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Abstract: Most of the replacement algorithms devised and implemented largely depend on program 
behavior, in other words, to optimally select the parameters of these algorithms program 
behavior or at least a probability model of it should be known. The page fault frequency 
(PFF) algorithm adapts to dynamic changes in program behavior during execution. Therefore its 
performance is expected to be less dependent on prior knowledge of the program behavior during 
execution. Therefore its performance is expected to be less dependent on prior knowledge 
of the program behavior and input data. 

The PFF algorithm uses the measured page fault frequency (by actually monitoring the 
Inter-pagefault interval) as the basic parameter for memory allocation decision process. 

In order to analyze the performance of the PFF algorithm, a mathematical model was 
developed. The resultant random process is the memory space allocation for a program as a 
function of the processor time (virtual time). This random process can be analyzed using the 
method of imbedded Markov chains. The parameter obtained from this analysis are the distribu~ 
tions of the memory allocation during processing interval and during page waiting intervals, 
the average page fault rate and the expected space time product accumulated by the program. 

The input parameters for the model were obtained from address traces of two programs. 
The results of the model were validated by simulation. 
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fault rate, space time product. 
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Introduction 

The PFF algorithm was first suggested in 
1972 by Chu and Opderheck (CI). It attempts to 
dynamically control the rate of page faults pro- 
duced by a program running in a paged virtual 
memory environment, by varying the memory space 
allocated to the program. The underlying idea 
is to make use of the inverse relation between 
page fault rate and memory allocation. 

The PFF algorithm measures the inter page 
fault intervals during execution. At page fault 
times, it compares them with an ~ priori sel- 
ected threshold T. If the inter page fault 
interval exceeds T then all the pages in main 
memory which were not referenced during this 
interval are dumped. Otherwise no page is 
dumped and the allocation increases by one 

page frame (allocated for the missing page). 
Since the PFF algorithm is based on the meas- 
ured inter page fault intervals, no process 
under the management of this algorithm should 
be allowed to collect all its N referenced 
pages in main memory, lest no more page faults 
will be generated by the process for the rest 
of its execution. In practice N is not known 

priori. Therefore, the solution of this 
problem requires a time limit, Z, on the 
measured inter page fault interval. When- 
ever the time limit is reached, some memory 
allocation decision is made without waiting 
for a page fault to occur. The PFF algorithm 
suggested by Chu and Opderbeck (el) does not 
provide for the time limit interrupt feature. 
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There are threebaslc approaches for 
performance evaluation of memory management 
algorithms, 

(I) Actual construction and measurement, 
(2) Simulation, 
(3) Analytical model. 

The first approach is expensive and there- 
fore impractical. Simulation consumes a 
large amount of computer time and by its 
very nature is inconclusive. It has been 
used in many analyses of paging algorithms 
(CI, 01, $3) more so because analytical 
models are very difficult to form than be- 
cause of its own merits. The approach con- 
sidered here is the third approach. The 
purpose of this paper is to develop a 
mathematical model for the page fault 
frequency (PFF) replacement algorithm. 

In the development of an analytical 
model for a paging algorithm's performance, 
the algorithm may be considered as a system 
which processes the reference string (D2), 
generated by the program, as an input source 
and generates, as output, sequences of mem- 
ory allocations and page faults. The per- 
formance of the paging algorithm is meas- 
ured by cost functions defined on the out- 
put such as average memory requirement, 
page fault rate and space time product (A2, 
C2, DI, D2, Dd, Sl). 

A description of the PFF algorithm 

Some notation used in this paper is given in 
Fig. I. Let t be the processing time of the pro- 
cess (this excludes time spent by the process 
during I/O operations). The unit of time is the 
average memory access time. Let tl, t2,..., ti_ 1 

... be the instances when a transition takes 
place (either a page fault occurs or the time 

limit is reached). The i th inter transition in- 
tervalis 8 i = t i - ti_ I. The number of distinct 

pages referenced during 8 i is denoted by r i (the 

last reference before the transition being the 
first reference in the new interval). Let the 

i th forward page fault time be denoted by ~i" 

This is the time which it takes for the process 
to produce a page fault after the transition at 
ti_ 1 when no time limit is enforced. If T'l < Z 

then T i = 8 i, otherwise T i > 8 i = Z. The de- 

scription of the operation of PFF algorithm 
in this notation is as follows. At transitlon 
time T i one of three allocation decisions is 

made according to the length of T i . 

If T i < T, the allocation is increased 

by allocating an extra page frame for the 
missing page while dumping no page from main 
memory. 
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Figure I. Notation 

If, however, T < T. < Z pages in main 
1 

memory which are not referenced during T i 
(thus not referenced for at least T memory 
references) are dumped out. 

Finally if the time limit Z is reached 
before a page fault occurs, i.e., T i is going 
to exceed Z, an interrupt occurs and the pages 
not referenced during this period are freed. No 
extra page frame is allocated. For the devel- 
opment of the analytical model of tke performance 
of the PFF algorithm it is sufficient to make 
some general assumption about program behavior. 
These assumptions are discussed in the next sec- 
tion. However to reduce the number of parameters 
we restrict in this paper the input source char- 
acteristics to these which are described by the 
simple LRU stack model of program behavior (A2, 
C2, D2). This model is briefly described below. 

The model for reference string generation 

The property which seems universal in prog- 
rams is the locality of references, (C2, Di, D2, 
D3, D4, $2, $3) consequently, models for reference 
string generation should reflect this phenomenon. 
Several models which are analyzed and compared with 



simulations are r e p o r t e d  by Spirn and Denning (S3), 
Coffman and Ryan (C2), Arvind et al. (A2) and 
Shedler and Tung (S2). 

The most successful model reported in (S3) is 
the simple LRU stack model. The model is based on 
the LRU stack in which the descriptors of the pro- 
gram's pages are arranged according to recency of 
use. The LRU stack may be described as a vector 
S(t) = (St(t), Sg(t) ..... SN(t)~hin which S~ (t) 
is the pare desc~tor in the i-- positiont~f the 
stack after the t "" reference (i.e., the i most 
recently referenced page) and N is the number of 
referenced pages in the program. The stack dis- 
tance d is the position of the page referenced 
at timett in the stack S(t-l). 

To represent program behavior the model 
associates probabilities b., b^.. b with stack 
positions 1,2,..., k such ~at z ' n 

Fr [d t = i] : b i 0<bi< i, t>0 
and 

n 

Eb : i. 
i=l. I 

A descriptor of a referenced page is moved to 
the top of the LRU stack while all the des- 
criptors above it in the stack are moved one 
p o s i t i o n  down. The sequence Si(1), Sl(2), .... 
St(t),... is the reference str£ng generated by 
the model. 

The Memory Requirement Process 

Let w(t) be the memory requirement process 
where t is the virtual processing time and w(t) is 
the memory requirement (in pages) at time t. This 
process is a discrete random process, characterized 
by Pr w(t)=k , k<N, the probability of memory re- 
quirement of size k at any given processing time 
t where N is the total number of pages referenced 
during the execution of the program. The process 
w(t), under the PFF algorithm, is a staircase 
function of the processing time (Fig.2), where 
transition from level to level occurs only at 
transition times. 
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Figure 2. The Memory Requirement Process 

Let w i be the allocation size immediately 
after the allocation decision at t{ i (i.e., 
the process level in the interval ~ i' t~). 
There are two assumptions about prog~a~be~vior 
on which the development of the model is based: 

th 
Ai. The i forward page fault time T. is 

a random variable which depends only on th~ 
number w..of page frames allocated for the pro s 

-I 
cess during this time. 

A2. r.~ the number of distinct pages refer- 
i 

enced duri6g r i is a random variable which depends 
on w and T. only. 

i-i 
The simple LR~ stack model of program behavior 
satisfies the above assumptions. 

th The level w i of the process w (t) during the 
i inter transition interval 8i, is a random 
variable. Based on assumptions A1 and A2 it can 
be shown that the sequence Wl, wp,...,w~,... 
forms a Markov chain. This Is tee imbedded 
Markov chain of the process w(t). The transition 
matrix governing the imbedded Markov chain will 

be denoted by ~ = ~Ak where 

~Zk = Pr [w i = k I wi_ 1 = A] 

From state k the possible next states are i, 
2,3,..., min(k+l,N). It is not difficult to show 
that the Markov chain is aperiodic and irreducible, 
and therefore steady state probabilities exist. We 
assume the length of the page waiting interval (i.e. 
the interval between a page fault interrupt and the 
resumption of execution) to be a constant R. This 
is Justified by the fact that the actual page wait- 
ing intervals are independant of the paging algor- 
ithm employed. 

Considering time limit interrupt extremely rare 
(for reasonably large Z), the imbedded Markov chain 
represents the memory requirement during page wait- 
ing intervals. (The exact random process can be 
developed but it is complicated). 

The memory requirement process, w, is not a 
Markov chain since the holding times in each state 
are random variables. However, the knowledge of the 
distributions of these holding times and the trans- 
ition probabilities of the imbedded Markov chain, 
is sufficient to find Pr[w(t) = K]. This is done 
in the following way: 

Assume that at a given time o = o the process 
w enters state £. What is the probability that at 
time o = t the process is in state k? Let us denote 
this probability by P~(t). Further, let 8. be the 
inter transition integral starting at offi0. IFollow- 
ing techniques of Renewal Theory (Fi) we consider 
two cases: a. 8. >t, i.e. no transition takes place 
in the intervall(0,t), b. 8. <t, at least one trans- 
ition occurs. In case a. the process must be in 
state A at the end of the interval (0,t). The 
probability of this case is d o (t) APt [81 >tlw = £] 
In the other case, the next state n-(n=l,~2,...A÷l) 
and the length m (m=l,2,...,t) of 81 is deterndned 
by the Joint probability 

q£k (m) = Pr 81 = m, w I = k lWo=£] 

Finally, due to assumptions A1 and A2, the prob- 
ability that the process w is in state k at time 
o=t given that it enters state n at time o=m is 

Pnk (t-m). 



Considering all the cases we thus obtain the 
recurslon formula: 

N t 

P£k(t) = d A (t) ~Ak +n=IZ m=lqAnZ (m) Pnk (t-m) 

where ~£k 

£, k = i, 2, ..., N; t=l,2,... 

= i k=A 
{0 k#£ 

Next let P(t), D(t), Q(t) be NxN matrices such that 

P(t) ~ I pAk (t)}, D(t) ~ { d A (t) 6£k}, Q(t) ~{qAk(t)}. 

Then writing the above equation in a matrix form we 
have the following theorem. 

Theorem 1 

The matrix P(t) satisfies the following matrix 
difference equation, t 

P(t) = D(t) + E Q(m) P(t-m) 
m:l ( i )  

with the initial condition 
P(0) = i. 

where I is the unit matrix. 
Since, initially one page frame is allocated to a 
program under the PFF replacement algorith (w = i) 
it is easy to see that the probabilities are ~he 
entries of the first row of matrix P(t). To solve 
equation (i), the entries of D(t) and Q(t) should 
be calculated. 

q~k(t) A Pr[81=t , Wl=klWo=A} = 

Pr[el=t[wl =k, Wo=~]. PrlWl~klWo=g] 

= AAk (t) ~Ak " 

where AAk(t ) is probability mass function of the 

holding time in state A given that the next state 
is k. 

And 

t N 
dA(t) = i - Z Z A£k(m ) 

m=l k=l 

The probabilities AAk(m), m = 1,2,...,t; £,k = i, 

2, ..., N, as well as the transition probabilities 
of the imbedded Markov chain, can be calculated in 
terms of the parameters T,Z and the stack 
probability vector (bl,h2,... , bN) of the simple 

LRU stack model (Si). 

These values can, alternatively, be collected 
as relative frequencies from reference string of 
real programs. Equation (i), then, can be solved 
numerically on a computer. 

We are mostly concerned however, with 
programs with very long reference strings, and 
wlth the memory requirement of the process after 
long execution times. Therefore, the long term 
behavior of the process w is of the prime interest. 
In the next section it is shown that the process 
w(t) reaches a steady state, and as usually is the 

case the solution of equation (i) becomes much 
simpler when we restrict it to the steady state. 

3. The steady state behavior of the process w(t) 

Intuitively, one would expect w(t) to reach a 
steady state after a sufficiently long time. This 
plausible conclusion follows from assumptions A1 
and A2. The imbedded Markov chain possesses 
steady state, probabilities and the length of the 
inter transition intervals depends on the states 
of the process. Thus for each state the expected 
value of the holding time at that state is constant, 
and it is independent of the particular time the 
process enters that state. 

Let P£ denote the expected value of the 

holding time at state £, i.e., 

= Z m Pr[Si=mlwi_l=A ] A = 1,2,...,N P£ 
m=l 

Let YA (A = 1,2,...,N) denote the steady state 

probability of occupying state £, in the imbedded 
Markov chain. Then the following theorem deter & 
mines the steady state probabilltiesof theran- 
dom proceesw(t); 

Theorem 2 

The steady state probabilities of w(t) are 
independent of the initial state and are given 
by 

Pk A lira Pr[w(t)=k] ~k --t ÷ oo = ~Yk k = 1,2 ..... N 

(13) 
where N 

= Z Yk ~k k=l 
This theorem has an intuitive appeal. One would 
expect that the steady state probabilities of the 
process w(t) will be proportional to both the 
conditional expectation of the holding time and 
the steady state probabilities of the imbedded 
Markov chain. Thus 

Pk = ap£y£ 

where a i s  a n o r m a l i z i n g  c o n s t a n t  
Since 

N 

E Pk = 1 
k=l 

N 

k=l  P 

A r i g o r o u s  p roof  of  theorem 2, however,  i s  i n v o l v e d .  
I t  i s  approached by the  use of  g e n e r a t i n g  f u n c t i o n s .  
The generating function P(x) of P(t) is found 
easily from equation (I). Then employing the final 
value theorem, i.e. 

£1m P(t) = him (!-x) P(x) the theorem is proved. 
t~ x+l 

From theorem 2, the evaluation of the steady 
s t a t e  p r o b a b i l i t i e s ,  Pk(k=l ,  ~ . .  ,N),  r e q u i r e s  the  

knowledge of the steady state probabilltes of the 
imbedded Markov chain y£ (A = 1,2,...,N) and the 



expected values of the holding times: 
B E (£ = 1,2,...,N). The steady state probabilities 

of the imbedded Markov chain are found by solving 
the  equations 

y ffi yH 

and 

E 
£ 7£ ffi i 

Again, the parameters ~£ (£ffil,2,...,N) can be 

calculated directly in terms of the parameters 

T, Z and the stack probabillty vector (bl,b2...,bN) 

(S1), or alternatively, can be collected as 
statistics from reference strings of real programs. 

Based on these results we can calculate the 
following parameters in steady state: E , the 

w 
expected memory requirement during processing 
intervals. And the approximation (for large 
Z) of E_, the expected memory requirement during 
page wa~ting intervals and the average page 
fault rate f. 

N N 

Ew = Z kPk , E E kYk 
k=l k=l 

N 
~k]-i I f " [z ~ k =~ 

k=l 

An exact expression can be found for f as function 
of T and Z (Sl).. 
In the next section a recurslve formula for the 
expected STP (ESTP) as a function of the proces- 
sing time is developed and the steady state 
behaviour of the ESTP as the processing time 
becomes large is investigated. An approximate 
value of the steady state rate of growth of the 
ESTP in real time is obtained• The space is 
measured in pages and the time unit is the main 
memory access time. 

The Expected Value of the Space Time Product 
(ESTP,) 

Let sg(t) denote the expected value of the 
space tlme product accumulated by the process in 
the interval (0,t) on the processing time axis 
given that at time zero it enters state £. 

Let R be the expected value of the page waiting 
time. 

Let J be the overhead time needed to handle a 
time llmlt interrupt. 

Finally, let 
o~ 

nffi t+l 

and 

s ( t )  A 

s. (t)l 

s^ (t)l 

S N ( t )  

(n) = Pr[ r i>t lWo=£]  

Vl(tl 

v2( t '  
v ( t )  = 

vN(ti 

The following theorem determines a recurslve 
formula for S(t). 

Theorem 3 
t 

S( t )  ffi V(t)  + Z Q(m) S(t-m) 

m=l 

where A( t~A( t )+R( i_~A( t ) )  + ~ mB£(m) 

v~ (t) = I~ (j,£ (Z)+R(I_@A (Z))+ U£) 

and the initial condition is 

(3) 

if t < Z 

if t > Z 

s ( o )  = o 

Equat ion (15) can be solved numerically for the 
expected STP a t  any given p r o c e s s i n g  t ime.  

Again the long term behaviour of the ESTP is 
of interest. 

Lon s Term Behavlour of the ESTP 

Clearly the apace time product tends to 
infinity with processing time. But since the 
space time process is essentially an integration 
over the memory requirement process andsince the 
memory requirement process reaches a steady state 
(i.e., the expected value becomes constant) one 
would expect the ESTP to become asymtotically 
linear with the processing time. 

Let Ew, E be the expected steady state values 

of the process w(t) and the imbedded Mmrkov chain, 
respectively. 

Let N 

E (T!Z) ~ Z kYk Pr[x i <Zl~i_l=k] 
k=l 

and 
E (T>Z) A E - E (T<Z) 

The long term behavlour of the ESTP of a process 
running under the PFF replacement algorithm is 
determined by the following theorem. 

Theorem 4 

For large t and £ = 1,2,...,N 

s ~ ( t )  = ~t  + ~,+ ~ (41 

where 

[RE (T<Z) + J E  (~>Z)] ~=~+ ~ 

and v~ is a constant depending on £. 

The theorem indicates that the ESTP approaches 
asymptotically a straight line with a slope 
and an intercept ~ +v~ , as the processing time 
becomes large• 

Theorems 3,4 are developed in much the same way 
theorems i and 2 are. This time, however, the 
question to be answered is: given that the process 
w enters state ~ at time offio what is the expected 
value of the space time product accumulated by the 
process in the interval (o = o,o = t)? Again, 
we consider two cases according to whether 

i0 



81>t or el!t in order to find a recursive 

formula. This leads to theorem 3. Applying again 
the generating function technique to equation (3) 
and using the final value theorem we arrive at 
theorem 4. 
We have calculated the ESTP in processing time t. 
However the observed time is the real time 
which consists of the processing time t and the 
time spent by the program waiting for missing 
pages and the overhead incurred by the time limit 
interrupts. The fraction of references causing 
either page faults or time limit interrupts is 
approximately i/~ where ~ is the average inter 
transition interval, the fraction of those causing 
page faults is f = i/u where u is the average 
inter page fault interval. 
Hence 

~/t ~ (I + fR + (~- f) J) i 

and from Theorem 4 the rate of growth of the ESTP 
in real time is approximately 

i 
+ [RE (T!Z)+ JE (T>Z)] g = ~ = E w ~ 

c " t  

[1 + fR + ( ~ -  f )  J] 

6. NUMERICAL AND SIMULATION RESULTS 

In the previous sections we have developed a 
mathematical model for the performance of the PFF 
paging algorithm. In this section numerical and 
simulation results are presented and discussed. 

Numerical Results 

Ideally we wish to have closed form expressions 
for performance (output) parameters such as page 
fault rate, STP, and average memory allocation, 
in terms of the model's input parameters: the 
stack probability vector, T, and Z. 

Such expressions would give direct functional 
relations between output and input parameters, 
thus making both optimization and comparison with 
other algorithms easier. 

Unfortunately, the presence of a Markov chain 
in the analysis and the dimension of the transition 
matrix rule out such a possibility. In any case, 
even partial closed form solutions are so 
complicated that a recursive formula is usually 
preferred. Results for the model however can he 
obtained numerically using the computer. 

As input parameters we have selected stack 
probability vectors whichwere extracted from the 
execution of programs on the CDC 6600 at the 
University of Minnesota computer center. (A2) 

Two programs were selected for this study. 

Program A: An APL program. The trace tape 
contains over a million references. 

Program B: 
execution. 
references. 

A Fortran compiler (MNF) in 
The trace tape contains 660,000 

Numerical results were obtained for three 
purposes: 
(1) to investigate relations between output 
parameters and input parameters; (ii) to find 

out about inter relations between output para- 
meters; (iii) to validate the model by comparison 
with simulation results. 

Figures 3 and 4 depict the relations between 
the average page fault (pfr) and the average 
memory allocation during processing intervals, 
Ew(solid lines) and the average memory allocation 

during page waiting intervals, E w (dashed lines). 

For page size (PS) 1024, program A has 24 refere- 
nced pages and program B has 23. The parameter 
Z is fixed at 50,000 references, and the para- 
meter T is varied from i0 to i0,000 references. 
In both programs the points for both E and E 

w 
lie on a straight llne as long as E , E w are far 

enough from N the total number of references 
pages (below 15 pages in the figure). Hence 
within this range the pfr is an exponential 
function of E as well as an exponential function 
of E . This Wobservation finds more support in (KI). 

Program A shows a stronger locality then program 
B in the sense that the stack probability vectors, 
which were extracted from the reference strings of 
both programs, are such that for every i = 1,2,..,N 

i 
b E (prog. A) > X bK(prog. B) 

K=i K=I 

If the PFF algorithm responds well to program 
requirements, one would expect that, for fixed 
T and Z, program A will yield, on the average, 
smaller memory allocation size and lower page 
fault rate than program B. That this is the case, 
is evident from a comparison of Figures 3 and 4. 
However, using the simple LRU stack model it is 
impossible to check transients. Thus, an important 
question such as how fast the PFF algorithm responds 
to a change in locality size, cannot he answered 
using this model. 

Another phenomenon which is intuitively 
expected for any program is that E < E 

w 
for every T. This is because one expects that 
large allocatlonwill yield on the average longer 
processing interval than a smaller allocation will. 
Therefore the distribution of the memory require- 
ment during processing intervals should be biased 
toward the large allocations. The page waiting 
intervals, however, are independent of the 
allocation size and therefore no such bias exists. 
This is clearly the case in both Figure 3 and 4. 

Simulation Results 

The validation of the model may be divided into 
two separate problems: 

i. How well the model describes the PFF algorithm 
performance given that assumptions Ai and A2 
about program behaviour are correct. 

2. How valid are assumptions Ai and A2. 

The first problem can be tackled as follows: 
Instead of using the real reference strings as 
input to the simulation, synthetic reference 

Ii 
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strings are used. They are generated by per- 
forming a Monte Carlo experiment in which stack 
distances are randomly generated in accordance 
with the stack probability vectors (which were 
extracted from the real reference strings). The 
results are compared then, with the numerical 
results obtained from the model where the input 
parameters are the same stack probability vectors. 

Several such simulation experiments were carried 
out for program A and program B, and for various 
values of the parameter T. Parameter Z was fixed 
at 50,000. Each simulatlon experiment processed 
a reference string of one million references. 

The results are shown in flgures 5 and 6. These 
figures depict pfr average allocations of memory 
in real time and in steady state. 

These figures show that the simulation results 
agree very well wlth the model in both page fault 
rate and memory allocation predictions as long as 
T is smaller than 5000. 

The discrepancy between simulation results and 
model results for T = 5000 and T - i0,000 can be 
explained by lack of statistical significance. 
The actual sample size in the simulation relates 
to the number of page faults since this deter- 
mines the number of transitions in the imbedded 
Markov chain. This number 5ecmmes very areal1 
for both programs as T Becomes large. 
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An experiment to answer the second problem is 
easier to handle. Unfortunately such experiments 
were not attempted. There are two ways, however, 
to answer this problem: 

i. Collect statistics about inter transition 
intervals for various allocation sizes by directly 
processing the real reference strlngs. ~ The 
gsnerality of the answer requires, however)hhat 
experiment will Be done over a reasonable Sample 
size of reference strings. 

2. The simulation experiment of the PFF algorithm 
is fed by the real reference strings. The results 
are compared with the numerical results of the 
model where the input parameters are the steady 
state probabilities of the imbedded Markov ~hain 
represented by relative frequencies and the aver- 
age time spent in each state. These parameters 
can be extracted by directly processing the real 
reference strings. 

7. Concluslons 

This paper discusses the development of a 
mathematical model for the performance of the 
PFF algorithm. The algorithm analyzed is 
essentially the same as the one suggested by Chu 
and Opderback (~1) except for a necessary 
modification to handle the case where all the 
program's pages are accumulated in main memory. 

12 



10. 2 ~ T-IO 

~0~ ~ ~ 0 0 0  ~ : ~:oOoOo o 

~2000 

l°'g lo,0oo Z 

5.10-~ 

I0 15 ~ (paces) 

FiG. 5 Dal'e Fault Rate vs. Aver~Co ~,le~lory Alloca~lon (]'ro~ra~ A) 

This model uses the simple LRU stack model of 
program behaviour in order to get numerical 
results. The maln drawback of the simple LRU 
stack model is that it generates reference strings 
that do not reflect transitions between localities. 
This drawback l~m~ts the model of the algorlthm~s 
performance in exploring the adaptability of the 
algorithm to changes in locality size and its 
response during transitions. Hcezever, no presently 
available satisfactory model of program behavlour 
incorporates localities of different sizes and the 
transitions between them. Furthermore, the 
simple LEU stack possesses parameters which can 
easily be extracted from tracing reference strings 
of programs in execution. It exhibits the pheno- 
menon of locallty fairly well, and flnally the 
resulting model for the performance of the PFF 
algorlthm is mathematically tractable, i.e., 
numerical results can be obtained. 
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