
Transactions and Synchronization in a

Distributed Operating System*

Matthew J. Weinstein, Thomas W. Page, Jr.,
Brian K. Livezey, and Gerald J. Popek

University of California, Los Angeles

Abstract

A fully distributed operating system
transaction facility with fine-grain record level
synchronization is described. Multiple member
processes, remote resource access, dynamic
process migration, and orderly interaction with
concurrent non-transaction activities are all sup-
ported, An unusual logging strategy, based on
shadow pages but supporting logical level lock-
ing, is used. This choice is justified on the basis
of ease of implementation and performance
analysis.

The design and implementation is done
in the context of Locus, a high performance dis-
tributed Unix operating system for local area
networks.

1 Introduction

It has often been observed that the construction of dis-
tributed software in a multi-machine environment can be sub-
stantiaUy more difficult than the development of single
machine software. Two pnncipal causes are the frequent
difference in interfaces between local and remote resources,
and the richer set of failure and error modes in the multi-
machine case. Network transparency, which makes local and
remote resource interfaces logically identical, addresses the
first issue. It is a well known concept, and degrees of tran-
sparency are embodied in a number of network and multipro-
cessor operating systems [Bartlett78] [Wecker80] [Locus84].

* This research has been supported by the Advanced Research Projects
Agency under conl~act DSS-MDA-903-82-C-0189.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1985 ACM-0-89791-174- 1-12/85-0115 $00.75

Addressing the second issue requires that additional
tools be available to the software developer. Flexible and gen-
eral support for transactions, for example, would be quite use-
ful. Numerous proposals for transactions have been made,
both in operating systems and programming languages
[Bartlett81] [Mueller83] [Liskov82] [Moss82].

Here a full design and implementation of transactions
in a distributed Unix operating system is presented. We as-
sume an environment composed of a substantial number of re-
latively small machines, with considerable communications
bandwidth among them, performing database-oriented opera-
tions. In order to perform effectively in comparison to large
centralized systems, such systems rely on achieving consider-
able concurrency of data access and update; hence, fine-grain
synchronization is important. Further, since it is considered
important to permit workstation class machines to include
these tools, a compact transaction implementation is necessary.

The transaction and locking facilities described in this
paper utilize several pre-existing mechanisms in the underlying

Locus I distributed operating system [Popek81] [Walker83],
currently operational on both mainframes and workstations.
Some of these features were found invaluable in permitting ra-
pid implementation of the work reported here. The base Locus
system provides support for atomic file updates via an inten-
tions list mechanism; this mechanism provides the underlying
support for the current transaction implementation, supporting
both the transaction logging and data file commit mechanisms.
Lightweight network protocols provide the basis for high-
performance distributed locking, data page transport, and pro-
cess migration services. The distributed, transparent
namespace provided by Locus, enabled the implementors to ig-
nore many difficult problems of distributed file handling and
transaction design.

This paper describes the functionality and implementa-
tion of the transaction and synchronization facilities provided.

i Hereafter, "Locus" refers to the Locus system as extended to include
transactions and record level locking. The base system to which these
facilities were added contained no U'ansaction mechanism.

115

Section 2 provides an overview of Locus transaction seman-
tics. Section 3 discusses transaction operation and synchroni-
zation. Section 4 describes the implementation of the Locus
transaction mechanism. Section 5 discusses the implementa~
tion of the distributed record-level locking mechanism. Sec-
tion 6 presents performance measurements and observations.
A comparison with related work and conclusions follow.

2 Transaction Semantics

The transaction facility in Locus provides the usual as-
surance of serializability of transactions with one another, and
atomic behavior in the face of network and nodal failures. It is
desired that, from a user and program point of view, the tran-
saction facilities be entirely transparent. In the Locus context,
this means that a process in a transaction should be able to mi-
grate around the network during execution, create transaction
subprocesses either locally or remotely and interact with them,
and access resources transparently, independent of their loca-
tion. All of these characteristics should operate with high per-
formance, and behave reasonably in the face of failures. While
these goals impose significant requirements on a design and
implementation, they increase the facility's utility.

The Locus implementation of transactions described
here does not allow general nesting of transactions. Previous
implementations of transaction mechanisms that have allowed
full- nested transactions have been rather expensive, both in
terms of implementation and performance [Mueller83]. Ver-
sion stacks and version trees, the mechanisms for intra-
transaefion synchronization, and other bookkeeping overhead
are unnecessary when full-nested transactions are avoided. In-
stead, transactions in Locus are simple-nested.

The semantics of simple-nested transactions are
straightforward. A non-transaction process starts a transaction
by issuing a BeginTrans call. This call encapsulates all subse-
quent file operations by that process, and its sub-processes,
within that single transaction. Encapsulation ends upon execu-
tion of a corresponding EndTrans call, which makes the ac-
tions of the transaction permanent; or an AbortTrans call,
which undoes the transaction's actions. Only those resources
locked within the BeginTrans-EndTrans pair are considered
part of that transaction. Resources locked before the start of
the transaction may be used within the transaction but are not
committed or aborted along with the transaction, as described
in section 3.3.

In order to permit the composition of existing transac-
tion code, the transaction implementation pairs BeginTrans-
EndTrans calls. Each process contains a count of the current
transaction nesting level. When a BeginTrans operation is en-
countered, the level of transaction nesting increases; an
EndTrans decreases the nesting level. When the nesting level
returns to 0, via an EndTrans call, the transaction has complet-
ed successfully.

As an example of the usefulness of transaction nesting,
consider an application program which, within a transaction,
calls on a database subsystem to perform an update. This data-
base subsystem may call BeginTrans and EndTrans internally,

to cause its critical section to execute atomically. This kind of
nested call must be permitted, and in fact may occur uninten-
tionally. Clearly, the EndTrans call generated by the database
subsystem must not terminate the entire transaction.

3 Synchronization Functionality

There are a number of issues which must be addressed
in transaction synchronization. The following section
discusses the solutions implemented in Locus to such issues as
locking schedule and lock granularity, system interface, and
the interaction of transactions and non-transactions accessing
shared data.

3.1 Locking Schedule and Granularity

The Locus transaction facility provides record-level
locking, as well as a transaction envelope. Locks may be ac-
quired explicitly (via a system request) or implicitly (at the
time of record access).

The locking schedule employed here is the convention-
al two-phase locking discipline, as described by [Eswaran 76];
all processes created from within a transaction are part of that
transaction (for synchronization purposes), independent of
their location in the network. If a process, while executing as a
transaction, creates a child process, and either of them locks a
record for exclusive access, the other may do so as well. This
policy is consistent with Unix process semantics, where child
processes inherit file access from their parents, with an identi-
cal set of access rights.

Any resource acquired by a process which is part of a
transaction is locked, either explicitly before access, or impli-
citly when accessed, as required by the two-phase locking dis-
cipline. A transaction may choose to explicitly unlock a
resource after use; the lock is retained, and may later be reac-
quired by any process within the transaction; unlocked
resources are not made available to processes outside the tran-
saction until the transaction commits or aborts.

The locking facility may be used by any process,
whether or not the process is part of a transaction. Alternately,
a non-transaction process may choose not to lock resources be-
fore use, in the conventional Unix manner; thus, compatibility
with conventional Unix sharing is preserved, while at the same
time it is possible to synchronize access as required by transac-
tion clients.

Unix Shared Exclusive

Unix r/w read no

Shared read read no

Exclusive no no no

Figure I: Transaction Synchronization Rules

The compatibility rules for the various locking modes
provided by the transaction mechanism are shown in Figure 1.

116

Note that Locus record locks are enforced, not advisory, as in
the/usr/group standard, or Berkeley 4.2 Unix. Enforced locks
are necessary to ensure that the two-phase locking discipline is
maintained. Because enforced locks can introduce integrity
problems (in the form of access denial), the current policy re-
quires that a process have write access to a file in order to issue
locking requests for that file.

Another ramification of enforced locks is the possibility
of deadlock. The Locus kernel does not detect deadlock. In-
stead, an interface to operating system data is provided, per-
mitting a system process to detect deadlock by constructing a
wait-for graph, using conventional techniques [Coffman 71].
In this manner, a variety of deadlock resolution and redo stra-
tegies may be implemented.

3.2 Record Locking Interface

The locking mechanism permits byte granularity syn-
chronization of access to data files, in a manner quite similar to
common record locking proposals for Unix. Enforced locks
are used to ensure that the two-phase locking protocol is
satisfied.

Before record locking can take place, the file to be
locked must be opened. In Locus, this resource name-mapping
(performed by the open call) is separate from resource locking.
Thus, a program may perform name mapping, a relatively ex-
pensive operation in a distributed system, once, then lock and
unlock records within the file, without repeatedly incurring the
expense of name resolution.

After a file has been opened, ranges of bytes in that file
may be locked in several modes, including shared read or ex-
clusive read/write. Locked ranges may be extended or con-
tracted, and locking modes may be upgraded or downgraded,
through subsequent locking requests. Locking a range of bytes
is accomplished by positioning the current file pointer to the
first byte to be locked, and issuing the lock request:

Lock(file, length,mode)

Thefile argument refers to the channel number returned by the
open call, length specifies the number of bytes to lock, and
mode indicates whether the requested lock is a shared lock re-
quest, an exclusive locking request, or an unlock requests If a
lock request conflicts with an existing lock, the requestor will
receive an indication of the conflict, or alternatively will be
queued until the lock can be granted.

The ability to extend a file and simultaneously lock the

newly allocated area is useful when updating shared log files 2.
This operation is performed by placing the file to be updated in
append mode. Future lock requests are interpreted as being re-
lative to the end of file, so processes can lock and extend a file
atomically.

2 Without such a mechanism, remote processes attempting to extend a
heavily used log could repeatedly be intercepted between the time the end
of a file was located, and the time a lock was placed on the file, and thus
suffex from livelock.

3.3 Interaction With Non-Transaction Programs

Implementing transactions in a general purpose operat-
ing system presents many advantages: efficacy of a single im-
plementation, and the ability to easily compose multiple in-
dependently prepared programs into a single transaction, for
example. However, one must also deal with the reality that
clients of the transaction facility will not always wish to be ex-
ecuting in transaction mode, and that there will be non-
transaction programs present in the network.

These issues arise immediately when one constructs ap-
plications such as database management systems. Database
managers execute queries as transactions, but may simultane-
ously require access to resources on a non-transaction basis.
Accounting and performance records are obvious examples.
Consequently, when a transaction begins, one must consider
how to treat resources such as open files already acquired by
the process, and data which has been modified but not yet
committed.

Consider the following programs, which access related
data items in a file:

open x;

BeginTrans;
readlock x[1];
t := x[1];
writelock x[2];
x[21 := t;

EndTrans;

open x;
wfitelock x[1];
x[1] := C;
unlock x[1];

abort x[1];

Figure 2: Serialization Problem

In the fragments shown, a non-transaction part of one
program updates record x[l] and then unlocks it without com-
mitting the record; this is possible because the synchronization
mechanism cannot require a non-transaction to retain locks.
Subsequently, another program starts a transaction, which
writes x[2] based on the uncommitted value read from x[1].
Unfortunately, the transaction mechanism does not guarantee
that record x[1] will not be rolled back or lost due to a system
crash; the result in this case is that x[2] is not equal to x[1],
potentially violating consistency constraints.

It is desirable to guarantee that transaction senalizabili-
ty is preserved regardless of what non-transactions do. The
above example shows a correctly composed transaction that
is made non-sefializable by the actions of an unrelated pro-
gram. Locus solves this problem by enforcing the following
rules when applying a lock to a file or record:

1. Any lock obtained by a transaction is retained until the
transaction commits or aborts. This is a standard two-
phase locking requirement.

2. If a modified but uncommitted record is locked by a
transaction, in any mode, the lock is retained until the

117

transaction commits or aborts; the record is committed
upon successful transaction completion regardless of
whether it was modified by the transaction. This al-
lows access to unstable data without violating two-
phase locking.

By imposing these requirements, updates survive,
atomic behavior can be assured, and transactions cannot unin-
tentionally be made non-serializable by interactions with non-
transactions.

3.4 Except ions to Serial izabil i ty

There are instances in which a transaction must have
the ability to read or update records without those actions
becoming part of that transaction [Stonebraker 81]. Critical
data structures such as system catalogs for a database, or direc-
tories in a filesystem, should not remain locked for the dura-
tion of a transaction. There are also some actions which
should be explicitly visible during transaction execution. Con-
current execution of two transactions which attempt to create a
file by the same name is one example. One transaction must
fail even though neither has reached a commit point that would
make their updates visible. Allowing transactions to selective-
ly violate two-phase locking is a functionality which must be
provided.

There are two ways in which a process is permitted to
intentionally violate the default two-phase locking discipline.
The first method is through an additional locking mode called
a non-transaction lock. A non-transaction lock obeys the same
locking rules as locks acquired by a transaction, as shown in
Figure 1; however, the two-phase locking protocol is not en-
forced on these locks by the transaction mechanism.

The second way to violate serializability is to acquire a
lock before a process becomes a transaction; these locks are
not conveaed to transaction locks at the BeginTrans point.
This approach is clearly less general than the first, because the
locks that will be required may not be known before the start
of the transaction.

In both of these cases, the system does not force the
lock to be retained until the outcome of the transaction is deter-
mined; this can improve concurrency in some circumstances,
at the cost of potentially lost serializability. As always, careful
design of algorithms is necessary.

4 Transact ion Implementat ion

Transactions were surprisingly straightforward to im-
plement in the transparent distributed environment provided by
Locus. A number of mechanisms within the underlying Locus
kernel were utilized, including the shadow-page based file sys-
tem, distributed name-mapping services, light-weight network
message protocols, and support for network failure detection.

The basic Locus operating system contains a single-file
commit mechanism which is implemented by intentions lists,
and is used as part of normal filesystem operation. The list

consists of a set of page pointers for the file; in Unix that list is
contained in the file's descriptor block (inode), although there
may be indirection present. Files are committed by forcing
dirty file pages to disk, and atomically overwriting the inode
on disk with new data, freeing up the old data pages. Little ad-
ditional I /0 over conventional (unsafe) Unix filesystem
behavior results, so this is the default operating mode.

The two-phase transaction commit mechanism was
easily built, using the record-level shadow-paging facility as a
base. Logs built by the transaction mechanism consist of sets
of intentions lists, as well as associated locking information.
The transaction mechanism relies only on the functionality of
the record commit mechanism, and not on the specific imple-
mentation. The intentions list mechanism used to commit
records within individual files could be replaced with a logging
mechanism, without affecting the multi-file transaction commit
facility.

Salient aspects of the transaction mechanism are out-
lined below. The first section describes transaction initiation,
followed by descriptions of transaction commit, abort, and sys-
tem failure recovery. The underlying shadow page mechanism
for committing variable length records within files is described
in detail in section 5.

4.1 Init iat ion and Operat ion

A transaction is initiated when a BeginTrans call is is-
sued by a non-transaction process. This causes the generation
of a temporally unique identifier, which names the newly
formed transaction. This identifier is used internally to identi-
fy files and records accessed by the transaction. All processes
created as part of the transaction inherit this transaction
identifier.

For each process within a transaction, the kernel main-
tains afile-list, which enumerates all files used by that process.
This file-list is used by the two-phase commit protocol, to as-
sure that all files used by a transaction are correctly committed.
Up to that point, the list is kept in a decentralized fashion, at
the same site as the process to which they refer, in order to al-
low efficient access. If a process migrates to another site in the
network, its file-list migrates as well.

At the beginning of the two-phase commit protocol, the
entire file-list for a transaction must be known in order to
determine which files will participate in the commit process.
To accomplish this, as each child process completes, its file-
list merges with that of the top-level process of the transac-

tion 3. When all child processes in a transaction have complet-
ed, the file-list for the top-level process of the transaction con-
tains all of the flies which have been accessed by the entire
transaction.

The child may be running on a different site from the top level process,
consequently requiring that its file-list be sent to another site in a network
message. Similarly, the top level process may have migrated to another
network node, with its current file-list.

118

The protocols must guarantee that the file-list eventual-
ly gets to the correct site, even if the top-level process migrates
several times. There is a potential race condition in which a
process begins migrating to a new site, and simultaneously a
list of files sent from one of its child processes arrives. If the
parent process's file-list has already migrated to the new site,
but the process itself has not completed migration, the child
process's file-list would not be recorded.

This race condition is avoided by marking the migrat-
ing top-level processes with an in-transit indication. When a
message containing a list of files arrives, the system verifies
that the target process still resides at that site, and is not in the
process of migrating. If the process is no longer at that site, or
is already migrating, the system returns a failure message to
the child's site, which must retry the operation. However, if
the top-level process is resident at that site, the system locks
the process from migrating, for a short duration, until the
operation has been completed; since processes migrate infre-

quently, this does not adversely impact process performance 4.

4.2 Transact ion Commit

When a top-level process reaches the transaction end-
point, and all of its subprocesses have completed their process-
ing, transaction commit begins. Transaction commit is accom-
plished using the two-phase commit protocol [Gray78]
[Lindsay79]. The top-level process's current site becomes the
commit coordinator site. The coordinator site directs the tran-
saction commit process, acting as coordinator in the two-phase
commit protocol, and maintaining the transaction log. The list
of all files used in the transaction is accessible to the coordina-
tor site, and is used to direct transaction commit. The storage
sites of each of these files are required to be participant sites in
the two-phase commit protocol.

Transaction commit is performed in several steps, in-
volving three levels of logs. The first log written is the tran-
saction coordinator log. This log contains the transaction
identifier of the transaction being committed, a list of all files
containing records which were used by the transaction, along
with their corresponding storage sites, and a status marker, in-
dicating the outcome of the transaction (initially unknown).
After successfully writing this log, the coordinator sends
prepare messages to each of the participant sites.

The second level of logging takes place at the partici-
pant sites. Upon receiving a prepare message, each participant
site flushes modified records and writes its prepare log, storing
enough of the intentions lists and lock lists for each file to
guarantee that the files can be committed when the transaction
reaches the second phase of the commit protocol, regardless of
local failures. When these logs have been stored, each partici-
pant site replies to the coordinator site with a prepare complet-
ed message. Upon receipt of all prepare completed messages,

the coordinator changes the status marker in its log to commit-
ted; this determines the transaction commit point.

The third level of logs used in the commit protocol are
the per-file shadow pages stored at the participant sites. After
the transaction commit point, a kernel process at the coordina-
tor site asynchronously sends transaction commit messages to
each of the participant sites. The participant sites complete the
update of the files involved in the transaction by using the
single-file commit mechanism, and releasing all corresponding
retained locks.

4.3 Transact ion Abort

When any process within a transaction fails, or issues
an AbortTrans call, the entire transaction must abort. The
transaction mechanism aborts all changes to files made by the
top-level process, and all those made by member processes

which had completed 5. Transaction abort is initiated by send-
ing an abort message to the site at which the top-level process
of the transaction resides. The system first discards any
changes made to files by the top-level process, then locates all
children of the top-level process, and sends abort messages to
each of them. The children roll back their modified records,
release all locks, and signal their children in turn. In this way,
the abort cascades down the process tree.

If a transaction is being aborted because a member pro-
cess has been lost due to failure of the node on which it has
been executing, its open files will be closed and changes abort-
ed by the underlying system protocols when they detect the
failure. Similarly, when an active storage site crashes, if the
open files on it had not yet become involved in two phase com-
mit, they will be aborted upon system restart.

When the transaction mechanism is informed of a
change in the topology of the network (e.g. a site crashes or
becomes inaccessible), it aborts all ongoing transactions in-
volving sites no longer in the current partition. Failures that
occur before a site has prepared to commit are treated as
aborts.

Once a transaction has entered two-phase commit pro-
cessing, it consists of only a single top-level process. In this
case, transaction abort is accomplished by changing the status
of the transaction in the coordinator log to aborted, and send-
ing abort messages to the participant sites, which are responsi-
ble for rolling back their own files.

4.4 Transact ion Recovery

The transaction recovery mechanism deals with several
types of failures. The failure of a communications link may
separate one or more of the sites involved in a transaction from
the rest of the transaction. The coordinator site or any partici-
pant site may crash. Any software module of the transaction

(There are other circumstances involving process migration which can
result in race conditions. This technique makes process migration appear
to be an atomic operation.

s Aborts consists simply of discarding the shadow pages and intentions lists
unless other processes have record locks on the same pages. The case of
aborting ulxlates to pages with multiple locks is discussed in tl~ section 5.

119

may fail or issue an AbortTrans call. Once two-phase commit
has begun, it is the responsibility of the transaction coordinator
site to recover from failures.

When a site reboots after a crash, before transactions
are permitted to run, the transaction recovery mechanism is
started. To ensure correct transaction recovery, coordinator
logs are retained until all commit or abort processing has suc-
cessfully completed for the corresponding transaction.

The recovery mechanism examines each existing coor-
dinator log at its site. If the transaction in the log had not
reached its commit point, or was marked as aborted, it is
queued for abort processing. If the transaction in the log had
reached the commit point (indicated by the presence of a com-
mit mark in the log), the transaction is queued for the second
phase of the two-phase commit protocol. During this process,
the transaction recovery mechanism may send duplicate com-
mit or abort messages to other sites. However, since
transaction-id's are temporally unique, duplicate commit or
abort messages cannot produce unintentional failures.

In a transparent distributed filcsystem, files may be
stored at any site in the network and may be transported on re-
movable media. Therefore, it is important to assure that logs
are stored on the same medium as the files to which they refer;
otherwise, logs might not be present at the time that recovery
actions are required. If this were to happen, it would not be
possible to decide which data pages were to be freed and
which were to be kept, since pointers to such pages are in the
log file. Hence, the Locus transaction mechanism maintains a
separate log per logical volume (ffilesystem).

5 Record Locking Implementation

In Locus, record locking facilities are available to both
transaction and non-transaction processes. There are marked
differences in the treatment of locks granted to transaction and
non-transaction processes, however.

When a non-transaction is granted a lock, it need not
obey the two-phase locking protocol; thus, data may be
modified, and locks relinquished, without committing or abort-
ing the modified data. These uncommitted changes are gen-
erally visible and may be used and committed by any transac-
tion or non-transaction (within policy constraints).

When a transaction is granted a lock, however, the
two-phase locking protocol must be followed, in order to
preserve seriaiizability. This requires locks to be retained un-
til transaction commit.

5.1 Locking Implementation

The implementation of record locking is reasonably
straightforward. When a file is opened, a copy of the file
descriptor (inode) is brought into kernel memory at the file's
storage site. As lock requests are processed, a list of lock
descriptors indicating process-id of the process holding the
lock, the locking mode, and the range of bytes locked are at-
tached to the file descriptor; if the process is part of a transac-
tion, the transaction identifier is also placed in the lock struc-
ture. The lock list structure is shown in figure 3.

When a request to lock a record in a file is issued, that
request is processed at the file's storage site. If the requestor is
not at the storage site, the lock list will not be locally available;
a light-weight network message is sent to the storage site, and
a response awaited. At the storage site, the kernel examines
the list of existing locks for the file and, if the lock is compati-
ble with the existing locks on the file, an entry for that lock is
added to the lock fist. A success response is returned to the rre-
questing process. Otherwise, a failure response is returned,
which may be used to notify the requesting process, or may in-
itiate queueing for a later locking attempt.

When a requesting site receives a successful response
to a locking request, it caches this response in its local lock
fist. This permits the kernel to quickly validate each process's

/

- - Inode --

Lock List

, X

,i, \

I

Process Identifier ,~ Transaction Identifier \N

Lock Mode

!

Locking Range
First [Last

Figure 3: Lock List Structure

120

Updated page

iii ii
Updated page j

(a)

New version
of page i

] record being committed

[]
[] } other updates

Updated page

Previous committed
version of page i

Figure 4: Record Commit Mechanism

\
/

(b)

New version
of page i

read and write requests.

5.2 R e c o r d C o m m i t s a n d A b o r t s

Record-level commits and aborts are performed using a
modified intentions-list mechanism which logs changes to data
at the physical (page) level, rather than at the logical (record)
level. However, it is desirable to allow more than one process
to modify disjoint (logical) records on a single (physical) page
to improve performance, and more importantly, reduce the
possibility of false deadlock.

Even though unrelated updates are a statistically infre-
quent occurence, the commit mechanism must be able to deal
with them correctly. In Locus, the standard intentions-list stra-
tegy is augmented by a page differencing method, to provide
correct record-level commit operation. Differential update is
not required in the statistically dominant case, where records to
be committed reside on pages that contain no updates by other
transactions or processes. In this case, it is not necessary to
examine the data contained on each page, and the pages can be
written to non-volatile storage directly. This case is shown in
Figure 4(a).

When disjoint records on the same physical page have
been modified by more than one transaction or process, the
commit mechanism cannot directly commit the modified page,

since other updates would incorrectly be committed 6. To per-
form the commit, a copy of the previous version of the page is
re-read from non-volatile storage, the record(s) of interest are
transferred to that page, and this new (merged) page is written

6 Records written on the same physical page by different transactions must
be disjoint, due to the enforcement of mutually exclusive writes by the
policy mechanism.

back to non-volatile storage 7. This operation is shown in Fig-

ure 4(b).

Record abort works similarly to record commit. When
an abort occurs, each file page is examined; if there are no
conflicting modifications on the page, that page is directly
rolled back to its old version. However, if conflicting
modification have occured, these cannot be rolled back. In this
case, the old version of the data page is re-read, and the
record(s) to be aborted are overwritten by their original con-
tents.

The implementation discussion up to this point has ig-
nored the possibility that files of interest might be replicated,
as supported by the Locus kernel; this situation can be handled
quite gracefully. When record locking is requested for a file,
the file is internally marked as being open for update. Under
normal conditions, when a file has been opened for update,
Locus uses a single storage site strategy for updates. Thus,
even though there may be a number of storage sites able to
process open requests for a file, only one site at a time is desig-

nated as the primary update site 8. The record lock list is kept

7 Clearly, re-reading and differencing two pages is somewhat expensive.
Fortunately, this case occurs infrequently, so re-reading pages is rarely
necessary. To improve performance, clean copies of frequently used pages
could be kept in the buffer pool; the buffer-aging algorithm can be adjusted
as necessary.

8 In order for this strategy to work, it is also necessary to deal with the case
where a file may be open for read by multiple processes at different sites.
These processes are typically served by the closest available storage site.
Therefore, when an open for update (or record locking) occurs, storage site
service must be migrated to the primary update site. The mechanisms to
accomplish this were already present in Locus.

121

at this primary site, and everything operates as previously

described.

There are further opportunities for performance optimi-
zation in the distributed environment. When a lock is request-
ed, the page(s) containing the byte range can be prefetched, in
anticipation of their subsequent use. Another optimization
would allow the storage site to temporarily transfer its ability
to manage a group of locks to another site. This could reduce
overhead in the event that a group of co-located processes were
making heavy use of locking facilities. Control of these locks,
and current locking information, would migrate if the locking
patterns changed.

6 Performance Considerat ions

Logging mechanisms are generally viewed as superior
to intentions list strategies, due both to fewer I/O's required
for commit, and because physical contiguity of data files is
maintained [Stonebraker]. However, some investigators have
indicated that the methods are competitive, and for many usage
characteristics, intentions lists may not generate substantially
higher I/O costs than logging.

A discussion of performance considerations in logging
techniques is complex, involving issues of disk scheduling and
contention, physical contiguity and allocation schemes, and
client usage patterns. A brief analysis of the relative costs of
shadow paging and commit logs, based on assumptions regard-
ing file access in a distributed environment, was made in
[Weinstein85]. This analysis, which modeled the costs of typi-
cal file operations via an operation counting method, indicates
that the relative performance of shadow paging and commit
log mechanisms is highly dependent on the nature of the ac-
cess strings generated by applications. In addition, results re-
ported in [Elhardt84] and [Kent85] indicate that paging
mechanisms can potentially outperform logging mechanisms
with physical page placement controls and hardware support.

Although logging may significantly outperform shadow
paging in some circumstances, for many combinations of
record size and placement, implementations of shadow paging
can provide comparable performance.

6.1 Transact ion Performance

Locus uses structured logging to accomplish transac-
tion atornicity. Writing to these logs entails overhead which
affects the performance of the transaction mechanism. Below,
we enumerate the additional I/O operations that the transaction
mechanism requires.

A simple transaction which updates a single page of a
single file requires three I/O operations beyond normal file ac-
tivity (see Figure 5). First, the operating system writes the
transaction structure, containing the list of resources participat-
ing in the transaction, to the coordinator log. Then, in order to
prepare the updated file for committing, it flushes the modified
data page to non-volatile storage. Next, it must write the in-
tentions list for the modified file to the prepare log. After these
three writes, the file is prepared to commit. The transaction

commit occurs when the commit mark is subsequently written
to the coordinator log, a fourth I/O. These writes occur before
the transaction completes. Some time later, the kernel process
which performs the second phase of two-phase commit must
perform one more write to actually replace data pointers on

disk with the intentions-list contents 9.

An overhead of three I/O's per transaction is significant
when the work of performed by that transaction is minimal
(e.g. involves only a single update). However, real transac-
tions commonly generate a substantial I/O load, so that the
commit overhead in our design is small by comparison. Also,
in the common case when records on multiple pages in a single
file are updated in one transaction, no additional overhead
results for the additional records. Only the intrinsically neces-
sary I/O (step 2 in Figure 5) is repeated.

~ ~ " : . : < % ~ |~'.&g~,,,. Normall

/.~:.~::~....~.:......:::...~ ~:~..~::~.. , . : : ~ i ~ ¢ = Prepared
4 1~'%:~.' Write comrmt mark to ~ t

~ ~ % ~ Commit Point
f Atomically replace old data]

5 ~, pointers. J

Figure 5: Transaction I/O Overhead

Committing multi-file transactions incurs slightly more
overhead. In particular, since it is desirable that each disk be
able to be recovered independently, there is one prepare log
per media device. Consequently, step 3 in Figure 5 must be re-

peated for each logical volume containing modified records l°.

6.2 Record Locking Performance

In order to assess locking performance and to measure
the performance penalty incurred for non-local operation, the
performance of the record locking mechanism was measured
with all processes and files located at the same site, as well as
with files and processes distributed at different sites. These
measurements were conducted on a network of Vax 11/750

9 The current transaction implementation does not achieve simple
transaction commit in five I/O operations. Locus currently requires two
writes to add an entry to a log instead of one; one for the log's data page
and one for its inode. Hence steps 1 and 3 in Figure 5 each require two I/O
operations. This problem is being corrected.

1o Our current implementation uses one prepare log per file per transaction
rather than one per medium or filesysten~

122

computers connected by a 10Mb Ethemet with Interlan net-
work interfaces.

When a record locking request for a file is issued by a
process running at that file's active storage site, the record
locking request is processed completely at that site. Process-
ing these locks involves referencing and updating local kernel
data structures, as well as some system call overhead.

Local record locking performance was measured using
standard timing functions present in the Locus kernel. The
measurements were obtained by repeatedly locking ascending
groups of bytes in a file. Excluding system call overhead, the
cost of obtaining a single lock is approximately 750 instruc-
tions (1.5 ms) per lock. This cost is small compared to the
cost of initiating a data page read, or sending a network mes-
sage. The time required to obtain a lock is also a fraction of
typical disk I/O latencies, and is even less significant when
compared to the time involved in requesting remote disk
pages. These results indicate that setting and releasing record
locks is a relatively a low cost operation in this environment.

Locking records in a file that is stored at a remote site
is somewhat more complex and introduces additional costs. At
the requesting site, a message is sent to obtain the appropriate
lock from the storage site. The storage site must process the
lock request, verify that the lock is allowable under the current
policy, and return a reply. In this process, a variety of
network-related latencies are introduced.

As noted above, when requestor and data storage site
are co-located, performance is quite good, a side-effect of cen-
tralization of locking information at the storage site. In the re-
mote case, locking costs were found to be indistinguishable
from inherent round-trip message exchange costs. Measure-
ments indicated that locking latencies had increased from ap-
proximately 2 ms in the local case, to about 18 ms per lock in
the remote case. These delays were comparable to expected
network delays, which are a function of the underlying com-
munication network, and could be reduced further in other en-
vironments.

6.3 R e c o r d C o m m i t P e r f o r m a n c e

The record commit mechanism underpins the operation
of the distributed record locking mechanism. This mechanism
provides the ability to selectively update individual bytes on a
data page during a commit operation by efficiently differencing
each data page with its shadow, when necessary, before per-
forming the commit operation.

The cost of a commit operation on a set of records has
been measured in two cases: when updates from different users
overlap on the same data page, and when they do not. The
results of several trials measuring performance differences in-
dicate that there is only a moderate additional cost inherent in
this mechanism. Figure 6 shows the results of the measure-
ments; service time reflects the amount of CPU consumed by
the record commit operation at the local site and latency

reflects the elapsed time. These results are relatively insensi-

tive to the number of overlapping records on the page 11.

L o c a l C o m m i t s

Service time Latency
Non-overlap 21 ms (9450 inst) 73 ms
Overlap 24 ms (10800 inst) 100 ms

R e m o t e C o m m i t s

Service time Latency
Non-overlap 16 ms (7200 inst) 131 ms
Overlap 16 ms (7200 inst) 124 ms

Figure 6: Measured Commit Performance

Note that commit costs are divided between the local
site and the storage site when a remote file is committed. The
results shown for remote commits in figure 6 indicate the over-
head measured at the requesting site. In this case, the costs de-
crease slightly at the requesting site, due to computation and
page updates being offloaded to the storage site. Even so, net-
work delays significantly increase the latency of remote corn-
mrs.

The commit differencing algorithm compares the origi-
nal and modified copies of each appropriate data page. In the
performance measurements reported above, all necessary
pages were in buffers (due to the LRU buffer replacement al-
gorithm employed). If the data page were not available in a
buffer, a mad operation would have been necessary to retrieve
that page. This case occurs very infrequently, as commits typi-
cally occur shortly after an update, and so this is not reflected
in the results reported above.

6.4 P e r f o r m a n c e S u m m a r y

The above measurements show that reasonable perfor-
mance can be achieved in a distributed record locking mechan-
ism for both local and remote operation. This performance
resulted from the use of lightweight communication protocols,
a primary site locking mechanism, and local lock caches.

We have also shown that it is possible to build a rea-
sonably performing record commit facility based on an inten-
tions list mechanism. This mechanism properly manages the
case of multiple updates on the same data page; the overall
cost of copying the overlapping bytes from page to page does
not substantially impact performance. This is a useful result,
since we feel that constructing an intentions list mechanism is
simpler than constructing an equivalent logging mechanism in
some systems.

11 In these measurements, lk byte pages were used. An increase to 4k byte
pages would add approximately 1 ms to the measured results, in the case
where a substantial portion of the page were copied.

123

7 Related Work resources.

Transaction mechanisms have been implemented or are
being implemented in several research and production systems.
These systems differ in several ways. Perhaps most
significantly, there are transaction implementations in pro-
gramrning languages, database systems, and operating sys-
tems. These related efforts also differ with respect to func-
tionality, method, granularity of concurrency control, perfor-
mance, and degree of implementation. We review some of
these projects and show how their work relates to ours.

7.1 Previous Locus Work

An implementation of nested transactions was opera-
tional in the Locus testing environment at UCLA in 1983
[Mueller83] [Moore82]. This facility was a process-based
transaction mechanism, which permitted any process to create
a new process which would be run (atomically) as a transac-
tion. The transaction could itself create a sub-process to in-
voke a module as a subtransaction, which would also act atom-
ically. The current work on transactions and synchronization
in Locus is not based upon this previous implementation for
several reasons.

The creation of a new Unix-style heavy-weight process
for each transaction was judged to be too expensive for a tran-
saction processing facility. The BeginTrans and EndTrans in-
terface eliminates this requirement and makes operating sys-
tem level transactions a reasonable tool for constructing data-
base or other transaction processing systems.

The version stacks and intra-transaction synchroniza-
tion required for nested transactions were found to be expen-
sive. The primary advantage of the fully-nested transaction
mechanism is that less work is lost in the case of a failure.
However, in an optimistic scenario (where failures do not oc-
cur frequently), it makes more sense to optimize the more
common case where subtransactions complete successfully.

The previous Locus transaction work performed lock-
ing at the file level. Whole file locking restricts the degree of
concurrent access to data files, and is not a satisfactory base on
which to implement a database system. The new transaction
facility provides record-level locking. Also, the previous
design and implementation did not permit transactions to be
composed of processes at different sites, and did not support
the ability of processes to migrate among sites.

7.2 Tandem ENCOMPASS*

ENCOMPASS is a distributed database management
system designed to provide high reliability through replication
at both the hardware and software levels. A node in the Tan-
dem system consists of two to sixteen processors. Each pro-
cess may have a twin backup process on another processor
within the node. Similarly, each disk is connected to two con-
trollers and has a mirror volume. The underlying message-
based operating system provides transparent access to remote

*ENCOMPASS is a trademark of Tandem Computers.

The ENCOMPASS Transaction Monitoring Facility
(TMF) provides single level transactions [Borr81]. As in
Locus, transactions may include processes at many sites. For
each disk volume, there is a DiskProcess pair through which
all accesses to that volume must pass. The DiskProcess imple-
ments an undo/redo logging scheme. Each node has a process
pair known as the Transaction Monitor process (TMP). The
messages implementing the two-phase commit protocol are
sent from TMP to TMP.

Tandem provides its transaction mechanism in a data-
base management system. Consequently ENCOMPASS tran-
sactions are not as general purpose a programming tool as are
Locus transactions. However, Tandem provides one of the
few commercially available distributed transaction facilities.

7.3 TABS

TABS [Spector 84] provides distributed transaction
services for processes running under the Accent kernel [Rashid
81]. The Accent system kernel is a message-based operating
system that provides support for an extensible abstract typing
mechanism. TABS is implemented primarily as a collection of
Accent type managers, as well as a small number of kernel
enhancements.

The TABS transaction approach differs substantially
from that of Locus as it provides type-oriented transaction sup-
port. In TABS, each type manager provides the locking and
commit mechanisms for the types it implements. TABS uses a
log-based recovery strategy, which aids in the implementation
of type-specific recovery schemes. Also, TABS communicates
with client processes via message-passing mechanisms, rather
than via kernel calls.

7.4 Argus

Argus [Liskov 84] [Moss 82] provides support for dis-
tributed nested transactions using a combination of language-
level and kernel-based mechanisms. The Argus programming
language provides access to the transaction mechanisms which
are implemented in the Argus kernel. Atomic abstract data
types, implemented by guardians, are manipulated by
language-provided transaction control primitives. Access to
objects controlled by guardians is made through handlers; each
handler invocation causes a process to be created within the
guardian, which runs as a nested subtransaction of the
requestor's transaction.

Run-time support for transaction control is provided by
the Argus kernel. As in Locus, substantial support for
enhanced process scheduling, message passing, and other ser-
vices has been built into the kernel. However, the Argus ap-
proach provides these services only to Argus language applica-
tions.

As of this writing, a centralized implementation of
Argus has been completed, and a distributed version is in pro-
gress.

124

7.5 R*

Like Tandem's ENCOMPASS, IBM San Jose's R*
Distributed Database Manager [Daniels 82] [Lindsay 84] pro-
vides a distributed transaction facility within a database sys-
tem. Unlike the Tandem distributed transaction architecture in
which remote service is obtained by communicating with re-
mote servers, or Argus which creates a process for each re-
quest, R* creates a new process for each user session.

R* uses securevirtual circuits and datagrams for re-
mote access; a virtual circuit is established between an R* pro-
cess at the requesting site and a server process running R* at
the serving site. A remote R* process, serving an initial re-
quest, may require service from yet another site. In this case, a
new virtual circuit is set up between the server process and a
newly created server process at the third site. These connec-
tions are reused, so the overhead of setting up these virtual cir-
cuits is amortized over an entire R* session.

R* uses the two-phase commit protocol to ensure that
all actions are either commited or aborted. However, because
an R* transaction can constitute a tree of processes, the com-
mit protocol follows this model: at each level of the tree, when
a process receives a prepare to commit message, it propagates
the message to all of its subordinate processes, and collects
prepared messages for eventual return to its parent. This
differs from Locus, where all but the top-level process have
completed when the transaction commits. In Locus, the ex-
change of messages is between the kernels at the coordinator
site, and the kernels at all participant sites; this protocol in-
volves less latency.

8 Conclusions

We have found that it is reasonably straightforward to
design and implement fully transparent, fine-grain transaction
facilities in a distributed operating system. These facilities are
universally available to applications software. In doing so it
was surprising that a shadow page mechanism could be so
readily adapted to record-level synchronization. Approximate-
ly one man-year of effort was required to accomplish this.

Nevertheless, the sophistication required to correctly
construct the facilities reported here makes it clear that it is
best to construct them once, and provide them in a generally
available manner to applications builders. As distributed en-
vironments are increasingly composed, at least in part, of
significant numbers of relatively modest power workstations,
the need to build reliable distributed applications software is
certain to increase.

References

[Bartlett78] J. Bartlett, " A NonStop Operating Sys-
tem," Eleventh Hawaii International
Conference on System Sciences, Honolulu,
HA, January 1978, pp. 103-117.

[Bartlea81]

[Borr81]

[Coffman71]

[Daniels82]

[Elhardt84]

l

[Eswaran76]

[Gray 81]

[Gray78]

[Kent85]

[Lampson79]

J. Bartlett, "A NonStop Kernel,"
Proceedings of the Eighth Symposium of
Operating Systems Prinicples, Pacific
Grove, CA, December 1981.

A.J. Borr, "Transaction Monitoring in En-
compass: Reliable Distributed Transaction
Processing," Proceedings of Very Large
Database Conference, Cannes, France,
1981, pp. 155-165.

E.G. Coffman, Jr., M.J. Elphick, and A.
Shoshani, "System Deadlocks," Comput-
ing Surveys, 3(2), June 1971, pp. 67-78.

D. Daniels, P. Selinger, L. Haas, B.
Lindsay, C. Mohan, A. Walker, and P.
Wilms, "An introduction to distributed
query compilation in R*," Proceedings
Second International Symposium on Distri-
buted Databases, Berlin, September 1-3,
1982. Also IBM Research Report RJ3497,
San Jose, CA, June 1982.

K. Elhardt, R. Bayer, "A Database Cache
for High Performance and Fast Restart in
Database Systems," ACM Transactions on
Database Systems, Vol. 9, No. 4, De-
cember 1984, pp. 503-525

K.P. Eswaran, J. Gray, R.A. Lode, and
I.L. Traiger, "The notions of Consistency
and Predicate Locks in a Database Sys-
tem," Communications of the ACM, Vol.
19, No. 11, November 1976, pp. 624-633.

J. Gray, "The Transaction Concept: Vir-
tues and Limitations," Proceedings of the
Seventh International Conference on Very
Large Data Bases, Cannes, France, Sep-
tember 9-11, 1981, pp. 144-154.

J. Gray, "Notes on Data Base Operating
Systems," Operating Systems An Ad-
vanced Course, Lecture Notes in Computer
Science 60, Springer-Verlag, 1978, pp.
393-481.

J. Kent, H. Garcia-Molina, J. Chung, "An
Experimental Evaluation of Crash
Recovery Mechanisms," Symposium on
Principles of Database Systems, Portland,
OR, March 1985.

B.W. Lampson and H.E. Sturgis, "Crash
Recovery in a Distributed Data Storage
System," XEROX Palo Alto Research
Center, April 1979.

125

[Lindsay79]

[Lindsay84]

[Liskov82]

[Liskov84]

[Locus84]

[Moore82]

[Moss82]

[Mueller83]

[Popek81]

[Spector84]

B.G. Lindsay, P. Selinger, C. Galtied, J.
Gray, R. Lode, T. Price, F. Putzolu, I.
Traiger, and B. Wade, "Notes on Distri-
buted Databases," IBM Research Report
RJ2571(33471), IBM Research Laborato-
ry, San Jose, CA, July 14, 1979, pp. 44-50.

B.G. Lindsay et. al., "Computation and
Communication in R*: A Distributed Data-
base Manager," ACM Transactions on
Computer Systems. Vol. 2, No. 1, Feb.
1984, pp. 24-38.

B. Liskov and R. Scheifler, "Guardians
and Actions: Linguistic Support for
Robust, Distributed Programs," Proceed-
ings of the Ninth Annual Symposium on
Principles of Programming Languages,
Albuquerque, NM, 1982.

B. Liskov, "Overview of the Argus
Language and System," Programming
Methodology Group Memo 40, Laboratory
for Computer Science, M.I.T., 1984.

"The Locus Dislributed System Architec-
ture", Edition 3.1, Locus Computing Cor-
poration Technical report, June 1984.

J.D. Moore, "Simple Nested Transactions
in LOCUS: A Distributed Operating Sys-
tem," Master's Thesis, Computer Science
Department, University of California, Los
Angeles, 1982.

J. Eliot B. Moss, "Nested Transactions:
An Approach to Reliable Distributed Com-
puting," Technical Report MIT/LCS/TR-
260, Laboratory for Computer Science,
M.I.T., 1981.

E. Mueller, J. Moore, G. Popek, "A Nest-
ed Transaction Mechanism for LOCUS,"
Proceedings of the Ninth Symposium on
Operating Systems Principles, Bretton
Woods, NH, October 10-13, 1983.

G. Popek, B. Walker, J. Chow, D. Ed-
wards, C. Kline, G. Rudisin, and G. Theil,
"LOCUS: A Network Transparent, High
Reliability Distributed System," Proceed-
ings of the Eighth Symposium of Operating
Systems Principles, Pacific Grove, CA, De-
cember 1981.

A. Spector, J. Butcher, D. Daniels, D. Du-
champ, J. Eppinger, C. Fineman, A. Hed-
daya, P. Schwarz, "Support for Distribut-
ed Transactions in the TABS Prototype,"
Technical Report CMU-CS-84-132, Com-
puter Science Deparment, Carnegie Mellon
University, 1984.

[Stonebraker81]

[Walker83]

[WeckerS0]

[Weinstein85]

M. R. Stonebraker, "Operating System
Support for Database Management," Com-
munications of the ACM, Vol. 24, No. 7,
July 1981, pp 412-418

B. Walker, G. Popek, R. English, C. Kline,
and G. Theil, "The LOCUS Distributed
Operating System," Proceedings of the
Ninth Symposium on Operating Systems
Principles, Bretton Woods, NH, October
10-13, 1983.

S. Wecker, "DNA: the Digital Network
Architecture," IEEE Transactions on
Communications, vol. 28, April 1980, pp.
510-526.

M.J. Weinstein, "Some Performance As-
pects of Shadow Paging Mechanisms,"
Locus Memorandum #21, Department of
Computer Science, University of Califor-
nia, Los Angeles, 1985.

126

