
Systems Aspects of the
Cambridge Ring

R. M. Needham
Cambridge University

The Cambridge Ring is a local
communication system developed in the Computer
Laboratory of the University of Cambridge. It
differs in various respects from some other
local communication mechanisms such as
Ethernet systems (Metcalfe & Boggs, 1976), and
the purpose of the present paper is to
describe the way in which the properties of
the ring affect the general systems aspects of
its exploitation.

The Ring

The ring has been described (Wilkes &
Wheeler 1979) from an engineering viewpoint
elsewhere: for the present purpose we need
some relatively broad-brush facts about it.
The ring is a communication system with a raw
data rate of 10 megabits/sec which runs round
the various buildings which constitute the
Computer Laboratory. At intervals on the ring
there is what will be referred to as a station
(strictly a station unit and repeater)
connected to a computer or other piece of
apparatus by an access box. The stations are
all identical except for their address and the
access boxes are tailored to interface the
station to whatever equipment is present. The
ring functions as follows. The unit of
transmission at the low level will be referred
to as a "minipaeket", and consists of a source
byte, a destination byte, two bytes of data,
and a few control bits. (The minipacket has
been referred to in previous publications as a
packet. A change of terminology is made so
that the term "packet" is available for a
slightly higher-level construct more analogous
to packets in other systems.) To send a
minipacket from station S to station R it is
necessary to load the destination and the data
into S and then to indicate that the min-
ipacket is ready for transmission. The
station itself inserts the source byte and the
initial values of the control bits, and has
the complete minipacket waiting in a shift
register. As soon as an empty minipacket

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed
for direct commercial advantage, the ACM copyright notice
and the title of the publication and its date appear, and notice
is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

© 1979 ACM 0-89791-009-5/79/1200/0082 $00.75

comes by on the ring, the station fills it up
from the shift register. The minipacket then
travels round the ring until the destination
station R is encountered and then returns to
S. The desired action is for the minipacket
contents to be copied into R's register, but
there are various reasons why this might not
happen. Firstly, R might not be switched on.
In this case the minipacket will return to S
in its initial state as sent. This is inter-
preted at the sender as meaning 'ignored'.
Secondly, R might have set a register known as
the 'select' register so that minipackets from
S are not accepted. The possible values for
the select register are 'accept nothing',
'accept from anywhere', and 'accept from a
specified station only'. If the minipacket is
not accepted for this reason, it returns to S
marked 'not selected'. Finally, the
minipacket may be acceptable but the register
in R not be free, R not having completed the
processing of the previous minipacket
received. In this case the minipacket is
returned to S marked 'busy'. Assuming that
none of these difficulties has occurred, the
minipacket will return to S marked 'accepted'
Not until the minipacket has returned to S is
S in a position to transmit again to R or
anywhere else. The time taken for the
minipacket to return is known as the ring
delay and is currently of the order of 10
microseconds. Note that in all circumstances
the minipacket is returned, and that the time
taken for it to return is independent of what
happened to it. When a minipacket has
returned the sending station is notified and
the access box is able to read the control
information to determine the fate of the
minipaeket. The empty minipacket itself
proceeds on its way suitably marked. If
retransmission is needed for any reason the
material is still standing in the station's
register. It is not possible for the
minipaeket to be re-used by the sending
station, thus producing an automatic anti-
hogging control. The effect is that, where
there are m stations, each station is
guaranteed a minimum of I/m+I of the capacity
of the ring. This guarantee is of more
academic than practical interest, since all
local communication systems are very much
under-run practically all the time. To avoid
the possibility of a sender generating too
much traffic by simply repeating a
transmission which receives 'busy', 'not
selected', or 'ignored', the station becomes
steadily slower and slower to inform the
access box of what has happened, finally only
doing so after 16 ring delays from the
unsatisfactory return. Since retransmission

82

is entirely the responsibility of the access
box (in practice usually of the computer
behind it), overloading with spurious traffic
is discouraged. Most systems on the ring have
a time or repetition limit beyond which they
give up retransmissions after "busy", and up
to that limit they retry as fast as they can.
To complete this sketch, we note that the
error rate of the ring is low (about I in 5E11
bits).

The characteristics of the ring which
affect our attitude to the systems aspects of
its use are mainly these:
a) The chance of even a substantial block of

material being damaged in transit is low,
and

b) The timing requirements are not
stringent, since failure to send at the
maximum rate has no bad effects at all
and failure to receive as fast as a
sender is sending can do no worse than
generate moderate and non-destructive
busy traffic.

The direct consequence of these
characteristics are firstly that large
retransmission units may be used, which is
attractive in the interest of protocol
simplicity, and secondly as a result of b)
above it is possible to connect rather simple
devices which cannot sustain a data rate of
anything like the regular megabit point-to-
point, provided that the traffic is low-
volume.

Low-level use of the Ring

If there is a very low level of
intelligence at one or both ends of a
transaction it may be reasonable to
communicate using no protocol higher than the
single minipacket. In such circumstances
there is no flow control beyond that afforded
by "busy" signals and little or no error
control. This is only a reasonable way to
proceed in rare cases in which there is an
economic motive for avoiding even a minor
amount of buffering to assemble larger units
of transmission and in which data proceeds at
a reasonably predictable rate. Some kinds of
logging or monitoring equipment are suitable
for use in this way, but the most obvious
example is digital telephony in which a
regular digitising chip may emit data steadily
at a byte every 128 microseconds say. In this
case we also notice that error control is not
needed, since it is not a fatal matter if a
few bytes are lost. If a piece of equipment
has a known rate of reception of data, one can
arrange to send to it at that rate; it would
be possible to run say a 9600 baud terminal in
this way. Although the ability to communicate
at this very low level is a useful flexibility
of the ring, in all ordinary circumstances
there is sufficient intelligence available to
handle higher level units, and we now turn to
discuss these.

Packets

For most applications however it is
expedient to assemble minipackets into larger
units called packets (previously known as
basic blocks). Packets are defined in such a
manner that there is a considerable degree of
flexibility available to the implementor in
the amount of sophistication he puts in.

A packet consists of:
I. A header minipacket which consists of a

fixed pattern of four bits, two control
bits, and ten data bits. In its usual
form a header minipacket contains the
number of regular data packets which will
follow it, together with an indication of
whether the last data packet should be
followed by a minipacket containing the
checksum of all that has preceded it or
whether it should be zero. Note the
liberty given to the implementor to omit
the checksum if it is too hard for him to
compute one, but the check placed upon
him by obliging him to put a fixed
pattern, zero, instead.

2. A minipacket containing a port number
which gives the logical destination of
the packet in the recipient machine. A
machine receiving a packet with an
invalid port number is at liberty to
discard it.

3. An appropriate number of data
minipackets.

4. A minipacket containing a checksum or
zero as appropriate.

The significance of this definition lies
largely in what it does NOT say. A likely
implementation is that a recipient machine
sets its select register to receive from all
senders, awaits a minipacket that looks like a
header, sets its select register to receive
from the source of the header minipacket only,
and then receives the rest of the packet until
it completes or times out. However it is
quite legitimate for a high performance
machine - here defined as one that can receive
material, add to checksum, and store MUCH
faster than the ring can deliver, to arrange
to receive several packets at once. Notice
that there is necessarily a restriction here
to the effect that only one packet at a time
may be received from a particular source,
since there would be no way of knowing to
which of two or more packets a particular
minipacket belonged. The converse freedom is
perhaps easier to exercise, namely to send
several packets interleaved, provided they are
to different physical destinations. This is
potentially valuable, because some
destinations may be known to be slow in
receiving and therefore likely to generate
busy traffic if bombarded as fast as possible.

Another effect of the loose timing
implicit in the possibility of a "busy" return
is that it is possible, if desired, to check
the port number on the fly. It was stated
above that a machine is at liberty to discard
a packet with an unexpected port number; it
may be of value to check the port number
before the body of the block is read. This
both avoids choking up buffers with material
that will shortly be discarded by software and
also makes it possible to arrange that certain
material is transferred directly to its final
resting place in memory, assuming that when a
port number for reception is registered the
desired memory address is given. Both of
these facilities help to minimise the time
after a packet has finished before another one
can be read. It is of course possible to
achieve this effect with most communication
systems if one is fast enough, but the speed
requirements can be very hard to meet if data
arrives fast and synchronously. The ring
makes it possible to take one's time within
reason in examining the port number between
receipt of the second minipacket of a packet

83

and the third. If one cannot be fast enough
then there will be the odd "busy", which is
not a serious matter.

We regard the freedom this gives to
implement the same protocol on both fast and
slow equipment as a great advantage. If we
consider the way in which the packet protocol
has been or is being implemented on various
machines, the effect of the flexibility will
be evident. On the CAP, a computer built for
research into memory protection but now
available as a general purpose shared machine,
the packet protocol, including port number
checking, is handled entirely by microcode.
On two PDP11s almost the whole of the work is
done by software, there being an interrupt per
minipacket. On a Computer Automation LSI4 the
work is partly done by a rather simple
microprogrammed controller in the connection
cable and partly by software. Some simple
microcomputers mentioned further below spend
much of their time polling the signals from
the stations, and can only manage to receive a
minipacket about every 40 microseconds while
also implementing the packet protocol by
program. On the other hand a much faster
microcomputer which is being developed
specifically to aid in high-performance
connections for 16-bit minis certainly has the
power in hand to multiplex packets if one
wants to. The only penalty that seems to be
paid for this flexibility is that time-out
constants associated with the sending or
receipt of a packet have to be large enough to
avoid making communication impossible for the
weaker brethren, and this means that they are
perhaps rather lax for faster equipment. On
the other hand the incidence of error is low
enough for there to be really very little
problem, It should also be remembered that
for extremely slow devices the option remains
of not using the packet protocol at all and
working at the 2-byte minipacket level.

Peripheral Services

The ability to handle rather slow
communication led us to a particular approach
to the provision of peripheral services. If
we wish to make, for example, a printing
service available via the ring, there are
several functions to be performed. There is
low-level control of the device and there are
also higher-level activities such as spooling,
scheduling, accounting, and maybe some
formatting. One way to proceed would be to
attach the printer to a computer interfaced to
the ring; this computer would then carry out
all of the functions mentioned. This approach
requires the construction of a device
interface, the effective dedication of a
machine, and the physical presence of the
machine where the peripheral is. The first is
essential but the second and third may be a
nuisance especially where the device is used
unpredictably but not very often - as for
example a pointing machine used in the
production of wire-wrapped prototypes.
Another approach is being taken at Cambridge.
Peripherals are connected to small, cheap, and
simple microcomputers which carry out the
device control functions and very little else
beyond a simple ring connection. One of these
microcomputers, consisting of a dozen and a
half chips, is all that need be dedicated to a
particular peripheral. The higher level
functions mentioned above are left to "real"
machines which do not have to be permanently

dedicated or fixed in function. When a
computer is assigned to carry out the higher-
level functions, it is that machine which is
regarded by the ultimate clients as being, for
example, the printing server; they are
unaware of the existence of the controllers
and of the means of communication with them.
There is a reliability advantage too because
the computers are interchangeable.

Reliability and simple protocols

Other aspects of the use of the ring
derive from its reliability. It is the
practice, for example, to use it for archiving
discs with a retransmission unit of one
discful or 28Mbytes. This is not perhaps a
practice to be recommended, but it makes the
point. A consequence is that protocols are
there for reasons of (end-to-end) flow control
rather than of error management. It is
possible to take the view that the major cause
of bad communication is the failure of one of
the computers involved, as for example by
software crashes, a program not paying
attention to ring signals, or someone
unplugging the power, rather than loss or
damage to bits in transit. The only way to
deal with loss of the distant computer is by
timing out, and one might as well implement
the timeout at a reasonably high level in the
software so as to deal with all lower-level
errors indiscriminately. It thus becomes
feasible to ignore packets which are in any
way erroneous rather than to send an explicit
negative acknowledgement of them. A further
consequence is that in a number of
circumstances protocols without flow control
can be used and become very simple indeed
because of the relaxed attitude that may be
taken to errors. For example, in using the
ring to load a program into memory, one would
clearly not make the request unless the memory
into which to load it was ready and waiting.
Accordingly it is proper to respond to such a
request at the fastest rate possible, and all
that is necessary is for the recipient to be
able to verify that what has arrived is
correct in quantity and apparently correct in
content. In a single ring minipackets cannot
overtake one another and a fortiori packets
cannot do so. Furthermore no packet will be
sent twice, since there is nothing which would
provoke a sender to retransmit one. It is
thus extremely simple to check that all is
well. In the case of the CAP implementation
the packet protocol is handled by microcode,
and the microcode facilities have been
extended to the handling of multiple packets,
on the same port, as a single request from a
program. It is thus possible to hand over to
the CAP microprogram a request to accept 43592
bytes from machine M into CAP's memory at
place P using port 97. The microcode will do
what is necessary, only raising an interrupt
when the transfer is complete or has timed out
or otherwise failed. Of the machines at
present on the ring only the CAP has this
facility at microcode or equivalent level, and
there is no reason why other machines should
necessarily do so. The decision is entirely
up to individual designers. The rather
elaborate CAP implementation is done the way
it is because of a desire to use the ring for
swapping of segments: hence the multiple block
facility and the on-the-fly port number check
mentioned earlier. What matters is that the
sender to the CAP need not know about it. In
the unlikely event that all is not well, the

84

simplest action is to repeat the entire
operation, not to fuss about which bit of it
failed. It is along these lines that the ring
protocol for use of the file server (Birrell
and Needham, 1979) is being constructed. With
a little ingenuity all operations made
available to clients by the file server can be
made repeatable in the sense outlined, and the
overhead of establishing connections is
avoided. The main technique for making things
repeatable is illustrated by the following
snatch of hypothetical dialogue between the
CAP and the File Server:

CAP program (to ring microcode) "Be prepared
to receive x bytes of of material on port
z from machine M (which is the file
server) and put it at address y in
memory,'

CAP program (to file server via ring) "Please
rush me x bytes of file F on port z"

We suppose that nothing happens and the CAP
program gets fed up; its action is:

CAP program (to ring microcode) "Cancel port
z; be prepared to receive x bytes of
material on port z' from machine M and
put it at address y in memory"

CAP program (to file server via ring) "Please
rush me x words of file f on port z' "

If the file server was in fact merely being
sluggish and was about to honour, or was
actually honouring, the original request, the
cancellation of the port number z will cause
any material arriving for it to be discarded
as fast as it comes, and will not interfere
with the second attempt.

The example of the file server has been
chosen because it is slightly complicated; for
many services a single packet exchange will
do, without having to bother with cancellation
of ports before a retry. This applies to
lookup services (including bootloading the
various microcomputers), date and time
services, and so on. In order to keep some
regularity in such programs, a single-shot
protocol has been defined. This simply
consists of a set of recommended standards for
the layout of packets used to request
services; although this protocol only takes a
few lines to define its existence has been
highly beneficial.

Conclusions

The approaches to local communication
that have been described in this paper depend
thoroughly on the properties of the Cambridge
Ring itself. It is sometimes considered
undesirable to exploit such properties, it
being thought preferable to obscure the nature
of the medium being used as much as possible
in order to simulate some ideal system which
may in principle be implemented using many
different media. Although it is necessary to
do this in dealing with wide-flung
communication, it is not so necessary in a
local system, and to do so may lose advantages
which can flow from the proper exploitation of
particular equipment. Local communications
may be treated as being seriously different
from others, and the work reported is part of
an effort to explore the consequences of doing
so. If it turns out as the result of
practical experience that there is serious
advantage to be gained from exploiting the
ring's special properties, then attention will
be paid to such questions as the

interconnection of rings in ways which
preserve the simplicity which exists for a
single ring.

The methods and suggestions discussed
here owe much to colleagues at Cambridge,
especially Martyn Johnson and Robin Walker,
and also to conversations with David Boggs of
Xerox Palo Alto Research Center.

References

Birrell,A.D and Needham,R.M. "A Universal File
Server", to appear in IEEE Transactions
on Software Engineering

Metcalfe,R and Boggs,D. "Ethernet: Distributed
Packet Switching for Local Communication
Networks", CACM July 1976

Wilkes,M.V and Wheeler,D.J. "The Cambridge
Digital Communication Ring", Local Area
Communication Networks Symposium, Mitre
Corp. and National Bureau of Standards,
Boston, May 1979

85

