OUS94],
which represents all types of data as strings.

If data is represented in different machine-dependent formats on

two different processors, mobility of data among the processors is
typically done by converting the data representation to and from a

10llgindly prewntcd tit SOSP’87
1UI]ioI lUI1:IE]Y. our lmt VAX died C7UI!ll~ MIS l)t OJUt \o OU] \)e! !0! IIIWIW nunlhet \

are lmotllpkw for the VAX case
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commcmly agreed uprrn format. For example, in UNIX implementa-

tions, it is common to convert 16 and 32 bit integers to network byte

order before sending them over the network (e. g., when performing
a remote procedure call) and converting them back to host byte

order at the receiving end, e.g., using the htons ( 3 ) , ntohs ( 3 ) ,
htonl ( 3 ) , and ntohl ( 3 ) library functions [Sun88]. Hetero-

geneous RPC implementations usually also support conversion of’

more complicated data types [BCL+87, Gib87, Sun84, 10 S94].
It is also possible for each processor type to use its own machine-

dependent format and then convert data between machine-dependent
formats as required by each data transfer [SC88]. Unfortunately,

the numbet- of conversion routines required is quadratic in the num-
ber of’ data formats. Furthermore, supporting a new data format

requil-es modifying existing systems by adding the necessary data
conversion routines.

2.2 Migrating Threads

Moving a thread really amounts to moving a thread state. The thread

state is essentially composed of’ a data component representing the
values of local variables in the activation records on the call stack
and a code dependent component consisting of the thread’s exe-
cutable code and pointel-s into this code (program counter values).
Note, [hat in an object thread system, file descriptors and similar
operating system data is usually represented merely as references to

other objects and so is not part of’ the thread state. The interesting
part is the code dependen[ component because the data component

ofan activation recored is really no different from normal data which

can be moved as ciescribed in the previous section.

There are two important characteristics of the code component.
The first characteristic concerns the executable code: is it machine-

dependent or is it machine-independent? Native machine code is

a typicai example of machine-dependent code, while source code
and byte codes are typical examples of machine-independent code,
The second important characteristic is whether or not the code at the

originating processor has been subjected to the same transformations
and optimization as the code on the destination processor.

2.2.1 Migrating Machine-dependent Code using Bus Stops

In this section, we discuss the problem of migrating machine-

dependent code and present the concept of’ bus stops as an im-

plernen[ation technique.

If’ the code for a migrating object is machine-independent, e.g.,
byte code, the same code can be executed at both the originat-
ing node and the destination node. The issues related to mobility
among heterogeneous processors is then no different than mobility
among homogeneous processors and can be performed as described
in [JLHB88].

However, if the code is machine-dependent, e.g., native code, we
cannot execute the same code on heterogeneous processors unless
we implement interpreters of the various other machine-dependent
I’orrnats on each type of’pl-ocessor, which typically is very inefficient,
We must therefore have different versions of the code for execution

on different types ot’ processors. For example, if we have a thread
running on a VAX processor and want to move it to a SPARC
processor, we need machine specific versions of the code for both
types of processors, How we obtain these machine specific versions
is irrelevant in this context,

We see three levels of thread states as illustrated in Figure 2.
The top level consists of thread states resulting from interpretation

of source code. The middle level represents lower-level machine-
independent thread states resuiting from execution of, for exampie,

byte code representations of programs. The bottom level represents
machine-dependent thread states resulting from execution of, for

example, native code. Program execution lower in the hierarchy is
typically faster than program execution higher up.

Source code level Source

.- .- ---- -.

1

. . . . . . . . . . . . . . . . . . . .

Intermediate code level

Byte code level
MI] M12

,< ~

-“””---/\

..:
.- . . . ..--..--””:

,.

+’ i

Native code Ievei MD I MDZ

Figure 2: The thread state specialization hierarchy, The “MI” forms

are machine-independent forms, and the “MD” forms are machine-

dependent forms, The solid arrows illustrate how compilation can

statically specialize thread states, The dotted arrows indicate our
dynamic transformations of’ thread states.

The soiid arrows illustrate how compiiing can specialize pro-
gram code for efficiency purposes. This transformation is performed

statically before the program is executed. The doLted arrows indi-
cate how we impiement thread state mobiiity by transforming a
machine-dependent thread state to a machine-independent thread

state and specializing the result to a different but semantically iden-
tical machine-dependent thread state, Such thread state transfor-

mations are performed during program execution when threads are

moved.

If the machine-dependent code is native machine code, Iikeiy
differences between the codes include: non-isomorphic sets of reg-

isters, different use of registers, different activation record layout,
different object code (different instructions), and program points
mapping to different program counter values.

The differences in available registers, use of registers, and layout

of activation records are essentially oniy differences in data repre-
sentation. If we have sufficient information about how registers

and temporary variables in activation records are being used at each

program point, we can convert the tail stack with ail the relevant

activation records to and from a machine-independent format,

The differences in program counter values for the same program

point are slightly more troublesome. To move program counter
values, we must compute program counter values on the destination
processor that correspond to the program counter values on the

origin processor, However, there may be program counter vaiues for
one type of machine-dependent code that do not have corresponding
program counter values in a different type of machine-dependent

code. Even given the assumption that the same transformations
and optimization have been performed on the different types of’
code, non-correspondence may happen when certain operations al-e
non-atomic on some plmcessors. For example, unlinking an element

from a doubly linked iist is alotnic on the VAX processor but requires

multiple instructions on the SPARC processor,
One way to avoid this problem is to simpiy prevent the mobility

layer of the runtime system from ever seeing such program counter
vaiues. We say that the critical program counter values are made
invisible and that the remaining values are visibie. Such restriction
of visibility be achieved in that muitiple ways,

The TreiIis/Owi system [SCB+86] permitted transfer of controi
10 the runtime system at any time (e.g., by interrupts), but if the
transfer of control happened in a critical region, the top layer of

the runtime system would execute by interpretation the necessary
number of instructions to exit the critical l-egion before tailing the

lower iayers of the runtime system that manipulated thread states,
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TIIUS Trellis/Owl sltnply avoids having to deal with seeing program
counters inside critical sections.

Wc may consider any program counter value to point into a crit-

ical region. it’ the program counter value does not have correspond-

ing program counter values for (at Icmt) one different architecture.
By always interpreting instructions until reaching a “sa{e” program

coontcr value, the thread state manipulating parts of the runliinc

system (e.g.. the parts implementing thread mobility) will never see
a progratn counter value that does not have corresponding program
counter values In all other types of machine-dependent code.

The Emerald system relics on its compiler to generate code that
t]-ansfers control to the runtime system instead of having the runtime
system preempt the threads [Ju189], Control can only be transferred

to Lhc runtime system at sult:~ble chosen points: at system calls,

operahon invocation entry (procedure/function calls), and at the

bottom of loops. If’ the same transformations and optimlzatlons

have been performed on all types of machine-dependent code then

choosing these points ensures that the runtime system only sees

program counter values that have corresponding program counter
values for chtlerent types of machine-dependent code, [n Emerald,

dlls techmc]ue is also used to provide the garbage collector with
well-defined states for easy pointer identification ([ JLHB88, JJ92,

Juu93]).
We can enumerate all the program counter values that have

corresponding program counter values indifferent types of machine-
dependent code, The number of such program counter values will

be the same on all processor types. We can perform this enumeration
such that it is consistent across the different types of processors. The

assigned numbers then uniquely specify program points independent

ot’ the type of code being executed. These numbers can therefore

be used as machine-independent specifications of program points.
We use the metaphor bus srops to describe the enumerated pro-

gram points. There may be many different sequences of basic

operation that can be performed between bus stops, we do not really
care about all these different ways, as we only ever stop at the bus

stops. A compiler is free to reorder and optimize between bus stops.
Bus stops can be considered safe migration points where any

native code generator must ensure that the thread state can be trans-
lated to and from a machine-independent form, Given a set of bus

stops, the code generator is t’rec to optimize code between bus stops

in any way, as the optimization transformations are not visible to
the runtime system In this respect, bus stops are related to Lhe

sym+ron~za~ion points of ANSI C [Ame89].

Compiler support is necessary to genera[e both the information
needed to describe machine-dependent use of registers and tempo-

raries in activation records and the bus stop information. No change
tothegelrerutdcodei~ necessary

A considerable amount of data conversion has to be performed

by Lhe rutmme system when moving machine-dependent thread
state Moblllty of machine-dependent thread state among hetero-

geneous processors is likely to be more expensive than mobility

of machine-independent thread states. However, the advantage of
converting between machine-dependent and machine-independent
formats is that native code performance can be achieved while thread
mates are not being moved. The solution therefore appears accept-

able when intra-node runtime performance is more important than
threod mobility performance Even when thread mobility perfor-
mance is important, our unoptlrnized Implementation of heteroge-

neous thread mobility IS acceptable In many cases: it takes only
60% longer to perform a thread move as on the version supporting
homogeneous mobility.

[n this section. we have presented our concept of bus stops and

described how this technique can be used to achieve heterogeneous
thread moblllty while allowing for compiler optimization between
bus stops. In the next section, we discuss allowing compiler opti-
mization across bus stops.

abstract code I code2

Opl; Opl; Opz ;
op2 ; switcho ; op5;

op3 ; op2 ; switcho ;

switcho ; op3 ; op4 ;

op4 ; op4 ; Opl;

op5; op5; op3 ;
0P6 ; 0P6; 0P6;

Figure 3, Bridging Code Example: Example of how a machine-
independent code sequence (abstrrtct) may be optimized in two dif-

ferent ways by code motion (code I and code2)

2.2.2 Differences in Optimization

Orthogonal to the issue of machine-dependent vs. independent code,

is whether or not the code at the source processor is transformed and

optimized in exactly the same way as the code at the destination pro-
cessor, Even given homogeneous machines, possible differences in

transformations include code motion to change lifetimes of values,

strength reduction, etc.
Thread mobility is fairly easy using bus stops, if no visible

program counter value points into the code in question. So one

way to allow mobility among differently optimized codes is to only

permit code transformations between visible program points. How-
ever, this is likely too restrictive, allowing only small peep-hole

optimization. Modern compiler techniques often result In more
general code reorganization, In this section we describe how to en-

able thread mobility in the presence of general code transformations

between the source and destination codes.

In contrast to the techniques described in the previous section.

the techniques described in this section are not backed up by a
prototype implementation demonstrating the validity of the tech-

niques. However, the issues are worth considering, and we believe

our suggested techniques to be applicable.
Many different types of program transformations and optinliza-

tions exist. For now. we will only consider various types of code mo-

tion transformations, data changing optimization such as strength
Ieduction in loops. and RI SCifying transformations, replacing a

complex operation with several simpler ones{. Generalizations are
possible but are outside the scope of this paper.

By code motion we mean reordering of instructions that may

occur on a given path through the program. From the perspective of

thread state mobility, code motion may have the effect that instruc-
tions are moved around a potentially visible program point, The
instructions may have side effects, so It is important that the instruc-

tions are executed exactly once. One way to overcome code motion

differences between different compiled instances of the code is to
build bridging code between the origin and destination instances
of the code. The different instances of code can be viewed as

the super-blocks of Trace Scheduling [Fis81 ]; the bridging code is
then equivalent to the entry paths to and the exit paths from the
super-block, and the bridging code can be constructed using similar

techniques.

Example 2 Consider the code sequences shown in Figure 3. The

leftmost code sequence is the unoptimized code sequence handed
to the backend of the compiler. The two other code sequences are
examples of how the original code sequence can be modlfted by

code motion transformations.
Assume that code 1 is part of the code for an object to be moved,

and the program counter value corresponding to the switch ( ) op-
eration is visible. The program counter maybe visible, It swi tch ( )

3171SC!hctitlon !s common In. c x,. compilm tol- the Penuum plocesjo[- [Int941

where only a ~ubset ot vmple ltwwctlon~ nmy be ewcate.d slmultanems!y WI III other

lnstructlom in tk procesjol “f da execution pipeline
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COdc1

Opl ;

switcho ;
op2 ;
op3 ;

op4 ;

op5 ;
op6 ;

bridge code2

op2 ;
op5;

*
op2 ; switcho ;

op4; op4 ;
op5; Opl;

+
op3 ;

0P6;

Figure 4: Example of bridging code necessary to change from using

[he code sequence “code I” to using the code sequence “code2” at
the “switch ( )” in “codeI”.

is either a procedure call or a system call. The object is to be moved

to a processor whel-e code2 IS to be used instead of code 1. Because
of the code motion transformations, there is no direct correspondent
in code2 to the vislblc program point in code 1 (the program point
is not a bus stop). Therefore, we must generate bridging code to
overcome the differences Figure 4 illustrates the bridging code
necessary to overcome the differences between the code sequences

code 1 and code2,
Operation OP1 has already been executed at the hme control

leaches the switch ( ) operation in codel. There is a bus stop at
operation op6 in both codes, at which point we can start executing
the Instructions t’rom code2. Before doing so, we have to ensure
that operzmons op2, OP3. OP4. and op5 are executed exactly once.

Operation OP3 can be executed in code2. To execute the remaining

operations, we generate a new code fragment containing op2, OP4,
and op5. After op5, the code fragment jumps to op3 in code2,
The program counter value at switch ( ) in code 1 is translated to

the program counter value indicating OP2 in the new code fragment.
❑

Code motion can be implemented by a very small set of primitive

operations on control flow graphs. Assume that the optimization
phase of the compiler is given an initial control flow graph. We

can then duplicate the control flow graph and cretate links between

identical program points in the two versions of the graph It’ the

optimization phase of the compiler optimizes one ot’the two versions

of the control flow g-mph by the primitive code motion operations,
each such operation can automatically generate the bridging code in
both dil-ections between the original and the optimized control flow
gr.lph.Ifthe primitive code motion operations are all reversible,

reversing the sequence of code motion operations and performing
the reverse ot’ each code motion operation on the optimized version

ot’ the control flow graph will yield the original control flow graph,
Glvcn the optimized code, the original code. the bridging code

between the two. and a specification of how to construct the bridging
code from the original code (In terms of primitive code editing
opel-ations). iL is possible to implement thread state mobility among
processors executing code that has been subject to different code
motion translol-rnatlrms Assume that a thread has been temporarily
halted at a cei-tain progrmm point in the optimized code on the

origlnaung processor. The program point can be specified by two
components I ) how to create the bridgng code to the original.
unoptimized code, and 2) the point In the original code reached by
the bridging code At the destination processor, the bridging code

from the visible program point (at the source node) to the original
code can be constructed using the set of primitive editing operations
from I ) We then append to that, the bridging code from the reached

pl-ogram point in the original, unoptimized code to the optimized

code on the destination processor, The result IS bridging code from
the optimized code on the origin processor to the optirmzed code
on the destination processor, By making the thread start executing
the bridging code on the destination processor, we ensure that each
operation M executed exactly once (as it should be) and that the

thread eventually will execute optimized code on the destination
processor If it is not migrated while still executing the bridging
code.

Example 3 The bridging code shown In F1.gure4 could be generated
by first generating bridging code from code 1 to “abstract” shown in
Figure 3 and then generating bridging code from “abstract” to code2

The bridging code from code 1 to “abstract” consists of operations

op2 and op3. Bridging from “abstract” to code2 removes op3 and

inserts 0P4 and op5 in the bridging code. ❑

The thread state may, of course, be moved once more before it
has finished executing the bridging code. This is not a problem, if
we either avoid bus stops in bridging code or, more generally, if we

retain the description of how the bridging code was constructed (in

terms of primitive editing operations). Bridging code from bridging
code can be constructed the same way as the bridging code between
the original and the optimized control flow graphs,

Strength reduction in loops is an optimization that not only
requires transformation of code but also requires transformation

01 data in the thread state. if the compiler prowdes a complete
description of the transformation. we can convert the thread state

data as necessary while constructing bridging code between the

different types of optimized code.
Instruction selection is a very fundamental operation during

code generation. Assume the compiler backend is given a control
flow graph representation of the program. Some of the operations
in the control flow graph may perhaps be implementable by single

machine code instructions on the processor we generate code for

Other operations (e.g.. unlinking an element from a doubly linked
list) may not be implementable by a single machine instruction,
These more complex operations may be replaced with a sequence

of other operations, which may be implemented by single machine
Instructions. Replacing a complex instruction with several simpler
instructions may also be desirable for RISCification purposes.

In the context of thread state mobility, it IS problematic if a vis-

ible program counter value indicates a program point where some,

but not all, of the instructions resulting from the instruction selec-
tion for a single operation have been executed. If the operation that
results in multiple Instructions on the originating processor only re-

sults in a single instruction (or in multiple different instructions) on

the destination processor, there is no direct correspondence between

operations in the different codes. Again, a possible solution is to
generate bridging code based on instruction selection information

generated by the compiler.
As mentioned in the beginning of this section, the issue of mobil-

ity of threads between (processors with) code optimized in different
ways is orthogonal to the issue of mobi Iity between heterogeneous
processors, They are Independent system dimensions,

2.3 System Dimensions and Compiler Support

There are three system dimensions that are important when consid-

cring object and thread mobility ~mong heterogeneous processors:

1, Machine-dependent vs. machine-independent data,

2 Machine-dependentvs machine-independent code,

3. Existence or non-existence of codes that visibly have been
transformed or opti mized differently.

If data is represented in a machine-dependent format any time on

any type of processor, compiler support is required to enable object
mobility, The type of information required is typically limited to

structure layout and the types of the values kept In the structure slots
Such information is usually also required by symbolic debuggers.
Typically, only a small amount ofextra information is required to
support mobility,
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To enable thread mobility when threads are executing machine-

ciel~cndetlt codc, ~lddltion:ll cotnpiler support is required. The usual

debugging information will typically be sufficient to describe most
ot’ the ciata component of the thread state Extra compiler support
may be ncccssary to describe the use of temporary values at each
bus stop. Compiler support is also necessary to associate program
counter values with bus stop numbers. The necessary additional

compilcl-strppol”t is \imiiarin extent to the usual debugging infor-
mation

To enable thread mob! Ilty when the executed code at origin and

destination processol-s may beoptimlzed indifferent ways. exten-

$IVC compIleI- sLIppoI-t is t-equired. The backend of the compiler

must generate int’ortnation completely describing the transforma-

tions performed during code generation. Also, the backend of the

c(~mpi]cr must betiedclosely totheruntimesystcm for the purpose

ofdynamiczrlly generating the necessary bridging code. Whereas

the Iirst two system chmensions only require compiler support to

cnahle the runtime system totransform the machine-dependent for-
mat into o machine-independent format, the possible existence of

codes optimized In different ways requires the runtime system to be
able to Invoke parts of the compiler at runtimc.

3 Implementing Heterogeneous Mobility in the Emerald
Prototype

Wc have an Emerald prototype implementation of our ideas which
shows that object and thread mobility is possible among hetero-

geneous processors. even if the processors operate on machine-
depeIlcient dtll~l:~lld llavetn~lchitle-dependentthreadstate. Theex-

ecuteci code on all types of processors has. however, been subject
to exactly the same optimizations, so the pl-ototype only demon-
strates the solution techniques for the first two of the three system

dimensions identified in the previous section.
The prototype is an extension of the Emerald programming sys-

[em. which originally supported object and thread mobility among

homogeneous processors [JLHB88. Ju189]. lnthe following sub-
scctlons, we WIII discuss the goals for our prototype implementation

(Section3 l), the t’catul-es of theoriglnal Emerald implementation
that arct-ekwant fo[ this paper (Section 32), what changes we had

to make to the Emerald compiler (Section 3 3), changes to the conl-

pilation process (Section 3.4), and what changes we had to make

to the Emerald runtime system (Section 3.5). In the final subsec-
tion (Section 3.6) we dcscrlbe our experience with the prototype
lmplementltion.

3.1 Design Goals for Our Implementation

Tbe original goal of the Emerald projects wasto demonstrate that

object and thread mobility was possible without sacrificing the run-
tirncperformance obtained byexecuting native ln:lchine code. This

goal was achieved. The goal for our prototype is the same, with
the addition that object and thread mobility must be possible among

heterogeneous processors as well as among homogeneous proces-
sors

For the prototype implementation, we dld not want to focus on

Lhe performance of the runtime system when performing object and
thread mobillty Thepurpose of theprototype wasto prove possible

the concept of native code thread mobility among heterogeneous
processors. Also, wedidnot tinditimportant toretain the-existing
pel'form:ltlce ofmobility among homogeneous processors. Previous
work has shown that multiple protocols can be used for RPC in a het-
erogeneous environment toavoid theextra overhead of converting
data to a machine-independent format (network format) when per-
fol-mlng RPC between homogeneous processors [SC88]. The extra

effort to do this wasconsldered unimportant for demonstrating our

points

3.2 Features of the Original Emerald System

Theoriglnal Emerzdd system supports both object andthreadmo-

bility among homogeneous processors not using distributed shared
memory [JLHB88]. The processors are workstations connected in
a local network. Fine-grained objects can be extracted from the

address space ofoneprocessor andmoved toanothcr processor. All
activation records describing invocations of methods in the moved

objects are moved along w~th the objects. thereby implementing

thread mobility.
The original Emerald system supports object and thread mobility

on networks of homogeneous workstations of one ot’ the following

fourtypes: VAXen runmn+ BSD-Unlxor Ultrix, Sun-3s running

SunOS, HP9000/300s runmng HP-UX, and Sun SPARC worksta-

tions running SunOS.

All data in Emerald consists of objects. Objects may refer to

objects on other workstations It is transparent to the programmer

(modtrlo performance) whether or not a given object resides on

the same processor as an object containing a reference to the ob-
ject. In the implementation, references are object identifiers. OIDS,
uniquely identifying objects regardless of their location. The only
way threads can share data is by having references to the same ob-

jects. Since references are network transparent, threads may move

independently of each other.
The Emerald compiler generates so-called templates which de-

scribe objects and activation records in sufficient detai I to enable the

rurdimc system to perform the necessary pointer swizzling and to
update the distributed synchronization data structures when objects

are moved from one processor to another. The templates do not

distinguish between different forms of simple data, i.e.. integers,
floating point values, strings, etc. The Emerald calling conven-
tions include callee-saved registers, and the templates for activation
records include sufficient information to distinguish registers hold-
ing pointer values from registers holding simple data and to find

pointers in the callee-saved register area.

Only one template is used to describe activation records for in-
vocations of a particular method Both registers and slots in the

. .
activation record structure may be used to hold values of d[tterent

types over the lifetime of the activation record, but the compiler en-
sures lhat a given slot will only hold either sitmple clata or pointers

throughout the lifetime of the activation record. The initial design of’

the Emerald system allowed for multiple templates for each activa-

tion record, each template being valid for a certain range of program

counter values. Initial experiments found that multiple templates
could be avoided by a combination of careful compiler design and
the bus stops technique [Ju189].

Apart from the template information necessary for the runtime

system to support mobility among homogeneous processors, the

Emerald compiler also generates debugging information for use by
a symbolic debugger. The debugging information identifies the

exact locations and types of both global object variables and local
variables.

Object code is encapsulated in code objects identified by OIDS.

Code objects are immutable objects and can therefore by “moved”

to another processor by duplication. Localization and mobility of
code objects are performed by the same mechanisms performing
localization and mobility of all other types of objects.

The Emerald runtime system only ever sees a restricted set of
program counter values. From the runtime system’s perspective.

the objecthrser code is responsible for transferring control to the
runtime system by system calls. The compiler is responsible for

generating code that transfers control to the runtime system when
necessary~. Transfer of control is performed by a system call.

4An !nterwpt handler cm reset the wick Itmt poIIIter to indtwte to the UWI code

th;lt cnntrol mmt lx a :tntt’med to the I-unti Ime \ y~tem Checks tiOI-:wwl:tble stock $pwe

aI e pwf”ortned by the user code J pl mxdwe cidl$ imi tit the bottom cd IO(W The wdt

\ecl Llt!Ict! for Illdl[)d 1Ilv[lutl[)ll( IIIUS1 check t’01 StXk SP,lIX :lVW Iilb)l) ty ilt)yWtl j,, so
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The only program counter values wsible to the tunhme system are

therefore at method invocations (the pl-ograrn counter values being

return addresses stored in activation records), at the bottom of loops,

onci at system calls In the user code. Thus the original Emerald used

a simple version of the bus stop technique

3.3 Changes to the Emerald Compiler

To enable thread mobi Iity among heterogeneous processors, the

compiler must generate information about bus stops, activation
lrecords layout, object layout, etc. lt IS not necessary to make any

change to the generated machine code
The visible progtmm counter values in the original Emerald sys-

tem fLIl [ill al I the requirements of bus stops, A bidirectional mapping

between progl-am counter values and bus stop numbers is needed
by the runtime system to convert program counter values to bus

stop numbers and wce versa. To generate the bus stop mapping, we
changed the backend procedures for generating the procedure call
sequences and system call sequences to add entries to the mapping

W hl Ic the debugging information generated by the Emerald

compllcr is soificlent to idenhfy the location of all local variables,
It does not specify which variables are dead or allve at a given pro-
gram point Consequently, it does not specify which of potentially

many variables are currently stored In a register or activation record

slot shared by multlple variables Also, the template information

does not indicate the number and types of temporary variables live

at a g!ven program point. The template information must therefore

be augmented with Information for each bus stop on which varl-

nbles currently “own” shared locations and the number and types of
tempormy variables in use The code for adding an entry to the bus

stop rnapplng captures and saves information about the number and
lypes ot’ live temporary variables and which local variables “own”
shai-ed registers or slots in the activation record at that program

pol nt
With one exception, these were the only changes necessary to

the Emerald compiler!
The VAX processor can perform unlinklng ot’ a doubly llnked

Ilst as an atomic operation. The Motorola 68000 processors (used

in Sutl-3 and HP9000/300 workstations) and SPARC processol-s

cannot perform the unlinklng as an atomic operation, As unlinking
IS used to implement monitors [Hoa74] in Emerald, a system call
is requll-ed to ensure the atomicity of the unlinking operation The

bus stops on all types of processors must be isomorphic to each
other. We therefore have to add an entry to the bus stop mapping
for each unlink instruction on the VAX processor, even though no
system call IS performed at that point in the code This bus stop is

an e.u[ 017/i program point meaning that conversion from the bus
stop nutnbel- to the program counter value may be necessary, but
not (he other way around. Again, no changes are made to the code

to be executed, we only need to generzzte template information on
the sldc describing the program point

3.4 Changes to the Emerald Compilation Process

Aside from the changes to the compiler described in Section 3.3,
we also made two crude changes to the compllcitlon environment—

short-cuts which in a production system would be replaced by more

suitable compiler modifications,
The problem IS that we need to have several compiled versions

of a program one for each architecture For our prototype, we chose

a pt-imitive solution the programmer simply compiles the proglmm
once on each architecture. However, for the implementation to
function correctly. it is necessary that the unique object identified-s,
01 Ds, are the same for all versions of the program

III[]\[ tot the u\eL ~ode Imlk ,,re “f~ee” Roughly [he \mlc ]n]ethud Ih used to in]plen?cn~

VW(IS II] Stmdwd ML ot Ne\v .ha%y / Rep901

In a homogeneous processor environment, the same object code
can be used on all workstations, and it makes sense to assign objecl

code OIDS. In a heterogeneous pt-ocessor environment, only objec[

code compiled for a specific type of workstation can be used. [t is
therefore no longer sufftclent to describe object code with an OID

and expect the mobility subsystem to fetch the correct code 11
is, however, desirable to retain the OIDS to describe the semantic

content of a code object We want the OIDS to be the same for
semantically equivalent code objects generated for different types

of workstations. We therefore need to augment OIDS with another

mechanism to distinguish code objects,
We dld not add such a mechamsrn to our prototype In the proto-

type implementation, the programmer has to manually set the OID

counter to ensul-e synchronization. While this is clearly impl-actical,
the lack of this feature is not necessary to prove possible the concept
of mobillty among heterogeneous processors

In a fully functional implementation, the compiler has to main-
tain synchronization between 01 Ds for Isomorphic object codes fo!-
different processors One possible method for doing so is to use a

progl-am database. When a file is compiled. the program is stored
in the program database, When it IS subsequently compiled on an-
other processor, Information from the program database IS used to

ensure that exactly the same OIDS are used Storing programs in
a program database would also allow the runtime system-to auto-
matically Invoke the compiler to generate processor specific object
codes in case the programmer had not manually compiled the pro-

gram for all the used types of workstation In our prototype, the

programmer manually has to ensure the availability of object codes
for all the types of workstations that an object may possibly move

to, i.e.. compile the program once on each type of workstation

When a node rece]ves an object for which it does not have any
code, it searches for the code, first by checking on its disk, thereafter

by searching the network We use NFS (SUN Network File System

[SGK+85]) to create the illusion that the object code always resides
in the local disk repository. When the kernel needs object code with

a specific OID It thus gets the correct version from disk instead of

from another (potential] y heterogeneous) Emerald kernel,

3.5 Changes to the Emerald Runtime Kernel

The changes to the Emerald runtime kernel fall in two different
categories addltlon of procedures to convert to and from network
format, and changes to the marshalllng and unmarshaliing code.

Conversion of ordinary data structures to and from network
format is performed by a set of hand-written conversion routlncs
The code is not optimized for speed but for easy of maintenance

Composite data structures al-e convel-ted by recursive descent of the
structure. Depending on the processor type, 2–3 procedure calls
are performed to convert a simple integer value to or from network

format.

Conversion of program counter values to and from bus stop

numbers are performed using the bus stop tables generated by the
comp[ler New table lookup routines were necessary to perform
the conversion, as we wanted to extract the associated information

about local variables and temporaries at the same time.
Marshalllng of data structures for transport over the network

already existed in the original Emerald system. The marshaling
code was instrumented to convert the data structures to and from

network format as part of’ the marsholling process,
An additional layer of marshaling was necessary to convert ac-

tivation records to and from a machine-independent format We in-
vented a new activation record format and used that as the machine-
Independent format. The new activation record format stored all
local variables in the activation record rather than in registers. The

compiler generates sufficient template information to enable the
rurmme kernel to convert the machine-dependent activation records
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[o and from the machine-lnclependent activation records. While
conceptually simple, this transt’ormmlon requires a fair amount of

work and IS easy to get wrong.

A machine-dependent activation record may require more or
fewer by[es than the corresponding machine-dependent activation

rccol-d. depending on the nature of the procedure (method) in ques-

tion. This created an extra problem at the destination processor,

as the (emplate and debugging information required us to translate

Lhe youngest activation records first. Since we could not know be-
forehand the size O( Lhc m:lchlne-dependent activation record stack

(tbi-c,ld t’r.~gment). we could not perform an initially correct plzrce-

tnen( ol(he achvatlon records in the allocated thread stack space, We

{herelorc had 10 do a relocation of all achvadcsn records Wl(hin (he

allocated stack space after the conversion to the machine-dependent

Iormat

3.6 Experience with and Performance of the Prototype

The prototype has been implemented, It can move objects and

threads among all four types of workstations. The prototype has

been tested on a small number of test cases It is cumbersome to
ensore code object OID synchronization manually (as described in

Section 34) Inaproduction system, this problem ls readily solved

by a program database.

Our additions to the Emerald system have not affected the code
generlted by the compiler, Intra-node computations will therefore

execule exactly the same instructions (and in the same order) on the
original Emerald system and OU]-enhanced Emerald system. The
intra-node runtime performance (comparable to that provided by C

compilers [Hut87] and on the SPARC architectures at times even
better [Mar92]) should therefore in theory be e.mcfly r/w Mmw on

both systems Measurements on both systems verify this trivially,

Thus wehaveachieved oneofour major goals: toprovidehetero-

geneous thread moblllty at the same time as preserving node-local

performance.

In contrast. there is a rather large difference in performance for
Inter-node computations between the original Emerald system and

the enhanced Emerald system Table 1 shows therelative costs of

mov]ngasmal] thread (13 variables inthefragment being moved)
among hosts in the original rmd the enhanced system, The cost is
gvven for moving a thread from a machine of one architecture to

a machine of a different architecture and back, for a total of two
thread moves. Thetlme costs formovingathread A7 ~ Y ~ X

are the same as the cost for moving a thread Y ~ X ~ }’. The

SPARC machines are SpzrrcStation SLC workstations with 20MHz

SPARC processors and 16MB RAM running SunOS 4.1.3. The
Sun3machln eisaSun3/100workstatio nwith 16MB RAM running

SrrnOS4.1.l Weonlyhaveone Sun3 machine Icl’t, so we cannot

include timings for Sun3+hSun3 thread mobillty. We no longer

have two identical HP9000/300 workstations, so we have instead

used the two we had that were most similar in terms of perfor-
mance HP9f)00/3001 isan HP Apollo 9000 Serles400Mode1433s
with 72MB RAM. It is based on a 33 MHz MC68040 processor.
Hp9000/30f)l is an HP Apollo 9000 Series 300 Model 385 with
64MB RAM, It is based on a25MHz MC68030 processor. Both
workstation srrrerunmn gHP-UX9.O Weunfortunate]y lost our last

VAX workstation shortly after getting the enhanced Emerald sys-
tem up and runnings. The performance figure for mobility among
VAX workstations on the original Emerald system was obtained on

VAXstation 2000workstations running Ultrix 2.1. Theworkstations
are all connected by a IOMbit/s Ethernet network.

We attribute the greater part of the difference in performance

to our inefficient implementation of the routines to convert simple
datastrucmres between machine and network format. An average

Systems Original Enhanced A

SPARC*SPARC 40 ms 63 ms 57%
SPARC#3un3 NIA 122 ms –

SPARC*HP900013001 NIA 52 ms –

SPARCH H P9000/300~ NIA 57 ms –

SPARC*VAX N/A N/A -

Sun-3 HSun-3 65 ms NIA -

Sun-3~ HP900()/3()() I NIA 109 ms –

Sun-3 *H P9000/300~ NIA l13ms –

Sun-3+ VAX NIA NIA -
HP900()/3()0 , u HP9000/300z” 28 ms 44 ms 57%

HP9000/300 I wVAX NIA NIA -
H P9000/300 , e-VAX NIA NIA –

VAX-VAX 79 ms NIA -

VAX+ VAX 48 ms 8 I ms 68%

Table I Thread Mobility Timings: Time costs of moving a small
thread (13 local variables in the fragment being moved) among
various types of machines on the original Emerald system and the

enhanced Emerald system. Each cost is for moving the thread from

one machine to another machine and back for a total of two thread
moves, Results marked N/A are not available because our last VAX

has died and we have only one Sun-3 left, The last line showing the

cost for VAX++ VAX thread migration is set apart, as the numbers are
for migration of a smaller thread from a different program between

more modern VAXen than VA Xstation 2000 workstations running

an earner version of our prototype

of 1–2 calls of conversion procedures are performed for each byte
being transferred over the network even when ignoring the cost of
converting activation records to and from a machine-independent

format. We belleve the performance penalty of the enhanced system

would be much less if we used more efficient routines for conversion

of simple data structures,
We have not performed any experiments to clarvfy how much of

the performance penalty is caused by the way the conversion rou-
tines are implemented, Therefore. we can only guess that we could

reduce the performance penalty by 50% by using more efficient

routines.
In summary, we do pay for the ability to do cross architecture

invocations and thread and object mobility, but we retain the full

advantage of native code compilation, namely that applications run

at full speed locally.

3.7 Source Code

The source code for our prototype implementation is available on

the SOSP’95 CD and via either of the addresses shown in Figure 5.

Note, that there are two implementations of Emerald: one as
described here which we now call UC-Emerald and a newer but
non-distributed byte-coded version called BC-Emerald which has a

compiler written in Emerald. For further information refer to the
addresses listed in Figure 5.

4 Future Work

Our prototype implementation demonstrates that object and thread
mobility among heterogeneous processors is possible. Our imple-

mentation is however inefficient and impractical to use An obvious
next step is of course to perform an optimized implementation. so
the true overhead of converting object and thread states to and from
network formats can be measured.

; We thaw unt’m IUIMM y ptew w(I ml y prel ImIn:u’y per formmce figures trom when

the cnh,inmd \y~km WAS running on VAX wolkw,tion~
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e-mail emerald@diku .dk

FTP: ftp.diku.dk: /pub/diku/dists/emerald/

Www http://~.diku.dk/research-groups/distlab/emerald/

Figure 5: For further Information on heterogeneous Emerald, use either of the above addresses.

This wotdi also suggests Peter Smith at the University of British Columbia, Canada, is

search.

1. Automatic generation
descriptlcms,

[WO possible Liirecllons for Iurther re-

ot’ bridging code from transformation

2. Use ot’ thread state transformations In other programtmng
tools

To our hnowledge, there IS no implementation demonstrating

that it IS possible to convert (move) a thread fragment based on code
optitmzed In one way to a thread fragment based on code optimized

in a dil’t’et-ent way. We have suggested one technique to do this based

on the generation of bridging code between machine-dependent and
machine-independent codes, but we have no prototype implemen-
tation to demonstrate the concept A prototype Implementation

demonstrating that thread mobility is possible in the presence of
dlt’ferently optimized code for the same methods would be the fi-
nal proof that native cocic thread mobility among processors with

betel-ogcneous code IS possible with sufficient compiler support.

It may not be practical to generate bridging code at compile time

between all visible program points in the machine-dependent and

machine-independent objecl codes. Bt-idging code could instead be
generaled on demand. It should be possible to generate the bridging

code from a description of the transformations performed by the

backend.
The techmque of generating bridging code when moving machine-

dependent thread state may find uses In other programming tools
The use of bus stops already has uses in debugging tools (see the

related work section).

The automatic generation of bridging code may also be useful
fol- debllgging optimized code. A common pl-oblem with debugging

optimized code is that there is no one program counter value that

cot-responds exactly to a given point in the program text In the
situation where a programmer wants to insert a breakpoint at a given

point in the program text for which there is no one program counter
value, the debugger could insert bridging code in the optimized
program to ensure that the desired thread state was created The

breakpoint would then be in the bridging code Using bridging code
to obtain the desired program points for inserting breakpoints does
nol solve the problem of’ debugging optimized code, as it cannot be
used to recreate thread states In post-mortem debugging.

5 Related Work

Thele is wet-k on p]-ogress on other implementations demonstrating

that moblllty ot’object and native code threads among heterogeneous

processors is possible. There is also work related to the techniques
discussed in this paper.

5.1 Mobility among Heterogeneous Processors

Jan Kdlandel- at DIKU has modified the data conversion layer of
OLII- prototype implementation, He used the ISODE suite of tools

to base the networking layer in Emerald on the 1S0 prolocols and
aotomatlcally generate code for conversion of data to a network

format, He also worked on an extension of the [SODE tools to

describe thread states in a machine-independent manner for the
purposes of transferring a thread state over the network [K@194].

Investigating techmques to implement a heterogeneous migration

package to be used primarily with C but which should be usable
for other languages [Sm195]. His system enables mobility of entire

(native code) processes among Sun-3 and Sun-4 workstations. The
programs must al I be written in a type-safe subset of C and must be

compiled by a special C compiler The codes for a single program
compiled for heterogeneous processors have all been subject to

exactly the same transformations His preemptm poim are similar
to our bus stops.

S@en Brandt at the University of Aarhus, Denmark, is plan-
mng a migration and checkpointlng package [Bra94] for the BETA
programming language [MMPN93]. The package should enable

checkpointing and migration of objects, including process objects.
among heterogeneous workstations runmng BETA. This work IS
still In the design stage

5.2 Relevant Techniques

IN the Taos operahng system [Pou91 ], all programs are compiled

to a machine-independent byte code representation. At load-time,

the byte code representation is compiled on the fly to native code.
While we have no detailed information on the compilation process,
we speculate it will be I-ather simple in order to be fast. Since the byte

code version IS avmlable, It should be relatively easy to uncompile

the code, identify bus stops, and translate the code dependent part
of the activation records into a machine-independent format

[f the byte code representation contains sufficient debugging

information to translate the data areas and the data component of the
machine state to and from a machine-independent form, it should be

relatively easy to implement process mobility among heterogeneous

processors in the Taos operating system

Java and TeleScl-ipt programs are also dynamically compiled
from a machine-independent format to a machine-dependent format

[Sun95, Te195] It should be possible to implement moblllty of Java

and TeleScript processes among heterogeneous processors under
the same conditions as for Taos processes. It is our understanding

that the Taos, Java, and TeleScript compi Iers differ from the SELF
compiler [HU94, Hi3195] by not being very aggressive with respect

to optimization
The OSF’S Architectul-e-Neutl-al Distribution Fol-mat (ANDF

[TN94]) is a low-level machine-independent program representa-

tion. Programs are statically specialized to specific processors by in-
stcdlers. Itshould be possible to implement process mobility among
heterogeneous processors using ANDF as the machine-independent

format

The use of bus stops is already in use in several program-

ming tools (e.g., interrqx points in [DS84] and [H0195] and stop-

ping pomrs In [Hen82]), and garbage collection (e.g., the Emer-
ald Garbage Collector [JLHB88, JJ92, Juu93], and GC-poinfs in
[DMH92]). In some systems, coal-se-graind bus stops have been
used for mlgrotion, C.R., mobility In Eden was achieved by check-
polnting an object, which dumped the object to stable storage, and
subsequently moving the stored image and restarting it on another
node [ABLN85, BIa85].

Mobility of threads/processes among heterogeneous processors
relies on mapping information from a machine-dependent program
format to a machine-independent program format and vice versa,
Program slicing using optimized program representations also relies
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on maintalnirzg relationships between an optimized representation

of the program and the onglnal program representation (the source

code or a porse tree) [TIp95, Ern94j. We expect future work in

this area to develop techniques to maintain relationships between

abstract values describing the unoptimized and optimized program

representations respectively. even in the presence of data changing
wanst’ot-mations such as strength reduction in loops Such tech-
rzlques are likely LObe dil-ectly useful for generating bridging code

In the presence of data changing transformations.

Dynamic manslation of” oplimlzed code to unoptlmized code is
pmf’ol-med in the Iatcst vei-sion of the SELF system [Ho195]. They
Iimlt the number ot’ optimizalions they perform in order to be able

to do the deoptimlzation.
A number of other systems offer native code process or thread

mobility, e.g., Sprite [Dou87] and DEMOS/MP [PM83], but they

only support such mobility among homogeneous processors.

6 Conclusion

We have shown how object and thread mobility among heteroge-

neous computers can be lmpIemen[ed by converting both normal
data and program state to and from a machine-independent format
during move operations. We have presented the bus stop techmque
for handling migration of active threads. We have a prototype im-

plementation in Emerald, which demonstrates the general technique

for Identically optimized code on all architectures. To the Emerald

programmer, heterogeneity is transparent—the Emerald Iangauge
IS unchanged. Our prototype implementation retains the intra-node

efficiency of the original Emerald, i.e., node-local threads run at
full native code speed We have also outlined techniques to enable

mobility even for threads executing code generated with different

optimization levels.
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