
PROCESS SELECTION 
IN A HIERARCHICAL OPERATING SYSTEM 

R. C. Varney 
The Pennsylvania State University 

University Park, Pennsylvania 

This paper presents a new model for use in 
scheduling processes for the sharing of a processor. 
The model may be used in various modes of operation, 
including multiprogramming, real time and time shar- 
ing. Because the model is applicable for various 
modes of operation and because it is significantly 
useful only within a well-defined system hierarchy, 
the context for discussion is Hansen's system for 
the RC 4000.3,4~ 5 

Only the preliminary work has been reported in 
this paper, but the author believes that the model is 
worth investigating further, and, therefore, research 
into its effects and properties will continue. 

Time-slice queue 

In Hansen's system the process heirarehy can be 
represented by a tree structure as in Figure i, where 
each node represents a process. The allocation of 
space (storage) is restricted so that a child pro- 
cess may be allocated only a subset of the spatial 
resources allocated to its parent process. Pro- 
cesses may communicate among one another with 
message buffers without regard to the hierarchical 
structure. Allocation of processor time among pro- 
cesses is by equal time slices~ also without regard 
to the hierarchical structure. 

Figure I 
An active process is allocated a time slice and 

linked to a time-slice queue. A modified form of 
round-robin scheduling is used for the execution of 
the processes in this time-slice queue so that in 
general a process, even if temporarily interrupted~ 
is allowed to use its full time slice. The details 
of this system have appeared in the literature. 

106 

Process-selector tree 

Since the processes in the system are logically 
related according to a tree structure, and the 
allocation of space is restricted according to the 
hierarchy and jurisdiction defined by that tree 
structure, it is natural to explore the consequences 
of allocating processor time according to the same 
tree structure. Let us extend the time-slice queue 
to a tree structure, where each node in the tree 
structure represents a process which has been started 
by its parent process but not yet stopped. (Although 
the RC 4000 is a single processor, the process- 
selector tree discussed herein is not affected by a 
multi-processor system.) A number of different 
algorithms, to be called selectipn algorithms, may be 
suggested to traverse this tree.° One desirable 
characteristic of a selection algorithm is that it 
be simple. 

It should be noted at this point that the al- 
gorithm chosen may impose an inherent priority. The 
selection algorithm illustrated in Figure 3 imposes 
the priority that, in general, child processes will 
be executed before their respective parent process. 
One consequence of this algorithm is discussed in 
the section titled Global Scheduling. 

Continuing, let us add a process at some level; 
this process (not inherently different from other 
processes) we will call a priority process (PP) and 
it will be given the task of dynamically altering 
the position of the nodes representing its siblings. 
The priority process working under the algorithm 
being considered, can alter the node positions in 
such a way as to simulate one of many scheduling 
algorithms for that set of siblings, including first- 
in-first-out, round-robin, etc. Looking further we 
can see that while one priority process can make a 
process selection algorithm appear, for example; as 
a round-robin scheduler, another priority process 
(in place of the first) can make the same selection 
algorithm appear as a strict priority scheduler. 

In addition if processes can set the interval 
timer, then a priority process can take on the re- 
sponsibility of allocating time-slices through the 
use of that interval timer. Moreover, a priority 
process may dynamically alter the length of the next 
time slice, depending on the process to be executed. 
If separate priority processes are used for each set 
of child processes, then each set of child processes 
at each level of the tree structure can be scheduled 
with a different scheduling algorithm; in fact this 
may be accomplished without any increase in com- 
plexity of the existing selection algorithm. And, 
since all processes may be created and removed, one 
priority process may replace another, thus dynamical- 
ly altering the individual scheduling algorithms. 
Figure 2 depicts a tree structure where three pro- 
cesses perform as priority processes for their re- 
spective siblings. Interaction among all processes 
(including priority processes) is according to the 
jurisdiction specified in the overall structural de- 
sign of the system. 



Figure 2 

Because the tree structure is well-defined, a given 
traversal algorithm will cause the processes to be 
executed in some given order. If that order is 
satisfactory for a given set of siblings, then a 
priority process need not be defined for those sibl- 
ings. Figure 6 contains such a case. 

Using the process selector tree as defined~ we 
see that the concern with time-slicing has been 
shifted to the priority processes, therefore simpli- 
fying the selection algorithm. In fact if the in- 
terrupt environment is appropriate, the entire pro- 
cess selection can be accomplished in the absence of 
all time-slicing; i.e., the system is interrupt 
driven and the desired scheduling can be achieved 
through the alteration of node order by a priority 
process acting with high priority after an inter- 

rupt. 

Figure 3 is an algorithm which can be used for 
process selection using the process selector tree. 
Figure 4 is the binary tree representation of 
Figure 2 and Figure 5 is the node structure. 

TO. on interrupt go to interrupt process; 
Ti. STACK~X; PTR ~ LLINK(TREPTR) 
T2. if PTR = X then go to T6; 
T3. if INTUPT(PTR) then go to T5; 
T4. STACK~PTR; PTR ~ LLINK(PTR); go to T2~ 
T5. PTR ~ RLINK(PTR); go to T2; 
T6. if STACK = X then go to Ti; 

T7. PTR~STACK; 
T8. if process(PTR) in wait state then go to 

T5; 
T9. execute process(PTR); go to T5; 

[Note: a) TREPTR points to the top of the tree 
b) X is the empty symbol 
c) ~ and ~ are Knuth's notations for simple 

replacement and stack operations re- 
spectively 6 

d) STACK is a push-down stack] 

Figure 3 
107 

D 

Figure 4 

node IPROCNM I INTUPT I LLINK RLINK 

PROCNM - process name 
INTUPT - a binary flag: off - the process zs 

immediately executable 
on - the process is pre- 

sently blocked 

LLINK - the left link (down) 
RLINK - the right ,link (across) 

Figure 5 
The interrupt process is a separate process and 

can, of course~ be implemented in a number of ways. 
However, one assumption included in this selection 
algorithm is that the interrupt process will set 
INTUPT(PTTR) ~ "on" when a process has been inter- 
rupted and is then not ready for execution: it 
should set INTUPT(PTR) ~ "off" when a previously 
interrupted process becomes ready for processing. 
(INTUPT(PTR) is not used to indicate that a process 
is waiting for one or more of its child processes; 
in that case the parent process is put into a wait 
state.) This implies that the interrupt process 
(or some higher priority message coordinator) must 
examin a message queue of messages sent and re- 
ceived. According to reference (3) this information 
is already known by the monitor. Note that an 
interrupted process is not removed from the tree; 
this allows a priority process to continue to mani- 
pulate node positions even for interrupted processes. 

A significant consequence of the process 
selector tree and selection algorithm is that a 
different scheduling scheme can be implemented for 
each set of sibling processes - and this is indepen- 
dent of the tree and algorithms. Therefore, in 
addition to the power of using multiple scheduling 
schemes simultaneously, this environment provides 
the flexibility of dynamically establishing new 
scheduling schemes~ and so, scheduling need not be 

fixed in the system design. 

Global scheduling 

Using the selection algorithm, process A 
(Figure 2) can be selected for execution if both 
processes D and E are interrupted. If only process 
D is interrupted, process E will be executed in 



preference to process A. If, however 3 process A is 
interrupted, neither process D nor process E can be 
executed since a tree search will never reach them. 
This means that if process A, for example, issued an 
input request, neither process D nor process E could 
be executed until that input operation were completed. 
Then if process D and process E were ready they would 
be executed before process A would be continued. 
Using a time-slice queue it might have been possible 
for processes D and E to execute while process A was 
interrupted for I/O 3 and this would cause a local 
increase in throughput. The global effect of this 
phenomenon has not yet been determined. The opposite 
condition, i.e. processes D and E are executed in 
preference to process A, seems to have a lesser 
possible effect on throughput. Thus 3 global schedul- 
ing may be a problem using the suggested algorithm, 
or through simulation the problem may be found to be 
only a problem in local scheduling. The suggested 
algorithm, however, need not be the only algorithm 
applicable to the process selector tree. In fact, 
since the above local scheduling problem is caused by 
a blocked parent process inhibiting its children from 
execution, a slight change in the suggested algorithm 
could be made. That alteration would allow tree 
traversal down through a blocked parent if one of its 
child j~ocesses is ready for execution. This3 of 
courser would add some complexity to the algorithm. 
All these avenues will be examined with the goal of 
designing a flexible~ yet straight forward, algorithm 
for working with the process selector tree. 

Conclusion 

In Hansen's system (and in most others) the 
scheduling strategy is built in at a low level in the 
design. The process selector tree clearly allows the 
scheduling strategy to be determined at the same 
level as the processes which are to be scheduled. 
Moreover, the scheduling strategy may be altered 
dynamically and, in fact, may be different for each 
set of sibling processes. One obvious use of such 
flexibility is where the monitor is coordinating more 
than one operating system (Figure 6). The operating 
systems themselves may be executed according to one 
scheduling strategy and processes within each operat- 
ing system may be executed according to some other 
scheduling strategies, including the inherent prior- 
ity of the selection algorithm (i.e. no PP) as shown 
for SYS3 and the grandchildren of SYSi. Another 
obvious use is for the ease of testing various 
scheduling schemes at different levels of a hierar- 
chical operating system. 

To this author the process selector tree re- 
presents a structure which can be used to explore 
greater flexibility in scheduling strategies, es- 
pecially where dynamic alteration of the scheduling 
algorithm is desired. Possibly a strategy of demand 
scheduling could be implemented, so that the pro- 
cesses to be executed actually cause an alteration in 
the scheduling algorithm. In addition this author 
believes that operating systems will become more well- 
defined and hence more well-structured, taking their 

a 1,2 basic concepts of structure from Dijkstr . And, 
therefore, the process selector tree will provide 
a selection structure which maintains some of the 
structural properties of the system. 

i,o., o l 

Figure 6 
Acknowledgements 

The author wishes to express his appreciation 
to Drs. M. H. Gotterer and G. M. Campbell for their 
suggestions and discussions. He would esrecially 
like to thank Dr. A. N. Habermann for his kind and 
helpful cooperation. In addition, the author thanks 
Peter L. Anderson of Regnecentralen, Copenhagen for 
providing details of the RC 4000 which were not 
otherwise available. 

i. 

2. 

3. 

4. 

5. 

6. 

References 

Dijkstra, E. W., "Co-operating Sequential 
Processes", in Programming Languages: NATO 
Advanced Study Institute (held in Villard-de-Lans 
1966), F. C~nuys (Ed.), Academic Press, London 
(1968). 

, "The Structure of THE- 
Multiprogramming System", Comm. ACM~ vol. ii, 5 
(May 1968), pgs. 341-346. 

Hansen, P. Brinch, "The Nucleus of a Multi- 
programming System," Comm. ACM, vol. 13, 4 
(April 1970), pgs. 23KfY~Y,~50. 

, (Ed.), RC4000 Software: 
Multiprogramming System. A/S Regneeentralen, 
Copenhagen, (1969). 

, (Ed.) RC4000 Computer: 
Reference Manual. A/S Regnece~l~n~ 
Copenhagen, ~9). 

Knuth, D. E., The Art of Computer Programming, 
vol. i, Addison-Wesley: Reading, Massachusetts. 
(1968) Chapter 2. 

108 


