
AN ANALYSIS OF THE PERFORMANCE OF THE PAGE FAULT FREQUENCY
(PFF) REPLACEMENT ALGORITHM.*

E. Sadeh**
Dept. of Electrical Engineering

University of Waterloo
Waterloo, Ont., Canada N2L 3Gi

Abstract: Most of the replacement algorithms devised and implemented largely depend on program
behavior, in other words, to optimally select the parameters of these algorithms program
behavior or at least a probability model of it should be known. The page fault frequency
(PFF) algorithm adapts to dynamic changes in program behavior during execution. Therefore its
performance is expected to be less dependent on prior knowledge of the program behavior during
execution. Therefore its performance is expected to be less dependent on prior knowledge
of the program behavior and input data.

The PFF algorithm uses the measured page fault frequency (by actually monitoring the
Inter-pagefault interval) as the basic parameter for memory allocation decision process.

In order to analyze the performance of the PFF algorithm, a mathematical model was
developed. The resultant random process is the memory space allocation for a program as a
function of the processor time (virtual time). This random process can be analyzed using the
method of imbedded Markov chains. The parameter obtained from this analysis are the distribu~
tions of the memory allocation during processing interval and during page waiting intervals,
the average page fault rate and the expected space time product accumulated by the program.

The input parameters for the model were obtained from address traces of two programs.
The results of the model were validated by simulation.

Key words and phrases: paged virtual memory systems, pff replacement algorithm, reference
string, imbedded markov chain, memory requirement process, page
fault rate, space time product.

CR categories: 4.3, 4.35, 8.1

Introduction

The PFF algorithm was first suggested in
1972 by Chu and Opderheck (CI). It attempts to
dynamically control the rate of page faults pro-
duced by a program running in a paged virtual
memory environment, by varying the memory space
allocated to the program. The underlying idea
is to make use of the inverse relation between
page fault rate and memory allocation.

The PFF algorithm measures the inter page
fault intervals during execution. At page fault
times, it compares them with an ~ priori sel-
ected threshold T. If the inter page fault
interval exceeds T then all the pages in main
memory which were not referenced during this
interval are dumped. Otherwise no page is
dumped and the allocation increases by one

page frame (allocated for the missing page).
Since the PFF algorithm is based on the meas-
ured inter page fault intervals, no process
under the management of this algorithm should
be allowed to collect all its N referenced
pages in main memory, lest no more page faults
will be generated by the process for the rest
of its execution. In practice N is not known

priori. Therefore, the solution of this
problem requires a time limit, Z, on the
measured inter page fault interval. When-
ever the time limit is reached, some memory
allocation decision is made without waiting
for a page fault to occur. The PFF algorithm
suggested by Chu and Opderbeck (el) does not
provide for the time limit interrupt feature.

* This work was supported in part by the Office of
Computing Activities of the National Science
Foundation under grant GJ-32504.

** The author was with the Department of
Electrical Engineering, University of
Minnesota, Minneapolis, Minnesota 55455.

There are threebaslc approaches for
performance evaluation of memory management
algorithms,

(I) Actual construction and measurement,
(2) Simulation,
(3) Analytical model.

The first approach is expensive and there-
fore impractical. Simulation consumes a
large amount of computer time and by its
very nature is inconclusive. It has been
used in many analyses of paging algorithms
(CI, 01, $3) more so because analytical
models are very difficult to form than be-
cause of its own merits. The approach con-
sidered here is the third approach. The
purpose of this paper is to develop a
mathematical model for the page fault
frequency (PFF) replacement algorithm.

In the development of an analytical
model for a paging algorithm's performance,
the algorithm may be considered as a system
which processes the reference string (D2),
generated by the program, as an input source
and generates, as output, sequences of mem-
ory allocations and page faults. The per-
formance of the paging algorithm is meas-
ured by cost functions defined on the out-
put such as average memory requirement,
page fault rate and space time product (A2,
C2, DI, D2, Dd, Sl).

A description of the PFF algorithm

Some notation used in this paper is given in
Fig. I. Let t be the processing time of the pro-
cess (this excludes time spent by the process
during I/O operations). The unit of time is the
average memory access time. Let tl, t2,..., ti_ 1

... be the instances when a transition takes
place (either a page fault occurs or the time

limit is reached). The i th inter transition in-
tervalis 8 i = t i - ti_ I. The number of distinct

pages referenced during 8 i is denoted by r i (the

last reference before the transition being the
first reference in the new interval). Let the

i th forward page fault time be denoted by ~i"

This is the time which it takes for the process
to produce a page fault after the transition at
ti_ 1 when no time limit is enforced. If T'l < Z

then T i = 8 i, otherwise T i > 8 i = Z. The de-

scription of the operation of PFF algorithm
in this notation is as follows. At transitlon
time T i one of three allocation decisions is

made according to the length of T i .

If T i < T, the allocation is increased

by allocating an extra page frame for the
missing page while dumping no page from main
memory.

t I
0 t I

ei.rl

i i~ ~)
t 2 t 3 ti_ 1 t i t

a. Transition ti.nes and inter transition intervals

"El> ei=z

e i=z

1 1
ti_ 1 t i

next pace fault
transition tine ti~e limit ti'~e when no

interrupt time litit is
imposed

b. Forward page fault tL~e Ti > ei

I "Ui=ei~z ~i

ti- 1 t i

transition time next pare fault time

c. Forward page fault tile Ti = 9i

Figure I. Notation

If, however, T < T. < Z pages in main
1

memory which are not referenced during T i
(thus not referenced for at least T memory
references) are dumped out.

Finally if the time limit Z is reached
before a page fault occurs, i.e., T i is going
to exceed Z, an interrupt occurs and the pages
not referenced during this period are freed. No
extra page frame is allocated. For the devel-
opment of the analytical model of tke performance
of the PFF algorithm it is sufficient to make
some general assumption about program behavior.
These assumptions are discussed in the next sec-
tion. However to reduce the number of parameters
we restrict in this paper the input source char-
acteristics to these which are described by the
simple LRU stack model of program behavior (A2,
C2, D2). This model is briefly described below.

The model for reference string generation

The property which seems universal in prog-
rams is the locality of references, (C2, Di, D2,
D3, D4, $2, $3) consequently, models for reference
string generation should reflect this phenomenon.
Several models which are analyzed and compared with

simulations are r e p o r t e d by Spirn and Denning (S3),
Coffman and Ryan (C2), Arvind et al. (A2) and
Shedler and Tung (S2).

The most successful model reported in (S3) is
the simple LRU stack model. The model is based on
the LRU stack in which the descriptors of the pro-
gram's pages are arranged according to recency of
use. The LRU stack may be described as a vector
S(t) = (St(t), Sg(t) SN(t)~hin which S~ (t)
is the pare desc~tor in the i-- positiont~f the
stack after the t "" reference (i.e., the i most
recently referenced page) and N is the number of
referenced pages in the program. The stack dis-
tance d is the position of the page referenced
at timett in the stack S(t-l).

To represent program behavior the model
associates probabilities b., b^.. b with stack
positions 1,2,..., k such ~at z ' n

Fr [d t = i] : b i 0<bi< i, t>0
and

n

Eb : i.
i=l. I

A descriptor of a referenced page is moved to
the top of the LRU stack while all the des-
criptors above it in the stack are moved one
p o s i t i o n down. The sequence Si(1), Sl(2),
St(t),... is the reference str£ng generated by
the model.

The Memory Requirement Process

Let w(t) be the memory requirement process
where t is the virtual processing time and w(t) is
the memory requirement (in pages) at time t. This
process is a discrete random process, characterized
by Pr w(t)=k , k<N, the probability of memory re-
quirement of size k at any given processing time
t where N is the total number of pages referenced
during the execution of the program. The process
w(t), under the PFF algorithm, is a staircase
function of the processing time (Fig.2), where
transition from level to level occurs only at
transition times.

(:~enory Space)

N

N-1

~-3.

I. i' i w~

S
t 1 ~t 2 t 3 t t - 1 t i t i + l

Processing
t ime

Figure 2. The Memory Requirement Process

Let w i be the allocation size immediately
after the allocation decision at t{ i (i.e.,
the process level in the interval ~ i' t~).
There are two assumptions about prog~a~be~vior
on which the development of the model is based:

th
Ai. The i forward page fault time T. is

a random variable which depends only on th~
number w..of page frames allocated for the pro s

-I
cess during this time.

A2. r.~ the number of distinct pages refer-
i

enced duri6g r i is a random variable which depends
on w and T. only.

i-i
The simple LR~ stack model of program behavior
satisfies the above assumptions.

th The level w i of the process w (t) during the
i inter transition interval 8i, is a random
variable. Based on assumptions A1 and A2 it can
be shown that the sequence Wl, wp,...,w~,...
forms a Markov chain. This Is tee imbedded
Markov chain of the process w(t). The transition
matrix governing the imbedded Markov chain will

be denoted by ~ = ~Ak where

~Zk = Pr [w i = k I wi_ 1 = A]

From state k the possible next states are i,
2,3,..., min(k+l,N). It is not difficult to show
that the Markov chain is aperiodic and irreducible,
and therefore steady state probabilities exist. We
assume the length of the page waiting interval (i.e.
the interval between a page fault interrupt and the
resumption of execution) to be a constant R. This
is Justified by the fact that the actual page wait-
ing intervals are independant of the paging algor-
ithm employed.

Considering time limit interrupt extremely rare
(for reasonably large Z), the imbedded Markov chain
represents the memory requirement during page wait-
ing intervals. (The exact random process can be
developed but it is complicated).

The memory requirement process, w, is not a
Markov chain since the holding times in each state
are random variables. However, the knowledge of the
distributions of these holding times and the trans-
ition probabilities of the imbedded Markov chain,
is sufficient to find Pr[w(t) = K]. This is done
in the following way:

Assume that at a given time o = o the process
w enters state £. What is the probability that at
time o = t the process is in state k? Let us denote
this probability by P~(t). Further, let 8. be the
inter transition integral starting at offi0. IFollow-
ing techniques of Renewal Theory (Fi) we consider
two cases: a. 8. >t, i.e. no transition takes place
in the intervall(0,t), b. 8. <t, at least one trans-
ition occurs. In case a. the process must be in
state A at the end of the interval (0,t). The
probability of this case is d o (t) APt [81 >tlw = £]
In the other case, the next state n-(n=l,~2,...A÷l)
and the length m (m=l,2,...,t) of 81 is deterndned
by the Joint probability

q£k (m) = Pr 81 = m, w I = k lWo=£]

Finally, due to assumptions A1 and A2, the prob-
ability that the process w is in state k at time
o=t given that it enters state n at time o=m is

Pnk (t-m).

Considering all the cases we thus obtain the
recurslon formula:

N t

P£k(t) = d A (t) ~Ak +n=IZ m=lqAnZ (m) Pnk (t-m)

where ~£k

£, k = i, 2, ..., N; t=l,2,...

= i k=A
{0 k#£

Next let P(t), D(t), Q(t) be NxN matrices such that

P(t) ~ I pAk (t)}, D(t) ~ { d A (t) 6£k}, Q(t) ~{qAk(t)}.

Then writing the above equation in a matrix form we
have the following theorem.

Theorem 1

The matrix P(t) satisfies the following matrix
difference equation, t

P(t) = D(t) + E Q(m) P(t-m)
m:l (i)

with the initial condition
P(0) = i.

where I is the unit matrix.
Since, initially one page frame is allocated to a
program under the PFF replacement algorith (w = i)
it is easy to see that the probabilities are ~he
entries of the first row of matrix P(t). To solve
equation (i), the entries of D(t) and Q(t) should
be calculated.

q~k(t) A Pr[81=t , Wl=klWo=A} =

Pr[el=t[wl =k, Wo=~]. PrlWl~klWo=g]

= AAk (t) ~Ak "

where AAk(t) is probability mass function of the

holding time in state A given that the next state
is k.

And

t N
dA(t) = i - Z Z A£k(m)

m=l k=l

The probabilities AAk(m), m = 1,2,...,t; £,k = i,

2, ..., N, as well as the transition probabilities
of the imbedded Markov chain, can be calculated in
terms of the parameters T,Z and the stack
probability vector (bl,h2,... , bN) of the simple

LRU stack model (Si).

These values can, alternatively, be collected
as relative frequencies from reference string of
real programs. Equation (i), then, can be solved
numerically on a computer.

We are mostly concerned however, with
programs with very long reference strings, and
wlth the memory requirement of the process after
long execution times. Therefore, the long term
behavior of the process w is of the prime interest.
In the next section it is shown that the process
w(t) reaches a steady state, and as usually is the

case the solution of equation (i) becomes much
simpler when we restrict it to the steady state.

3. The steady state behavior of the process w(t)

Intuitively, one would expect w(t) to reach a
steady state after a sufficiently long time. This
plausible conclusion follows from assumptions A1
and A2. The imbedded Markov chain possesses
steady state, probabilities and the length of the
inter transition intervals depends on the states
of the process. Thus for each state the expected
value of the holding time at that state is constant,
and it is independent of the particular time the
process enters that state.

Let P£ denote the expected value of the

holding time at state £, i.e.,

= Z m Pr[Si=mlwi_l=A] A = 1,2,...,N P£
m=l

Let YA (A = 1,2,...,N) denote the steady state

probability of occupying state £, in the imbedded
Markov chain. Then the following theorem deter &
mines the steady state probabilltiesof theran-
dom proceesw(t);

Theorem 2

The steady state probabilities of w(t) are
independent of the initial state and are given
by

Pk A lira Pr[w(t)=k] ~k --t ÷ oo = ~Yk k = 1,2 N

(13)
where N

= Z Yk ~k k=l
This theorem has an intuitive appeal. One would
expect that the steady state probabilities of the
process w(t) will be proportional to both the
conditional expectation of the holding time and
the steady state probabilities of the imbedded
Markov chain. Thus

Pk = ap£y£

where a i s a n o r m a l i z i n g c o n s t a n t
Since

N

E Pk = 1
k=l

N

k=l P

A r i g o r o u s p roof of theorem 2, however, i s i n v o l v e d .
I t i s approached by the use of g e n e r a t i n g f u n c t i o n s .
The generating function P(x) of P(t) is found
easily from equation (I). Then employing the final
value theorem, i.e.

£1m P(t) = him (!-x) P(x) the theorem is proved.
t~ x+l

From theorem 2, the evaluation of the steady
s t a t e p r o b a b i l i t i e s , Pk(k=l , ~ . . ,N), r e q u i r e s the

knowledge of the steady state probabilltes of the
imbedded Markov chain y£ (A = 1,2,...,N) and the

expected values of the holding times:
B E (£ = 1,2,...,N). The steady state probabilities

of the imbedded Markov chain are found by solving
the equations

y ffi yH

and

E
£ 7£ ffi i

Again, the parameters ~£ (£ffil,2,...,N) can be

calculated directly in terms of the parameters

T, Z and the stack probabillty vector (bl,b2...,bN)

(S1), or alternatively, can be collected as
statistics from reference strings of real programs.

Based on these results we can calculate the
following parameters in steady state: E , the

w
expected memory requirement during processing
intervals. And the approximation (for large
Z) of E_, the expected memory requirement during
page wa~ting intervals and the average page
fault rate f.

N N

Ew = Z kPk , E E kYk
k=l k=l

N
~k]-i I f " [z ~ k =~

k=l

An exact expression can be found for f as function
of T and Z (Sl)..
In the next section a recurslve formula for the
expected STP (ESTP) as a function of the proces-
sing time is developed and the steady state
behaviour of the ESTP as the processing time
becomes large is investigated. An approximate
value of the steady state rate of growth of the
ESTP in real time is obtained• The space is
measured in pages and the time unit is the main
memory access time.

The Expected Value of the Space Time Product
(ESTP,)

Let sg(t) denote the expected value of the
space tlme product accumulated by the process in
the interval (0,t) on the processing time axis
given that at time zero it enters state £.

Let R be the expected value of the page waiting
time.

Let J be the overhead time needed to handle a
time llmlt interrupt.

Finally, let
o~

nffi t+l

and

s (t) A

s. (t)l

s^ (t)l

S N (t)

(n) = Pr[r i>t lWo=£]

Vl(tl

v2(t '
v (t) =

vN(ti

The following theorem determines a recurslve
formula for S(t).

Theorem 3
t

S(t) ffi V(t) + Z Q(m) S(t-m)

m=l

where A(t~A(t)+R(i_~A(t)) + ~ mB£(m)

v~ (t) = I~ (j,£ (Z)+R(I_@A (Z))+ U£)

and the initial condition is

(3)

if t < Z

if t > Z

s (o) = o

Equat ion (15) can be solved numerically for the
expected STP a t any given p r o c e s s i n g t ime.

Again the long term behaviour of the ESTP is
of interest.

Lon s Term Behavlour of the ESTP

Clearly the apace time product tends to
infinity with processing time. But since the
space time process is essentially an integration
over the memory requirement process andsince the
memory requirement process reaches a steady state
(i.e., the expected value becomes constant) one
would expect the ESTP to become asymtotically
linear with the processing time.

Let Ew, E be the expected steady state values

of the process w(t) and the imbedded Mmrkov chain,
respectively.

Let N

E (T!Z) ~ Z kYk Pr[x i <Zl~i_l=k]
k=l

and
E (T>Z) A E - E (T<Z)

The long term behavlour of the ESTP of a process
running under the PFF replacement algorithm is
determined by the following theorem.

Theorem 4

For large t and £ = 1,2,...,N

s ~ (t) = ~t + ~,+ ~ (41

where

[RE (T<Z) + J E (~>Z)] ~=~+ ~

and v~ is a constant depending on £.

The theorem indicates that the ESTP approaches
asymptotically a straight line with a slope
and an intercept ~ +v~ , as the processing time
becomes large•

Theorems 3,4 are developed in much the same way
theorems i and 2 are. This time, however, the
question to be answered is: given that the process
w enters state ~ at time offio what is the expected
value of the space time product accumulated by the
process in the interval (o = o,o = t)? Again,
we consider two cases according to whether

i0

81>t or el!t in order to find a recursive

formula. This leads to theorem 3. Applying again
the generating function technique to equation (3)
and using the final value theorem we arrive at
theorem 4.
We have calculated the ESTP in processing time t.
However the observed time is the real time
which consists of the processing time t and the
time spent by the program waiting for missing
pages and the overhead incurred by the time limit
interrupts. The fraction of references causing
either page faults or time limit interrupts is
approximately i/~ where ~ is the average inter
transition interval, the fraction of those causing
page faults is f = i/u where u is the average
inter page fault interval.
Hence

~/t ~ (I + fR + (~- f) J) i

and from Theorem 4 the rate of growth of the ESTP
in real time is approximately

i
+ [RE (T!Z)+ JE (T>Z)] g = ~ = E w ~

c " t

[1 + fR + (~ - f) J]

6. NUMERICAL AND SIMULATION RESULTS

In the previous sections we have developed a
mathematical model for the performance of the PFF
paging algorithm. In this section numerical and
simulation results are presented and discussed.

Numerical Results

Ideally we wish to have closed form expressions
for performance (output) parameters such as page
fault rate, STP, and average memory allocation,
in terms of the model's input parameters: the
stack probability vector, T, and Z.

Such expressions would give direct functional
relations between output and input parameters,
thus making both optimization and comparison with
other algorithms easier.

Unfortunately, the presence of a Markov chain
in the analysis and the dimension of the transition
matrix rule out such a possibility. In any case,
even partial closed form solutions are so
complicated that a recursive formula is usually
preferred. Results for the model however can he
obtained numerically using the computer.

As input parameters we have selected stack
probability vectors whichwere extracted from the
execution of programs on the CDC 6600 at the
University of Minnesota computer center. (A2)

Two programs were selected for this study.

Program A: An APL program. The trace tape
contains over a million references.

Program B:
execution.
references.

A Fortran compiler (MNF) in
The trace tape contains 660,000

Numerical results were obtained for three
purposes:
(1) to investigate relations between output
parameters and input parameters; (ii) to find

out about inter relations between output para-
meters; (iii) to validate the model by comparison
with simulation results.

Figures 3 and 4 depict the relations between
the average page fault (pfr) and the average
memory allocation during processing intervals,
Ew(solid lines) and the average memory allocation

during page waiting intervals, E w (dashed lines).

For page size (PS) 1024, program A has 24 refere-
nced pages and program B has 23. The parameter
Z is fixed at 50,000 references, and the para-
meter T is varied from i0 to i0,000 references.
In both programs the points for both E and E

w
lie on a straight llne as long as E , E w are far

enough from N the total number of references
pages (below 15 pages in the figure). Hence
within this range the pfr is an exponential
function of E as well as an exponential function
of E . This Wobservation finds more support in (KI).

Program A shows a stronger locality then program
B in the sense that the stack probability vectors,
which were extracted from the reference strings of
both programs, are such that for every i = 1,2,..,N

i
b E (prog. A) > X bK(prog. B)

K=i K=I

If the PFF algorithm responds well to program
requirements, one would expect that, for fixed
T and Z, program A will yield, on the average,
smaller memory allocation size and lower page
fault rate than program B. That this is the case,
is evident from a comparison of Figures 3 and 4.
However, using the simple LRU stack model it is
impossible to check transients. Thus, an important
question such as how fast the PFF algorithm responds
to a change in locality size, cannot he answered
using this model.

Another phenomenon which is intuitively
expected for any program is that E < E

w
for every T. This is because one expects that
large allocatlonwill yield on the average longer
processing interval than a smaller allocation will.
Therefore the distribution of the memory require-
ment during processing intervals should be biased
toward the large allocations. The page waiting
intervals, however, are independent of the
allocation size and therefore no such bias exists.
This is clearly the case in both Figure 3 and 4.

Simulation Results

The validation of the model may be divided into
two separate problems:

i. How well the model describes the PFF algorithm
performance given that assumptions Ai and A2
about program behaviour are correct.

2. How valid are assumptions Ai and A2.

The first problem can be tackled as follows:
Instead of using the real reference strings as
input to the simulation, synthetic reference

Ii

pfr

i0 -~

I0":

10-5

page size = I024 o E w
• Z = 50,000 • E.

T = parameter

%\ ~k~ oo
• ~ '~'~8 0 0

\\~oo

"\~°~ooo °

I I L >
5 i0 15

E,E w (pa~e~

Fig. 3 pfr vs. Zn and E W (Pro6ra~ A)

strings are used. They are generated by per-
forming a Monte Carlo experiment in which stack
distances are randomly generated in accordance
with the stack probability vectors (which were
extracted from the real reference strings). The
results are compared then, with the numerical
results obtained from the model where the input
parameters are the same stack probability vectors.

Several such simulation experiments were carried
out for program A and program B, and for various
values of the parameter T. Parameter Z was fixed
at 50,000. Each simulatlon experiment processed
a reference string of one million references.

The results are shown in flgures 5 and 6. These
figures depict pfr average allocations of memory
in real time and in steady state.

These figures show that the simulation results
agree very well wlth the model in both page fault
rate and memory allocation predictions as long as
T is smaller than 5000.

The discrepancy between simulation results and
model results for T = 5000 and T - i0,000 can be
explained by lack of statistical significance.
The actual sample size in the simulation relates
to the number of page faults since this deter-
mines the number of transitions in the imbedded
Markov chain. This number 5ecmmes very areal1
for both programs as T Becomes large.

i0 -~

i0-~

i0-~

i0-~

pfr

Q T=i0 E .o <

' oo
%~00
'.~, \ page siz~ = 1o24

\ ",~.o o
~\ ~ o o o

' , \

\"\ ,~ ~i °°

t i I I .)

10 15 2o 25

Pig. 4 pfr vs. E_ and E w (Program B)

An experiment to answer the second problem is
easier to handle. Unfortunately such experiments
were not attempted. There are two ways, however,
to answer this problem:

i. Collect statistics about inter transition
intervals for various allocation sizes by directly
processing the real reference strlngs. ~ The
gsnerality of the answer requires, however)hhat
experiment will Be done over a reasonable Sample
size of reference strings.

2. The simulation experiment of the PFF algorithm
is fed by the real reference strings. The results
are compared with the numerical results of the
model where the input parameters are the steady
state probabilities of the imbedded Markov ~hain
represented by relative frequencies and the aver-
age time spent in each state. These parameters
can be extracted by directly processing the real
reference strings.

7. Concluslons

This paper discusses the development of a
mathematical model for the performance of the
PFF algorithm. The algorithm analyzed is
essentially the same as the one suggested by Chu
and Opderback (~1) except for a necessary
modification to handle the case where all the
program's pages are accumulated in main memory.

12

10. 2 ~ T-IO

~0~ ~ ~ 0 0 0 ~ : ~:oOoOo o

~2000

l°'g lo,0oo Z

5.10-~

I0 15 ~ (paces)

FiG. 5 Dal'e Fault Rate vs. Aver~Co ~,le~lory Alloca~lon (]'ro~ra~ A)

This model uses the simple LRU stack model of
program behaviour in order to get numerical
results. The maln drawback of the simple LRU
stack model is that it generates reference strings
that do not reflect transitions between localities.
This drawback l~m~ts the model of the algorlthm~s
performance in exploring the adaptability of the
algorithm to changes in locality size and its
response during transitions. Hcezever, no presently
available satisfactory model of program behavlour
incorporates localities of different sizes and the
transitions between them. Furthermore, the
simple LEU stack possesses parameters which can
easily be extracted from tracing reference strings
of programs in execution. It exhibits the pheno-
menon of locallty fairly well, and flnally the
resulting model for the performance of the PFF
algorlthm is mathematically tractable, i.e.,
numerical results can be obtained.

Acknowled~ament

The author would like to thank Dr. R.Y. Kaln
of the University of Minesota, the Department of
Electrical Engineering, for his helpful comments
and discussions and his advice which was very
instrumental in the writing of the Ph.D. thesis
on part of which this paper is based.

References

[All Arvlnd, "Experiments to evaluate working set
properties," Dept. of EE, University of
Minnesota, TR NSF-CCA-CJ 32504, Nov. 197~.

[A2] Arvind, R.Y~ Kaln and E. Sadeh, "On
reference string generation process,"
Proc. 4th ACM Symposium on Operating
System Principles, New York, Oct. 1973.

[C1] W.W. Chu and H. Opderbeck, "The page fault
frequency replacement algorithm," FJCC 1972
AFIPS 41, pp. 597-609.

[C2] E.G. Coffman, T.A.Ryan, Jr., "A study of
s to rage p a r t i t i o n i n g u s ing a mathemat ica l
model of l o c a l i t y , " Comm. ACM 15, 3, March
1972.

10-2

10-~

10 -4

101

5

p~

5000

i0000

4 I I >
i0 15 20

Fig. 6 Fa~e Faul~ Rate vs. Average

~enor> Allocation (Procraa B)

(pasts)

[D1] P.J. Denning, "$1rtual memory," Computing
Surveys 2, 3, Sept. 1970.

[D2] P.J. Denning, J.E. Savage and J.E. Splrn,
"Models of locality in program behavior,"
Princeton University, Dept. of EE, Computer
Science TR-107, Aprll 1972.

[D3] P.J. Denning, "On modelling program beha~
vlor," SJCC 1972, AFIPS ~, pp. 937-944.

[D4] P.J. Denning, and S.C. Schwartz, "Properties
of working set model," Co~. ACM 15, 3,
March 1972. Also see "Corrigendum:
Properties of Working Set Model," Comm.
ACM 16, 2, Feb. 1973.

[Yl] N. Feller, An Introduction to PrObabi.llty
Theory and Its ApplicatiOns , Vol. II, Wiley.

[K1] R.Y. Kaln, "How to evaluate page replace-
ment algorithm" Technical Report, Mpls.,
Minnesota, Oct. 1975.

[01] H. Opderback and W.W. Chu, "Performance of
the PFF replacement algorithm in a multi-
programming envlronment," IFIPS, Stockholm,
Aug. 1974.

[$1] E. Sadeh, "Analysis of the page fault
frequency algorlthm," Ph.D. thesis,
University of Minnesota, March 1975.

[$2] G.H. Shedler and C. Tung, "Locallty in
page reference strings," SIAM J. Comput.
_i, 3, Sept. 1972.

[$3] J.R. Spirn and P.J. Denning, "Experiments
with program locality," FJCC 1972 AFIPS
41, pp. 611-621.

13

