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Abstract 

A fully distributed operating system 
transaction facility with fine-grain record level 
synchronization is described. Multiple member 
processes, remote resource access, dynamic 
process migration, and orderly interaction with 
concurrent non-transaction activities are all sup- 
ported, An unusual logging strategy, based on 
shadow pages but supporting logical level lock- 
ing, is used. This choice is justified on the basis 
of ease of implementation and performance 
analysis. 

The design and implementation is done 
in the context of Locus, a high performance dis- 
tributed Unix operating system for local area 
networks. 

1 Introduction 

It has often been observed that the construction of dis- 
tributed software in a multi-machine environment can be sub- 
stantiaUy more difficult than the development of single 
machine software. Two pnncipal causes are the frequent 
difference in interfaces between local and remote resources, 
and the richer set of failure and error modes in the multi- 
machine case. Network transparency, which makes local and 
remote resource interfaces logically identical, addresses the 
first issue. It is a well known concept, and degrees of tran- 
sparency are embodied in a number of network and multipro- 
cessor operating systems [Bartlett78] [Wecker80] [Locus84]. 
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Addressing the second issue requires that additional 
tools be available to the software developer. Flexible and gen- 
eral support for transactions, for example, would be quite use- 
ful. Numerous proposals for transactions have been made, 
both in operating systems and programming languages 
[Bartlett81] [Mueller83] [Liskov82] [Moss82]. 

Here a full design and implementation of transactions 
in a distributed Unix operating system is presented. We as- 
sume an environment composed of a substantial number of re- 
latively small machines, with considerable communications 
bandwidth among them, performing database-oriented opera- 
tions. In order to perform effectively in comparison to large 
centralized systems, such systems rely on achieving consider- 
able concurrency of data access and update; hence, fine-grain 
synchronization is important. Further, since it is considered 
important to permit workstation class machines to include 
these tools, a compact transaction implementation is necessary. 

The transaction and locking facilities described in this 
paper utilize several pre-existing mechanisms in the underlying 

Locus I distributed operating system [Popek81] [Walker83], 
currently operational on both mainframes and workstations. 
Some of these features were found invaluable in permitting ra- 
pid implementation of the work reported here. The base Locus 
system provides support for atomic file updates via an inten- 
tions list mechanism; this mechanism provides the underlying 
support for the current transaction implementation, supporting 
both the transaction logging and data file commit mechanisms. 
Lightweight network protocols provide the basis for high- 
performance distributed locking, data page transport, and pro- 
cess migration services. The distributed, transparent 
namespace provided by Locus, enabled the implementors to ig- 
nore many difficult problems of distributed file handling and 
transaction design. 

This paper describes the functionality and implementa- 
tion of the transaction and synchronization facilities provided. 

i Hereafter, "Locus" refers to the Locus system as extended to include 
transactions and record level locking. The base system to which these 
facilities were added contained no U'ansaction mechanism. 
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Section 2 provides an overview of Locus transaction seman- 
tics. Section 3 discusses transaction operation and synchroni- 
zation. Section 4 describes the implementation of the Locus 
transaction mechanism. Section 5 discusses the implementa~ 
tion of the distributed record-level locking mechanism. Sec- 
tion 6 presents performance measurements and observations. 
A comparison with related work and conclusions follow. 

2 Transaction Semantics 

The transaction facility in Locus provides the usual as- 
surance of serializability of transactions with one another, and 
atomic behavior in the face of network and nodal failures. It is 
desired that, from a user and program point of view, the tran- 
saction facilities be entirely transparent. In the Locus context, 
this means that a process in a transaction should be able to mi- 
grate around the network during execution, create transaction 
subprocesses either locally or remotely and interact with them, 
and access resources transparently, independent of their loca- 
tion. All of these characteristics should operate with high per- 
formance, and behave reasonably in the face of failures. While 
these goals impose significant requirements on a design and 
implementation, they increase the facility's utility. 

The Locus implementation of transactions described 
here does not allow general nesting of transactions. Previous 
implementations of transaction mechanisms that have allowed 
full- nested transactions have been rather expensive, both in 
terms of implementation and performance [Mueller83]. Ver- 
sion stacks and version trees, the mechanisms for intra- 
transaefion synchronization, and other bookkeeping overhead 
are unnecessary when full-nested transactions are avoided. In- 
stead, transactions in Locus are simple-nested. 

The semantics of simple-nested transactions are 
straightforward. A non-transaction process starts a transaction 
by issuing a BeginTrans call. This call encapsulates all subse- 
quent file operations by that process, and its sub-processes, 
within that single transaction. Encapsulation ends upon execu- 
tion of a corresponding EndTrans call, which makes the ac- 
tions of the transaction permanent; or an AbortTrans call, 
which undoes the transaction's actions. Only those resources 
locked within the BeginTrans-EndTrans pair are considered 
part of that transaction. Resources locked before the start of 
the transaction may be used within the transaction but are not 
committed or aborted along with the transaction, as described 
in section 3.3. 

In order to permit the composition of existing transac- 
tion code, the transaction implementation pairs BeginTrans- 
EndTrans calls. Each process contains a count of the current 
transaction nesting level. When a BeginTrans operation is en- 
countered, the level of transaction nesting increases; an 
EndTrans decreases the nesting level. When the nesting level 
returns to 0, via an EndTrans call, the transaction has complet- 
ed successfully. 

As an example of the usefulness of transaction nesting, 
consider an application program which, within a transaction, 
calls on a database subsystem to perform an update. This data- 
base subsystem may call BeginTrans and EndTrans internally, 

to cause its critical section to execute atomically. This kind of 
nested call must be permitted, and in fact may occur uninten- 
tionally. Clearly, the EndTrans call generated by the database 
subsystem must not terminate the entire transaction. 

3 Synchronization Functionality 

There are a number of issues which must be addressed 
in transaction synchronization. The following section 
discusses the solutions implemented in Locus to such issues as 
locking schedule and lock granularity, system interface, and 
the interaction of transactions and non-transactions accessing 
shared data. 

3.1 Locking Schedule and Granularity 

The Locus transaction facility provides record-level 
locking, as well as a transaction envelope. Locks may be ac- 
quired explicitly (via a system request) or implicitly (at the 
time of record access). 

The locking schedule employed here is the convention- 
al two-phase locking discipline, as described by [Eswaran 76]; 
all processes created from within a transaction are part of that 
transaction (for synchronization purposes), independent of 
their location in the network. If a process, while executing as a 
transaction, creates a child process, and either of them locks a 
record for exclusive access, the other may do so as well. This 
policy is consistent with Unix process semantics, where child 
processes inherit file access from their parents, with an identi- 
cal set of access rights. 

Any resource acquired by a process which is part of a 
transaction is locked, either explicitly before access, or impli- 
citly when accessed, as required by the two-phase locking dis- 
cipline. A transaction may choose to explicitly unlock a 
resource after use; the lock is retained, and may later be reac- 
quired by any process within the transaction; unlocked 
resources are not made available to processes outside the tran- 
saction until the transaction commits or aborts. 

The locking facility may be used by any process, 
whether or not the process is part of a transaction. Alternately, 
a non-transaction process may choose not to lock resources be- 
fore use, in the conventional Unix manner; thus, compatibility 
with conventional Unix sharing is preserved, while at the same 
time it is possible to synchronize access as required by transac- 
tion clients. 

Unix Shared Exclusive 

Unix r/w read no 

Shared read read no 

Exclusive no no no 

Figure I: Transaction Synchronization Rules 

The compatibility rules for the various locking modes 
provided by the transaction mechanism are shown in Figure 1. 
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Note that Locus record locks are enforced, not advisory, as in 
the/usr/group standard, or Berkeley 4.2 Unix. Enforced locks 
are necessary to ensure that the two-phase locking discipline is 
maintained. Because enforced locks can introduce integrity 
problems (in the form of access denial), the current policy re- 
quires that a process have write access to a file in order to issue 
locking requests for that file. 

Another ramification of enforced locks is the possibility 
of deadlock. The Locus kernel does not detect deadlock. In- 
stead, an interface to operating system data is provided, per- 
mitting a system process to detect deadlock by constructing a 
wait-for graph, using conventional techniques [Coffman 71]. 
In this manner, a variety of deadlock resolution and redo stra- 
tegies may be implemented. 

3.2 Record Locking Interface 

The locking mechanism permits byte granularity syn- 
chronization of access to data files, in a manner quite similar to 
common record locking proposals for Unix. Enforced locks 
are used to ensure that the two-phase locking protocol is 
satisfied. 

Before record locking can take place, the file to be 
locked must be opened. In Locus, this resource name-mapping 
(performed by the open call) is separate from resource locking. 
Thus, a program may perform name mapping, a relatively ex- 
pensive operation in a distributed system, once, then lock and 
unlock records within the file, without repeatedly incurring the 
expense of name resolution. 

After a file has been opened, ranges of bytes in that file 
may be locked in several modes, including shared read or ex- 
clusive read/write. Locked ranges may be extended or con- 
tracted, and locking modes may be upgraded or downgraded, 
through subsequent locking requests. Locking a range of bytes 
is accomplished by positioning the current file pointer to the 
first byte to be locked, and issuing the lock request: 

Lock(file, length,mode) 

Thefile argument refers to the channel number returned by the 
open call, length specifies the number of bytes to lock, and 
mode indicates whether the requested lock is a shared lock re- 
quest, an exclusive locking request, or an unlock requests If a 
lock request conflicts with an existing lock, the requestor will 
receive an indication of the conflict, or alternatively will be 
queued until the lock can be granted. 

The ability to extend a file and simultaneously lock the 

newly allocated area is useful when updating shared log files 2. 
This operation is performed by placing the file to be updated in 
append mode. Future lock requests are interpreted as being re- 
lative to the end of file, so processes can lock and extend a file 
atomically. 

2 Without such a mechanism, remote processes attempting to extend a 
heavily used log could repeatedly be intercepted between the time the end 
of a file was located, and the time a lock was placed on the file, and thus 
suffex from livelock. 

3.3 Interaction With Non-Transaction Programs 

Implementing transactions in a general purpose operat- 
ing system presents many advantages: efficacy of a single im- 
plementation, and the ability to easily compose multiple in- 
dependently prepared programs into a single transaction, for 
example. However, one must also deal with the reality that 
clients of the transaction facility will not always wish to be ex- 
ecuting in transaction mode, and that there will be non- 
transaction programs present in the network. 

These issues arise immediately when one constructs ap- 
plications such as database management systems. Database 
managers execute queries as transactions, but may simultane- 
ously require access to resources on a non-transaction basis. 
Accounting and performance records are obvious examples. 
Consequently, when a transaction begins, one must consider 
how to treat resources such as open files already acquired by 
the process, and data which has been modified but  not yet 
committed. 

Consider the following programs, which access related 
data items in a file: 

open x; 

BeginTrans; 
readlock x[1]; 
t := x[1]; 
writelock x[2]; 
x[21 := t; 

EndTrans; 

open x; 
wfitelock x[1]; 
x[1] := C; 
unlock x[1]; 

abort x[1]; 

Figure 2: Serialization Problem 

In the fragments shown, a non-transaction part of one 
program updates record x[l] and then unlocks it without com- 
mitting the record; this is possible because the synchronization 
mechanism cannot require a non-transaction to retain locks. 
Subsequently, another program starts a transaction, which 
writes x[2] based on the uncommitted value read from x[1]. 
Unfortunately, the transaction mechanism does not guarantee 
that record x[1] will not be rolled back or lost due to a system 
crash; the result in this case is that x[2] is not equal to x[1], 
potentially violating consistency constraints. 

It is desirable to guarantee that transaction senalizabili- 
ty is preserved regardless of what non-transactions do. The 
above example shows a correctly composed transaction that 
is made non-sefializable by the actions of an unrelated pro- 
gram. Locus solves this problem by enforcing the following 
rules when applying a lock to a file or record: 

1. Any lock obtained by a transaction is retained until the 
transaction commits or aborts. This is a standard two- 
phase locking requirement. 

2. If a modified but uncommitted record is locked by a 
transaction, in any mode, the lock is retained until the 
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transaction commits or aborts; the record is committed 
upon successful transaction completion regardless of 
whether it was modified by the transaction. This al- 
lows access to unstable data without violating two- 
phase locking. 

By imposing these requirements, updates survive, 
atomic behavior can be assured, and transactions cannot unin- 
tentionally be made non-serializable by interactions with non- 
transactions. 

3.4 Except ions  to Serial izabil i ty 

There are instances in which a transaction must have 
the ability to read or update records without those actions 
becoming part of that transaction [Stonebraker 81]. Critical 
data structures such as system catalogs for a database, or direc- 
tories in a filesystem, should not remain locked for the dura- 
tion of a transaction. There are also some actions which 
should be explicitly visible during transaction execution. Con- 
current execution of two transactions which attempt to create a 
file by the same name is one example. One transaction must 
fail even though neither has reached a commit point that would 
make their updates visible. Allowing transactions to selective- 
ly violate two-phase locking is a functionality which must be 
provided. 

There are two ways in which a process is permitted to 
intentionally violate the default two-phase locking discipline. 
The first method is through an additional locking mode called 
a non-transaction lock. A non-transaction lock obeys the same 
locking rules as locks acquired by a transaction, as shown in 
Figure 1; however, the two-phase locking protocol is not en- 
forced on these locks by the transaction mechanism. 

The second way to violate serializability is to acquire a 
lock before a process becomes a transaction; these locks are 
not conveaed to transaction locks at the BeginTrans point. 
This approach is clearly less general than the first, because the 
locks that will be required may not be known before the start 
of the transaction. 

In both of these cases, the system does not force the 
lock to be retained until the outcome of the transaction is deter- 
mined; this can improve concurrency in some circumstances, 
at the cost of potentially lost serializability. As always, careful 
design of algorithms is necessary. 

4 Transact ion Implementat ion  

Transactions were surprisingly straightforward to im- 
plement in the transparent distributed environment provided by 
Locus. A number of mechanisms within the underlying Locus 
kernel were utilized, including the shadow-page based file sys- 
tem, distributed name-mapping services, light-weight network 
message protocols, and support for network failure detection. 

The basic Locus operating system contains a single-file 
commit mechanism which is implemented by intentions lists, 
and is used as part of normal filesystem operation. The list 

consists of a set of page pointers for the file; in Unix that list is 
contained in the file's descriptor block (inode), although there 
may be indirection present. Files are committed by forcing 
dirty file pages to disk, and atomically overwriting the inode 
on disk with new data, freeing up the old data pages. Little ad- 
ditional I /0 over conventional (unsafe) Unix filesystem 
behavior results, so this is the default operating mode. 

The two-phase transaction commit mechanism was 
easily built, using the record-level shadow-paging facility as a 
base. Logs built by the transaction mechanism consist of sets 
of intentions lists, as well as associated locking information. 
The transaction mechanism relies only on the functionality of 
the record commit mechanism, and not on the specific imple- 
mentation. The intentions list mechanism used to commit 
records within individual files could be replaced with a logging 
mechanism, without affecting the multi-file transaction commit 
facility. 

Salient aspects of the transaction mechanism are out- 
lined below. The first section describes transaction initiation, 
followed by descriptions of transaction commit, abort, and sys- 
tem failure recovery. The underlying shadow page mechanism 
for committing variable length records within files is described 
in detail in section 5. 

4.1 Init iat ion and  Operat ion  

A transaction is initiated when a BeginTrans call is is- 
sued by a non-transaction process. This causes the generation 
of a temporally unique identifier, which names the newly 
formed transaction. This identifier is used internally to identi- 
fy files and records accessed by the transaction. All processes 
created as part of the transaction inherit this transaction 
identifier. 

For each process within a transaction, the kernel main- 
tains afile-list, which enumerates all files used by that process. 
This file-list is used by the two-phase commit protocol, to as- 
sure that all files used by a transaction are correctly committed. 
Up to that point, the list is kept in a decentralized fashion, at 
the same site as the process to which they refer, in order to al- 
low efficient access. If a process migrates to another site in the 
network, its file-list migrates as well. 

At the beginning of the two-phase commit protocol, the 
entire file-list for a transaction must be known in order to 
determine which files will participate in the commit process. 
To accomplish this, as each child process completes, its file- 
list merges with that of the top-level process of the transac- 

tion 3. When all child processes in a transaction have complet- 
ed, the file-list for the top-level process of the transaction con- 
tains all of the flies which have been accessed by the entire 
transaction. 

The child may be running on a different site from the top level process, 
consequently requiring that its file-list be sent to another site in a network 
message. Similarly, the top level process may have migrated to another 
network node, with its current file-list. 
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The protocols must guarantee that the file-list eventual- 
ly gets to the correct site, even if the top-level process migrates 
several times. There is a potential race condition in which a 
process begins migrating to a new site, and simultaneously a 
list of files sent from one of its child processes arrives. If the 
parent process's file-list has already migrated to the new site, 
but the process itself has not completed migration, the child 
process's file-list would not be recorded. 

This race condition is avoided by marking the migrat- 
ing top-level processes with an in-transit indication. When a 
message containing a list of files arrives, the system verifies 
that the target process still resides at that site, and is not in the 
process of migrating. If the process is no longer at that site, or 
is already migrating, the system returns a failure message to 
the child's site, which must retry the operation. However, if 
the top-level process is resident at that site, the system locks 
the process from migrating, for a short duration, until the 
operation has been completed; since processes migrate infre- 

quently, this does not adversely impact process performance 4. 

4.2 Transact ion Commit  

When a top-level process reaches the transaction end- 
point, and all of its subprocesses have completed their process- 
ing, transaction commit begins. Transaction commit is accom- 
plished using the two-phase commit protocol [Gray78] 
[Lindsay79]. The top-level process's current site becomes the 
commit coordinator site. The coordinator site directs the tran- 
saction commit process, acting as coordinator in the two-phase 
commit protocol, and maintaining the transaction log. The list 
of all files used in the transaction is accessible to the coordina- 
tor site, and is used to direct transaction commit. The storage 
sites of each of these files are required to be participant sites in 
the two-phase commit protocol. 

Transaction commit is performed in several steps, in- 
volving three levels of logs. The first log written is the tran- 
saction coordinator log. This log contains the transaction 
identifier of the transaction being committed, a list of all files 
containing records which were used by the transaction, along 
with their corresponding storage sites, and a status marker, in- 
dicating the outcome of the transaction (initially unknown). 
After successfully writing this log, the coordinator sends 
prepare messages to each of the participant sites. 

The second level of logging takes place at the partici- 
pant sites. Upon receiving a prepare message, each participant 
site flushes modified records and writes its prepare log, storing 
enough of the intentions lists and lock lists for each file to 
guarantee that the files can be committed when the transaction 
reaches the second phase of the commit protocol, regardless of 
local failures. When these logs have been stored, each partici- 
pant site replies to the coordinator site with a prepare complet- 
ed message. Upon receipt of all prepare completed messages, 

the coordinator changes the status marker in its log to commit- 
ted; this determines the transaction commit point. 

The third level of logs used in the commit protocol are 
the per-file shadow pages stored at the participant sites. After 
the transaction commit point, a kernel process at the coordina- 
tor site asynchronously sends transaction commit messages to 
each of the participant sites. The participant sites complete the 
update of the files involved in the transaction by using the 
single-file commit mechanism, and releasing all corresponding 
retained locks. 

4.3 Transact ion Abort  

When any process within a transaction fails, or issues 
an AbortTrans call, the entire transaction must abort. The 
transaction mechanism aborts all changes to files made by the 
top-level process, and all those made by member processes 

which had completed 5. Transaction abort is initiated by send- 
ing an abort message to the site at which the top-level process 
of the transaction resides. The system first discards any 
changes made to files by the top-level process, then locates all 
children of the top-level process, and sends abort messages to 
each of them. The children roll back their modified records, 
release all locks, and signal their children in turn. In this way, 
the abort cascades down the process tree. 

If a transaction is being aborted because a member pro- 
cess has been lost due to failure of the node on which it has 
been executing, its open files will be closed and changes abort- 
ed by the underlying system protocols when they detect the 
failure. Similarly, when an active storage site crashes, if the 
open files on it had not yet become involved in two phase com- 
mit, they will be aborted upon system restart. 

When the transaction mechanism is informed of a 
change in the topology of the network (e.g. a site crashes or 
becomes inaccessible), it aborts all ongoing transactions in- 
volving sites no longer in the current partition. Failures that 
occur before a site has prepared to commit are treated as 
aborts. 

Once a transaction has entered two-phase commit pro- 
cessing, it consists of only a single top-level process. In this 
case, transaction abort is accomplished by changing the status 
of the transaction in the coordinator log to aborted, and send- 
ing abort messages to the participant sites, which are responsi- 
ble for rolling back their own files. 

4.4 Transact ion Recovery  

The transaction recovery mechanism deals with several 
types of failures. The failure of a communications link may 
separate one or more of the sites involved in a transaction from 
the rest of the transaction. The coordinator site or any partici- 
pant site may crash. Any software module of the transaction 

( There are other circumstances involving process migration which can 
result in race conditions. This technique makes process migration appear 
to be an atomic operation. 

s Aborts consists simply of discarding the shadow pages and intentions lists 
unless other processes have record locks on the same pages. The case of 
aborting ulxlates to pages with multiple locks is discussed in tl~ section 5. 
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may fail or issue an AbortTrans call. Once two-phase commit 
has begun, it is the responsibility of the transaction coordinator 
site to recover from failures. 

When a site reboots after a crash, before transactions 
are permitted to run, the transaction recovery mechanism is 
started. To ensure correct transaction recovery, coordinator 
logs are retained until all commit or abort processing has suc- 
cessfully completed for the corresponding transaction. 

The recovery mechanism examines each existing coor- 
dinator log at its site. If the transaction in the log had not 
reached its commit point, or was marked as aborted, it is 
queued for abort processing. If the transaction in the log had 
reached the commit point (indicated by the presence of a com- 
mit mark in the log), the transaction is queued for the second 
phase of the two-phase commit protocol. During this process, 
the transaction recovery mechanism may send duplicate com- 
mit or abort messages to other sites. However, since 
transaction-id's are temporally unique, duplicate commit or 
abort messages cannot produce unintentional failures. 

In a transparent distributed filcsystem, files may be 
stored at any site in the network and may be transported on re- 
movable media. Therefore, it is important to assure that logs 
are stored on the same medium as the files to which they refer; 
otherwise, logs might not be present at the time that recovery 
actions are required. If this were to happen, it would not be 
possible to decide which data pages were to be freed and 
which were to be kept, since pointers to such pages are in the 
log file. Hence, the Locus transaction mechanism maintains a 
separate log per logical volume (ffilesystem). 

5 Record Locking Implementation 

In Locus, record locking facilities are available to both 
transaction and non-transaction processes. There are marked 
differences in the treatment of locks granted to transaction and 
non-transaction processes, however. 

When a non-transaction is granted a lock, it need not 
obey the two-phase locking protocol; thus, data may be 
modified, and locks relinquished, without committing or abort- 
ing the modified data. These uncommitted changes are gen- 
erally visible and may be used and committed by any transac- 
tion or non-transaction (within policy constraints). 

When a transaction is granted a lock, however, the 
two-phase locking protocol must be followed, in order to 
preserve seriaiizability. This requires locks to be retained un- 
til transaction commit. 

5.1 Locking Implementation 

The implementation of record locking is reasonably 
straightforward. When a file is opened, a copy of the file 
descriptor (inode) is brought into kernel memory at the file's 
storage site. As lock requests are processed, a list of lock 
descriptors indicating process-id of the process holding the 
lock, the locking mode, and the range of bytes locked are at- 
tached to the file descriptor; if the process is part of a transac- 
tion, the transaction identifier is also placed in the lock struc- 
ture. The lock list structure is shown in figure 3. 

When a request to lock a record in a file is issued, that 
request is processed at the file's storage site. If the requestor is 
not at the storage site, the lock list will not be locally available; 
a light-weight network message is sent to the storage site, and 
a response awaited. At the storage site, the kernel examines 
the list of existing locks for the file and, if the lock is compati- 
ble with the existing locks on the file, an entry for that lock is 
added to the lock fist. A success response is returned to the rre- 
questing process. Otherwise, a failure response is returned, 
which may be used to notify the requesting process, or may in- 
itiate queueing for a later locking attempt. 

When a requesting site receives a successful response 
to a locking request, it caches this response in its local lock 
fist. This permits the kernel to quickly validate each process's 

/ 

- -  Inode -- 

Lock List 

, X 

,i, \ 

I 

Process Identifier ,~ Transaction Identifier \N 

Lock Mode 

! 

Locking Range 
First [ Last 

Figure 3: Lock List Structure 
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Figure 4: Record Commit Mechanism 
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read and write requests. 

5.2  R e c o r d  C o m m i t s  a n d  A b o r t s  

Record-level commits and aborts are performed using a 
modified intentions-list mechanism which logs changes to data 
at the physical (page) level, rather than at the logical (record) 
level. However, it is desirable to allow more than one process 
to modify disjoint (logical) records on a single (physical) page 
to improve performance, and more importantly, reduce the 
possibility of  false deadlock. 

Even though unrelated updates are a statistically infre- 
quent occurence, the commit mechanism must be able to deal 
with them correctly. In Locus, the standard intentions-list stra- 
tegy is augmented by a page differencing method, to provide 
correct record-level commit operation. Differential update is 
not required in the statistically dominant case, where records to 
be committed reside on pages that contain no updates by other 
transactions or processes. In this case, it is not necessary to 
examine the data contained on each page, and the pages can be 
written to non-volatile storage directly. This case is shown in 
Figure 4(a). 

When disjoint records on the same physical page have 
been modified by more than one transaction or process, the 
commit mechanism cannot directly commit the modified page, 

since other updates would incorrectly be committed 6. To per- 
form the commit, a copy of  the previous version of the page is 
re-read from non-volatile storage, the record(s) of interest are 
transferred to that page, and this new (merged) page is written 

6 Records written on the same physical page by different transactions must 
be disjoint, due to the enforcement of mutually exclusive writes by the 
policy mechanism. 

back to non-volatile storage 7. This operation is shown in Fig- 

ure 4(b). 

Record abort works similarly to record commit. When 
an abort occurs, each file page is examined; if  there are no 
conflicting modifications on the page, that page is directly 
rolled back to its old version. However, if  conflicting 
modification have occured, these cannot be rolled back. In this 
case, the old version of  the data page is re-read, and the 
record(s) to be aborted are overwritten by their original con- 
tents. 

The implementation discussion up to this point has ig- 
nored the possibility that files of interest might be replicated, 
as supported by the Locus kernel; this situation can be handled 
quite gracefully. When record locking is requested for a file, 
the file is internally marked as being open for update. Under 
normal conditions, when a file has been opened for update, 
Locus uses a single storage site strategy for updates. Thus, 
even though there may be a number of storage sites able to 
process open requests for a file, only one site at a time is desig- 

nated as the primary update site 8. The record lock list is kept 

7 Clearly, re-reading and differencing two pages is somewhat expensive. 
Fortunately, this case occurs infrequently, so re-reading pages is rarely 
necessary. To improve performance, clean copies of frequently used pages 
could be kept in the buffer pool; the buffer-aging algorithm can be adjusted 
as necessary. 

8 In order for this strategy to work, it is also necessary to deal with the case 
where a file may be open for read by multiple processes at different sites. 
These processes are typically served by the closest available storage site. 
Therefore, when an open for update (or record locking) occurs, storage site 
service must be migrated to the primary update site. The mechanisms to 
accomplish this were already present in Locus. 
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at this primary site, and everything operates as previously 

described. 

There are further opportunities for performance optimi- 
zation in the distributed environment. When a lock is request- 
ed, the page(s) containing the byte range can be prefetched, in 
anticipation of their subsequent use. Another optimization 
would allow the storage site to temporarily transfer its ability 
to manage a group of locks to another site. This could reduce 
overhead in the event that a group of co-located processes were 
making heavy use of locking facilities. Control of these locks, 
and current locking information, would migrate if the locking 
patterns changed. 

6 Performance  Considerat ions  

Logging mechanisms are generally viewed as superior 
to intentions list strategies, due both to fewer I/O's required 
for commit, and because physical contiguity of data files is 
maintained [Stonebraker]. However, some investigators have 
indicated that the methods are competitive, and for many usage 
characteristics, intentions lists may not generate substantially 
higher I/O costs than logging. 

A discussion of performance considerations in logging 
techniques is complex, involving issues of disk scheduling and 
contention, physical contiguity and allocation schemes, and 
client usage patterns. A brief analysis of the relative costs of 
shadow paging and commit logs, based on assumptions regard- 
ing file access in a distributed environment, was made in 
[Weinstein85]. This analysis, which modeled the costs of typi- 
cal file operations via an operation counting method, indicates 
that the relative performance of shadow paging and commit 
log mechanisms is highly dependent on the nature of the ac- 
cess strings generated by applications. In addition, results re- 
ported in [Elhardt84] and [Kent85] indicate that paging 
mechanisms can potentially outperform logging mechanisms 
with physical page placement controls and hardware support. 

Although logging may significantly outperform shadow 
paging in some circumstances, for many combinations of 
record size and placement, implementations of shadow paging 
can provide comparable performance. 

6.1 Transact ion Performance  

Locus uses structured logging to accomplish transac- 
tion atornicity. Writing to these logs entails overhead which 
affects the performance of the transaction mechanism. Below, 
we enumerate the additional I/O operations that the transaction 
mechanism requires. 

A simple transaction which updates a single page of a 
single file requires three I/O operations beyond normal file ac- 
tivity (see Figure 5). First, the operating system writes the 
transaction structure, containing the list of resources participat- 
ing in the transaction, to the coordinator log. Then, in order to 
prepare the updated file for committing, it flushes the modified 
data page to non-volatile storage. Next, it must write the in- 
tentions list for the modified file to the prepare log. After these 
three writes, the file is prepared to commit. The transaction 

commit occurs when the commit mark is subsequently written 
to the coordinator log, a fourth I/O. These writes occur before 
the transaction completes. Some time later, the kernel process 
which performs the second phase of two-phase commit must 
perform one more write to actually replace data pointers on 

disk with the intentions-list contents 9. 

An overhead of three I/O's per transaction is significant 
when the work of performed by that transaction is minimal 
(e.g. involves only a single update). However, real transac- 
tions commonly generate a substantial I/O load, so that the 
commit overhead in our design is small by comparison. Also, 
in the common case when records on multiple pages in a single 
file are updated in one transaction, no additional overhead 
results for the additional records. Only the intrinsically neces- 
sary I/O (step 2 in Figure 5) is repeated. 

~ ~ " : . : < % ~  |~'.&g~,,,. Normall 

/.~:.~::~....~.:......:::...~ ~:~..~::~.. , . : : ~ i ~  ¢ = Prepared 
4 1~'%:~.' Write comrmt mark to ~ t  

~ ~ % ~  Commit Point 
f Atomically replace old data ] 

5 ~, pointers. J 

Figure 5: Transaction I/O Overhead 

Committing multi-file transactions incurs slightly more 
overhead. In particular, since it is desirable that each disk be 
able to be recovered independently, there is one prepare log 
per media device. Consequently, step 3 in Figure 5 must be re- 

peated for each logical volume containing modified records l°. 

6.2 Record Locking Performance  

In order to assess locking performance and to measure 
the performance penalty incurred for non-local operation, the 
performance of the record locking mechanism was measured 
with all processes and files located at the same site, as well as 
with files and processes distributed at different sites. These 
measurements were conducted on a network of Vax 11/750 

9 The current transaction implementation does not achieve simple 
transaction commit in five I/O operations. Locus currently requires two 
writes to add an entry to a log instead of one; one for the log's data page 
and one for its inode. Hence steps 1 and 3 in Figure 5 each require two I/O 
operations. This problem is being corrected. 

1o Our current implementation uses one prepare log per file per transaction 
rather than one per medium or filesysten~ 
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computers connected by a 10Mb Ethemet with Interlan net- 
work interfaces. 

When a record locking request for a file is issued by a 
process running at that file's active storage site, the record 
locking request is processed completely at that site. Process- 
ing these locks involves referencing and updating local kernel 
data structures, as well as some system call overhead. 

Local record locking performance was measured using 
standard timing functions present in the Locus kernel. The 
measurements were obtained by repeatedly locking ascending 
groups of bytes in a file. Excluding system call overhead, the 
cost of obtaining a single lock is approximately 750 instruc- 
tions (1.5 ms) per lock. This cost is small compared to the 
cost of initiating a data page read, or sending a network mes- 
sage. The time required to obtain a lock is also a fraction of 
typical disk I/O latencies, and is even less significant when 
compared to the time involved in requesting remote disk 
pages. These results indicate that setting and releasing record 
locks is a relatively a low cost operation in this environment. 

Locking records in a file that is stored at a remote site 
is somewhat more complex and introduces additional costs. At 
the requesting site, a message is sent to obtain the appropriate 
lock from the storage site. The storage site must process the 
lock request, verify that the lock is allowable under the current 
policy, and return a reply. In this process, a variety of 
network-related latencies are introduced. 

As noted above, when requestor and data storage site 
are co-located, performance is quite good, a side-effect of cen- 
tralization of locking information at the storage site. In the re- 
mote case, locking costs were found to be indistinguishable 
from inherent round-trip message exchange costs. Measure- 
ments indicated that locking latencies had increased from ap- 
proximately 2 ms in the local case, to about 18 ms per lock in 
the remote case. These delays were comparable to expected 
network delays, which are a function of the underlying com- 
munication network, and could be reduced further in other en- 
vironments. 

6.3 R e c o r d  C o m m i t  P e r f o r m a n c e  

The record commit mechanism underpins the operation 
of the distributed record locking mechanism. This mechanism 
provides the ability to selectively update individual bytes on a 
data page during a commit operation by efficiently differencing 
each data page with its shadow, when necessary, before per- 
forming the commit operation. 

The cost of a commit operation on a set of records has 
been measured in two cases: when updates from different users 
overlap on the same data page, and when they do not. The 
results of several trials measuring performance differences in- 
dicate that there is only a moderate additional cost inherent in 
this mechanism. Figure 6 shows the results of the measure- 
ments; service time reflects the amount of CPU consumed by 
the record commit operation at the local site and latency 

reflects the elapsed time. These results are relatively insensi- 

tive to the number of overlapping records on the page 11. 

L o c a l  C o m m i t s  

Service time Latency 
Non-overlap 21 ms ( 9450 inst) 73 ms 
Overlap 24 ms ( 10800 inst) 100 ms 

R e m o t e  C o m m i t s  

Service time Latency 
Non-overlap 16 ms ( 7200 inst) 131 ms 
Overlap 16 ms ( 7200 inst) 124 ms 

Figure 6: Measured Commit Performance 

Note that commit costs are divided between the local 
site and the storage site when a remote file is committed. The 
results shown for remote commits in figure 6 indicate the over- 
head measured at the requesting site. In this case, the costs de- 
crease slightly at the requesting site, due to computation and 
page updates being offloaded to the storage site. Even so, net- 
work delays significantly increase the latency of remote corn- 
mrs.  

The commit differencing algorithm compares the origi- 
nal and modified copies of each appropriate data page. In the 
performance measurements reported above, all necessary 
pages were in buffers (due to the LRU buffer replacement al- 
gorithm employed). If the data page were not available in a 
buffer, a mad operation would have been necessary to retrieve 
that page. This case occurs very infrequently, as commits typi- 
cally occur shortly after an update, and so this is not reflected 
in the results reported above. 

6.4 P e r f o r m a n c e  S u m m a r y  

The above measurements show that reasonable perfor- 
mance can be achieved in a distributed record locking mechan- 
ism for both local and remote operation. This performance 
resulted from the use of lightweight communication protocols, 
a primary site locking mechanism, and local lock caches. 

We have also shown that it is possible to build a rea- 
sonably performing record commit facility based on an inten- 
tions list mechanism. This mechanism properly manages the 
case of multiple updates on the same data page; the overall 
cost of copying the overlapping bytes from page to page does 
not substantially impact performance. This is a useful result, 
since we feel that constructing an intentions list mechanism is 
simpler than constructing an equivalent logging mechanism in 
some systems. 

11 In these measurements, lk byte pages were used. An increase to 4k byte 
pages would add approximately 1 ms to the measured results, in the case 
where a substantial portion of the page were copied. 
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7 Related Work resources. 

Transaction mechanisms have been implemented or are 
being implemented in several research and production systems. 
These systems differ in several ways. Perhaps most 
significantly, there are transaction implementations in pro- 
gramrning languages, database systems, and operating sys- 
tems. These related efforts also differ with respect to func- 
tionality, method, granularity of concurrency control, perfor- 
mance, and degree of implementation. We review some of 
these projects and show how their work relates to ours. 

7.1 Previous Locus Work 

An implementation of nested transactions was opera- 
tional in the Locus testing environment at UCLA in 1983 
[Mueller83] [Moore82]. This facility was a process-based 
transaction mechanism, which permitted any process to create 
a new process which would be run (atomically) as a transac- 
tion. The transaction could itself create a sub-process to in- 
voke a module as a subtransaction, which would also act atom- 
ically. The current work on transactions and synchronization 
in Locus is not based upon this previous implementation for 
several reasons. 

The creation of a new Unix-style heavy-weight process 
for each transaction was judged to be too expensive for a tran- 
saction processing facility. The BeginTrans and EndTrans in- 
terface eliminates this requirement and makes operating sys- 
tem level transactions a reasonable tool for constructing data- 
base or other transaction processing systems. 

The version stacks and intra-transaction synchroniza- 
tion required for nested transactions were found to be expen- 
sive. The primary advantage of the fully-nested transaction 
mechanism is that less work is lost in the case of a failure. 
However, in an optimistic scenario (where failures do not oc- 
cur frequently), it makes more sense to optimize the more 
common case where subtransactions complete successfully. 

The previous Locus transaction work performed lock- 
ing at the file level. Whole file locking restricts the degree of 
concurrent access to data files, and is not a satisfactory base on 
which to implement a database system. The new transaction 
facility provides record-level locking. Also, the previous 
design and implementation did not permit transactions to be 
composed of processes at different sites, and did not support 
the ability of processes to migrate among sites. 

7.2 Tandem ENCOMPASS* 

ENCOMPASS is a distributed database management 
system designed to provide high reliability through replication 
at both the hardware and software levels. A node in the Tan- 
dem system consists of two to sixteen processors. Each pro- 
cess may have a twin backup process on another processor 
within the node. Similarly, each disk is connected to two con- 
trollers and has a mirror volume. The underlying message- 
based operating system provides transparent access to remote 

*ENCOMPASS is a trademark of Tandem Computers. 

The ENCOMPASS Transaction Monitoring Facility 
(TMF) provides single level transactions [Borr81]. As in 
Locus, transactions may include processes at many sites. For 
each disk volume, there is a DiskProcess pair through which 
all accesses to that volume must pass. The DiskProcess imple- 
ments an undo/redo logging scheme. Each node has a process 
pair known as the Transaction Monitor process (TMP). The 
messages implementing the two-phase commit protocol are 
sent from TMP to TMP. 

Tandem provides its transaction mechanism in a data- 
base management system. Consequently ENCOMPASS tran- 
sactions are not as general purpose a programming tool as are 
Locus transactions. However, Tandem provides one of the 
few commercially available distributed transaction facilities. 

7.3 TABS 

TABS [Spector 84] provides distributed transaction 
services for processes running under the Accent kernel [Rashid 
81]. The Accent system kernel is a message-based operating 
system that provides support for an extensible abstract typing 
mechanism. TABS is implemented primarily as a collection of 
Accent type managers, as well as a small number of kernel 
enhancements. 

The TABS transaction approach differs substantially 
from that of Locus as it provides type-oriented transaction sup- 
port. In TABS, each type manager provides the locking and 
commit mechanisms for the types it implements. TABS uses a 
log-based recovery strategy, which aids in the implementation 
of type-specific recovery schemes. Also, TABS communicates 
with client processes via message-passing mechanisms, rather 
than via kernel calls. 

7.4 Argus 

Argus [Liskov 84] [Moss 82] provides support for dis- 
tributed nested transactions using a combination of language- 
level and kernel-based mechanisms. The Argus programming 
language provides access to the transaction mechanisms which 
are implemented in the Argus kernel. Atomic abstract data 
types, implemented by guardians, are manipulated by 
language-provided transaction control primitives. Access to 
objects controlled by guardians is made through handlers; each 
handler invocation causes a process to be created within the 
guardian, which runs as a nested subtransaction of the 
requestor's transaction. 

Run-time support for transaction control is provided by 
the Argus kernel. As in Locus, substantial support for 
enhanced process scheduling, message passing, and other ser- 
vices has been built into the kernel. However, the Argus ap- 
proach provides these services only to Argus language applica- 
tions. 

As of this writing, a centralized implementation of 
Argus has been completed, and a distributed version is in pro- 
gress. 
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7.5 R* 

Like Tandem's ENCOMPASS, IBM San Jose's R* 
Distributed Database Manager [Daniels 82] [Lindsay 84] pro- 
vides a distributed transaction facility within a database sys- 
tem. Unlike the Tandem distributed transaction architecture in 
which remote service is obtained by communicating with re- 
mote servers, or Argus which creates a process for each re- 
quest, R* creates a new process for each user session. 

R* uses securevirtual circuits and datagrams for re- 
mote access; a virtual circuit is established between an R* pro- 
cess at the requesting site and a server process running R* at 
the serving site. A remote R* process, serving an initial re- 
quest, may require service from yet another site. In this case, a 
new virtual circuit is set up between the server process and a 
newly created server process at the third site. These connec- 
tions are reused, so the overhead of setting up these virtual cir- 
cuits is amortized over an entire R* session. 

R* uses the two-phase commit protocol to ensure that 
all actions are either commited or aborted. However, because 
an R* transaction can constitute a tree of processes, the com- 
mit protocol follows this model: at each level of the tree, when 
a process receives a prepare to commit message, it propagates 
the message to all of its subordinate processes, and collects 
prepared messages for eventual return to its parent. This 
differs from Locus, where all but the top-level process have 
completed when the transaction commits. In Locus, the ex- 
change of messages is between the kernels at the coordinator 
site, and the kernels at all participant sites; this protocol in- 
volves less latency. 

8 Conclusions 

We have found that it is reasonably straightforward to 
design and implement fully transparent, fine-grain transaction 
facilities in a distributed operating system. These facilities are 
universally available to applications software. In doing so it 
was surprising that a shadow page mechanism could be so 
readily adapted to record-level synchronization. Approximate- 
ly one man-year of effort was required to accomplish this. 

Nevertheless, the sophistication required to correctly 
construct the facilities reported here makes it clear that it is 
best to construct them once, and provide them in a generally 
available manner to applications builders. As distributed en- 
vironments are increasingly composed, at least in part, of 
significant numbers of relatively modest power workstations, 
the need to build reliable distributed applications software is 
certain to increase. 
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