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A B S T R A C T  

Atomic transactions are useful in distribut- 
ed systems as a means of providing reliable opera- 
tion in the face of hardware failures. Nested tran- 
sactions are a generalization of traditional transac- 
tions in which transactions may be composed of 
other transactions. The programmer  may initiate 
several transactions from within a transaction, and 
serializability of the transactions is guaranteed 
even if they are executed concurrently. In addi- 
tion, transactions invoked from within a given 
transaction fail independently of their invoking 
transaction and of one another, allowing use of al- 
ternate transactions to accomplish the desired task 
in the event that  the original should fail. Thus 
nested transactions are the basis for a general- 
purpose reliable programming environment  in 
which transactions are modules which may be com- 
posed freely. 

A working implementat ion of nested tran- 
sactions has been produced for LOCUS, an in- 
tegrated distributed operating system which pro- 
vides a high degree of network transparency. 
Several aspects of our mechanism are novel. First, 
the mechanism allows a transaction to access ob- 
jects directly without regard to the location of the 
object. Second, processes running off behalf of a 
single transaction may be located at many sites. 
Thus there is no need to invoke a new transaction 
to perform processing or access objects at a remote 
site. Third, unlike other environments,  LOCUS al- 
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lows replication of da ta  objects at more than one 
site in the network, and this capabili ty is incor- 
porated into the transaction mechanism. If the 
copy of an object that  is currently being accessed 
becomes unavailable, it is possible to continue 
work by using another one of the replicated copies. 
Finally, an efficient orphan removal  algorithm is 
presented, and the problem of providing continued 
operation during network parti t ions is addressed in 
detail. 

1. I N T R O D U C T I O N  

An atomic transaction is a computat ion 
consisting of a collection of operations which take 
place indivisibly in the presence of both failures 
and concurrent computations.  Tha t  is, either all of 
the operations prevail or none of them prevail, and 
other programs executing concurrently cannot  
modify or observe intermediate states of the com- 
putation.  Transactions help to preserve the con- 
sistency of a set of shared da ta  objects in the face 
of failures and concurrent access. While this is 
true for a centralized system, transactions are even 
more useful in a distributed environment  where it 
is necessary to deal with additional failure modes 
such as the partial failure of a distributed compu- 
tation. Although many transaction implementa-  
tions currently exist, especially in database 
management  systems [Borr 811 [Gray 81ai, these 
implementat ions typically have several limitations 
which make them unsatisfactory for a general pro- 
gramming tool in a distributed environment.  

First, transactions cannot be nested. While 
not significant in a database management  system, 
this restriction prevents users from constructing 
new transaction applications by composing already 
existing transactions. The programmer should be 
able to write transactions as modules which may be 
composed freely, just as procedures and functions 
may be composed in ordinary programming 
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languages.* 

Second, existing transaction mechanisms 
are typically implemented as part  of an 
application-level program such as a database 
manager. As a result, it is not possible for other 
clients of the system to use the transaction 
mechanism. Consider an application that  invokes 
some database actions as well as performing several 
file updates directly. "In case of abort, the database 
system undoes its updates, but  it is the application 
program's responsibility to deal with its own ac- 
tions in a way that  is synchronized with the data- 
base system's behavior. For this reason, the tran- 
saction facility should be provided in the underly- 
ing operating system so that  it is generally avail- 
able. Given a transaction facility implemented in 
this manner, the example of the application calling 
the database system is straightforward to handle.** 

Transactions which are composed of other 
transactions, or nested transactions, have been the 
subject of mucl~ current literature IMoss 81] 
[Liskov 82] [Reed 78] [Svob 81]. A transaction in- 
voked from within a transaction, or subtransaction, 
appears atomic to its caller. Tha t  is, the opera- 
tions it performs take place indivisibly with respect 
to both failures and concurrent computations, just 
as for traditional transactions. Thus a nested tran- 
saction mechanism must provide proper synchroni- 
zation and recovery for subtransactions. Such a 
mechanism guarantees that  concurrently executing 
transactions are serializable [Eswaran 76 I. Another 
property of nested transactions is that  subtransac- 
tions of a given transaction fail independently of 
their invoking transaction and of one another, so 
that  an alternate subtransaction may be invoked in 
place of a failed suhtransaction in order to accom- 
plish a similar task. It has been pointed out that  
many applications naturally lend themselves to be- 
ing implemented as nested transactions [Gray 81b] 
[Moss 82]. 

An original algorithm for full nested tran- 
sactions has been developed and an implementation 
produced for the LOCUS distributed operating sys- 
tem [Popek 81] [Walker 83]. To our knowledge, 
this is the first actual implementation of nested 
transactions on a distributed system. So far, others 
have produced only a preliminary, centralized im- 
plementation as part  of the Argus language [Liskov 
82] and a centralized simulation of a distributed 
implementation [Moss 81]. Further,  as discussed in 
the next section, LOCUS nested transactions pro- 

* The System R ]Gray 81a] internal 
implementation contains some support for nested 
save points, but that  functionality is not available 
to applications. 

** Much of the TMF [Borr 81] implementation, is 
within the operating system, although there is no 
support for nesting. 

vide additional functionality beyond that  which is 
usually proposed. This paper summarizes the work 
reported in [Mueller 83]. The implementation 
builds on simple nested transactions, reported in 
[Moore 82a I and [Moore 82b I. 

2. O T H E R  M O D E L S  

Our model of nested transactions differs in 
significant ways from traditional views. We discuss 
these differences in this section. 

2.1 R e p l i c a t i o n  

Most models of nested transactions insist 
that  replication of data objects be built on top of 
the transaction mechanism [Moss 82]. However, 
the mechanism for replication of objects at more 
than one site in the network is provided within the 
LOCUS file system. Thus our transaction mechan- 
ism assumes that  each object may consist of 
several replicated copies. 

For the sake of availability during parti- 
tioning of the network, transactions may continue 
gracefully if copies of the necessary objects are 
available within the partition. Of course, serious 
consistency problems can result when partitions 
merge and a given object has been independently 
updated in several partitions. Difficulties are even 
worse if that  object has already been used by other 
transactions as a basis to update other objects. 
Nevertheless, there is potentially great value in 
permitting these transactions to execute during a 
partition. First, an algorithm has been developed 
to detect any conflicts that  have occurred upon 
partition merge; see [Parker 83]. Second, for many 
applications, including airline reservation and 
banking, it is usually possible, and feasible, to au- 
tomatically reconcile all data  values at parti t ion 
merge time. The problem of automatic reconcilia- 
tion of replicated data  in the context of network 
partitioning is dealt with extensively in [Faissol 
81]. This work breaks the semantics of operations 
on data  objects into several classes, develops rec(m- 
ciliation algorithms for each class, and claims that  
most real cases of data  management  fall into the 
simpler of these classes. 

One suspects that in many systems, au- 
tomatic reconciliation will be feasible for the large 
majority of data objects. For those applications for 
which automatic reconciliation is not feasible, a 
scheme such as voting [Menasce 77] ]Thomas 781 or 
primary sites [Alsberg 76] may be implemented at 
the application level, in order to limit object 
accesses to at most one partition. Of course, there 
will remain cases that  require human intervention, 
such as when an external action has been taken 
that  cannot be undone and for which a compensat- 
ing action cannot be taken. These cases are the 
same ones for which general-purpose data  manage- 
ment recovery is also impossible. 
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2.2 N e t w o r k  T r a n s p a r e n c y  

Other models assume that  a' transaction 
directly modifies objects residing only at the site on 
which the transaction is executing [Moss 81] 
[Liskov 81]. In order to modify objects at another 
site, it is necessary to invoke another transaction 
at the remote site. In contrast,  we believe that  the 
location of both da ta  objects and processes should 
be t ransparent  to the programmer.  Thus a transac- 
tion may directly access objects at any site, the 
same way that  local objects are accessed. The ob- 

' j ec t  may in fact be replicated at more than one 
site. Similarly, our model does not require that  all 
processes within a single transaction execute at the 
same site as in other models [Moss 81] [Svob 81] 
[Liskov 82]. A transaction may transparently con- 
sist of processes at several sites just as it may be 
composed of several processes at a single site. In 
addition to transparency considerations, the ability 
to exccute closely-cooperating processes within a 
transaction at multiple sites and the ability to ac- 
cess remote objects directly without artificially im- 
posed mechanisms substantially improves transac- 
tion performance. 

3. U S E R  M O D E L  

In this section, we first present an overview 
of LOCUS and then explain the model of nested 
transactions which is presented to the user, includ- 
ing transaction invocation, completion, and access 
to data  objects. Finally we discuss the user-visible 
results of network partitioning. 

3.1 O v e r v i e w  o f  L O C U S  

LOCUS is an integrated distributed operat- 
ing system providing a high degree of network 
transparency, while at the same time supporting 
high performance and reliability. LOCUS makes a 
collection of computers  connected by a communica- 
tions network look to the user and application pro- 
gram like a single UNIX* [Ritchie 78] system. For 
example, there is one t ree-s t ructured llierarchical 
name space for files and one may run processes lo- 
cally or remotely with identical semantics. The sys- 
tem in operational use at UCLA consists of a set of 
VAX 11/750 computers  connected by a standard 
Ethernet.  

LOCUS provides for graceful operation 
during network partitions, i.e., the situation where 
various sites in the network cannot communicate  
with each other for some length of t ime due to net- 
work or site failures. This is a very real problem in 
a distributed system. A partition occurs if a site 
becomes disconnected from the network for some 
reason, such as if the site's network interface fails. 
In some cases it may even be desirable to operate 
in partitioned mode, for example if the site is a 

* UNIX is a Trademark  of Bell Laboratories. 

personal workstation which connects to the rest of 
the network via an expensive long-distance tele- 
phone line. General partit ions are possible in an en- 
vironment  where local networks are connected by 
gateways. LOCUS employs a sophisticated merge 
algorithm which allows sites to leave and return to 
the network gracefully without  interrupting service 
[Walker 83]. , 

3.2 T r a n s a c t i o n  Invocat ion  

The process model we use in this discussion 
is the same as that  of UNIX in which a process 
may invoke another process only by creating a re- 
plica of itself, an operation known as forking a pro- 
cess. The new process, called a child process, can 
distinguish itself from the original process, the 
parent process, by the return value of the fork 
operation. 

A LOCUS process starts a transaction with 
the following network-transparent* call: 

relcall(load-module, args) 

This system call causes load-module to be executed 
as a transaction with command-l ine arguments 
args, which is a list of character  strings. Typically, 
args gives the names of the input da ta  objects to 
the transaction. The call waits until the transac- 
tion completes and then returns with a completion 
code. When a transaction is started with relcall, it 
consists of only one process, the top-level process of 
the transaction. This process, however, may fork 
locally or remotely giving rise to transactions con- 
sisting of more than one process. Each process that  
is a part  of a transaction, including the top-level 
process, is called a member process. 

Processes running as part  of a transaction 
are permit ted to invoke other transactions, called 
subtransactions. Subtransactions are frequently re- 
ferred to merely as transactions. A transaction 
whose initiator is not a transaction is called a top- 
level transaction. To speak of the related family of 
transactions, i.e., a top-level transaction and all of 
its subtransactions, the term entire transaction is 
used. Tree terminology will be used in discussing 
relationships between transactions. When a tran- 
saction calls a subtransaction, the calling transac- 
tion will be the parent of the subtransaction, and 
the subtransaction the child of the calling transac- 
tion. We also speak of ancestors and descendants. 
A transaction is an ancestor and descendant of it- 
self. We also use the terms superior and inferior. 
A transaction is neither a superior nor an inferior 
of itself. We sometimes refer to the transaction in- 
vocation tree. 

* Specific site requests are done with a context 
mechanism, such as that  proposed in [Popek 83]. 
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3.3 Transact ion Complet ion 

A transaction completes either by commit-  
ting or aborting. A transaction may commit  only 
after its children .have all completed. However, a 
transaction may abort  at any time. Processes com- 
plete by issuing the exit system call which has an 
argument  indicating the success or failure of the 
process. In order for a transaction to commit ,  its 
top-level process must  wait  for the other member  
processes to complete, and then issue an exit call 
with a successful completion code. If a top-level 
process issues an exit call with an unsuccessful 
completion code, the transaction aborts. 

A subtransact ion will be said to commit  if 
certain operations which must be performed by the 
system complete successfully. If, for example, one 
of the objects accessed by the subtransaction has 
become inaccessible because of a network partition, 
then the commit  will fail. The actual  commit t ing 
of any updates  performed by the subtransaction is 
contingent upon the commit  of each superior tran- 
saction all the way up to the top-level transaction. 
If a superior transaction aborts, then the updates  
of all descendants of tha t  transaction will 
effectively be undone. Thus no updates  performed 
within an entire transaction are made permanent  
until the top-level transaction commits.  A top- 
level transaction will commit  if the two-phase com- 
mit  protocol [Gray 78] [Lindsay 791 [Lampson 79] 
reaches the commit  point. After a transaction 
commits  or aborts, control returns to the process 
tha t  invoked the transaction. 

Since a calling process waits for the com- 
pletion of a transaction, a single process may in- 
voke at most  one transaction at a time. A transac- 
tion may initiate several subtransactions con- 
currently by simultaneously invoking subtransac- 
tions from several of its member  processes. An ex- 
ample of a transaction program invoking two con- 
current subtransactions is given in Appendix A. 

3.4 Data  Access 

LOCUS provides for the manipulation of 
permanent  objects called .files. A transaction re- 
quests a lock on a file with the open system call 
and releases it with the close call.* A transaction 
holding a lock on a file reads and writes da ta  with 
the read and write system calls. When a transac- 
tion commits,  the t ransact ion 's  caller and all the 
caller's inferiors see the updates of the transaction. 
If the transaction aborts, the updates of the tran- 
saction are undone. In order to guarantee serializa- 
bility of transactions, the locking rules of [Moss 81] 
are extended (we have added the last rule and 

* Our implementat ion does not provide general 
support  for lock waiting or deadlock detection and 
resolution. If a lock cannot be granted after several 
retries, the open call fails. 

slightly modified the others): 

A transaction may open a file for 
modification (hold a lock in write mode) if 
no other transaction holds the lock (in any 
mode) and all retainers of the lock are 
ancestors of the requesting transaction. 

A transaction may open a file for read 
(hold a lock in read mode) if no other tran- 
saction holds the lock in write mode and 
all retainers of write locks are ancestors of 
the requesting transaction. 

When a transaction commits,  all its locks 
are inherited by its parent  (if any). This 
means that  the parent  retains each of the 
locks, in the same mode as the child held 
or retained them. 

When a transaction aborts, all its locks are 
simply discarded. If any of its superiors 
hold or retain the same lock, they continue 
to do so, in the same mode as before the 
abort.  

When a transaction closes a file, the held 
lock becomes a retained lock. 

3.5 Part i t ioning 

We now consider what  happens when a 
network partition occurs, i.e., if one or more sites 
leave the current partit ion. Under certain condi- 
tions, such an occurrence will cause some transac- 
tions to be aborted. First, if a transaction is 
separated from its cMler, the following will occur. 
If the transaction is a subtransaction,  it is aborted 
and its caller is made aware of this fact by an ap- 
propriate completion code of relcall. However, if 
the transaction is a top-level transaction, the caller 
is notified tha t  the transaction has been part i t ioned 
away, although it is impossible to determine 
whether  the transaction has commit ted  or aborted. 
Second, if a transaction holds or retains a lock for 
a file which has become inaccessible, the transac- 
tion is aborted. If another  copy of the file is acces- 
sible in the current partit ion, transactions left una- 
borted by the network parti t ion may then open the 
file. 

4. B A S I C  I M P L E M E N T A T I O N  

This section describes the basic implemen- 
tat ion of nested transactions in LOCUS. We be- 
lieve tha t  our algorithms depend little on the 
LOCUS operating system and could be adapted to 
many distributed environments.  However, the 
design and implementat ion of our architecture was 
greatly simplified by the high degree of network 
transparency which LOCUS provides and by its 
parti t ion management  algorithm. 
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4.1 Underlying Communications System 

We assume that the communications sys- 
tem delivers messages to their proper destination 
and that the stream of data in the message remains 
unaltered. For the sake of simplicity and brevity, 
the description of our algorithms in this paper will 
assume that the communications system does not 
cause messages to be lost, except in the case of net- 
work partitioning, and that the communications 
system does not deliver duplicate messages, does 
not delay messages arbitrarily, and delivers mes- 
sages in tile order in which they were sent. In 
Mueller 83] it is shown how our algorithms may 
andle lost, duplicated, delayed, and reordered 

messages if so desired. 

4.2 L O C U S  P a r t i t i o n  M a n a g e m e n t  

When the network is partitioned, we as- 
sume that the collection of sites making up the 
network is broken up into a number of disjoint sets 
of sites. We assume that any site in a given parti- 
tion can communicate with every other site in that 
partition, and that no site in a partition may com- 
municate with a site which is not in that partition. 
Since this model of network partitioning differs in 
some respects from what may actually occur, 
LOCUS employs a partition management algorithm 
[Walker 83] which enforces the partition model just 
described. 

Whenever any sites join or leave the net- 
work, a topology change procedure is run. Each site 
maintains a table of those sites with which it can 
communicate, called the site table. This table is 
managed by the topology change procedure and 
may lag behind the actual physical state of the 
network while topology changes are in progress. 
The topology change procedure is responsible for 
maintaining consistency of the system data struc- 
tures. One of its tasks in this respect is to locate 
any processes waiting [or messages from sites which 
have become inaccessible, and to notify them of 
this event. This prevents processes from waiting 
indefinitely for messages from sites which have 
crashed or been partitioned away. Another task of 
the topology change procedure is to invoke 
recovery, which performs reconciliation of replicat- 
ed data objects. 

4.3 Terminology  and Data  Structures 

The site on which a transaction begins exe- 
cuting is called the transaction home site. Each 
transaction is uniquely identified in the network by 
its transaction unique identifier (Tid). We assume 
that it is possible to determine from a transaction's 
Tid both the home site of the transaction as well as 
the Tids of all the transaction's superiors. 
Processes are uniquely identified in the network by 
a process unique identifier (Pid), from which we as- 
sume it is possible to determine the site on which 

the process is executing.* Processes running as part 
of a transaction may fork, giving rise to transac- 
tions which have more than one member process. 
Since processes may fork remotely as well as local- 
ly, it is possible for a transaction to have member 
processes at a site other than the transaction home 
site. Such prot:esses are called remote member 
processes. To simplify the description of our algo- 
rithms, we will assume that all processes making 
up a transaction reside at the same site. Later in 
the paper we describe the extensions which are 
necessary in order to handle remote member 
processes. 

Associated with each transaction, be it a 
top-level transaction or a subtransaction, is a vola- 
tile data structure called the transaction structure 
which resides at the transaction home site: 

Trans ~ StructITid , Status, Pid, Members, Files] 

Status ~ Oneof UNDEFINED, COMMITTED ABORTED] 
Members ~--- List[StructIPid Subtrans 
Files ~ ListIStruct Filename, Site, Mode ] 
Subtrans = Oneof[NULL, Tid l 
Mode ~ OneoI[READ, WRITE] 

A transaction has status UNDEFINED from the 
time it is initiated until its fate is determined, at 
which time its status will be changed to COMMIT- 
TED or ABORTED. A Pid identifies the process 
which invoked the transaction and indicates where 
to return control when this transaction completes. 
The Members field contains a list of the member 
processes of the transaction. This list is called the 
member process list and it includes an entry for 
each process making up the transaction. Each en- 
try consists of the Pid of the process and any ac- 
tive subtransaction of the process. The Files field 
contains a list of the files involved with the tran- 
saction, i.e., the files for which the transaction 
holds or retains locks. This list is called the parti- 
cipant file list and each of its entries contains the 
name of the file and a site number which together 
uniquely identify a physical copy of a file. Mode in- 
dicates the type of access (READ or WRITE) the 
transaction has to this file. 

4.4 Transaction File Operations 

For simp!!city, we will only discuss file 
operations performed by transactions. Non- 
transaction file operations in LOCUS are treated in 
[Walker 83]. In this section, we first discuss the 
protocols for file operations, and then descrihe the 
locking and file recovery algorithms in more detail. 

* We are speaking here of mechanisms internal to 
the system implementation, where location 
information is essential. The application interface is 
nevertheless transparent. 
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4.4.1 File Protoco l s  

For each file which is open from a transac- 
tion, one of the sites storing the file in a given par- 
tition is designated the transaction synchronization 
site (TSS) for the file. This site manages synchron- 
ization for the file and provides da ta  access.* Other  
copies of the file are brought  up to date after top- 
level transaction commit .  The site of a transaction 
accessing a file is called the using site (US). 

When a transaction process invokes the 
open system call,** a message is sent to the TSS 
for the file.*** Upon receiving the message, the 
TSS makes" a locking decision and takes appropri- 
ate actions. The results of the decision are returned 
to the US. If the open was successful, the US adds 
the file to the transaction's  part ic ipant  file list and 
returns control to the caller of the open system 
call. For a US to read or write a data  page, a mes- 
sage which contains the Tid of the transaction is 
sent to the TSS. When a US closes • file, it sends a 
message to the TSS and waits for a response. The 
close causes the t ransact ion 's  held lock to become a 
retained lock. Finally, when a transaction commits 
or aborts, it informs the TSS. It  is assumed tha t  a 
transaction closes all its files before commit t ing or 
aborting. 

* In LOCUS, the site which manages 
synchronization for a file (CSS) may be different 
from the site which provides da ta  access {SS). 
ttowever, since our transaction algorithms require 
the site which provides da ta  a£cess to be the same 
as the site which manages file locking once the file 
is open for modification by a transaction, we do 
not make this distinction here. Thus when a file is 
opened by a transaction, a TSS is assigned and this 
site plays the role of both CSS and SS until the file 
is no longer involved with transactions. Our 
implementat ion could easily be extended to allow 
many SSs for a file, but only if the file is not being 
modified by any transaction. In this case, 
transactions must  still be aborted if the TSS for a 
file becomes inaccessible, as will be discussed. 
However, if only SSs become inaccessible, while the 
TSS remains accessible, an al ternate SS may be 
substituted and no transactions need be aborted as 
a result. 

** We assume that  any pa thname searching has 
already been performed; see ]Walker 83]. 

*** From now on, we will speak of sending 
messages with the understanding that  if the site to 
which we are sending the message is local, we do 
not actually send a message. Instead, we directly 
invoke the appropriate  routine. 

4.4.2 Locking and State Restorat ion  

The TSS maintains the locking and 
recovery information for a file involved with a 
transaction in a volatile da ta  structure called a t- 
lock. A t-lock consists of a list of held and retained 
locking transactions and file state restoration infor- 
mation for write locks: 

TLock ~-Str~ct[CurrentFileState Holders ReadRetainers, 
WriteRetaiaers 

Holders --~ Oaeof[NU. LL,. ReadHolders, WriteHolder] 
ReadHolders = List[T!d 
WriteHolder = StructlTid, FileSt~te] 
ReadRetainers ~--- List~rid] 
WriteRetainers = St,cklStructlTid,  FileState]] 

To enable recovery in the event of transaction 
abort,  for each file modified by a transaction, we 
must  save the s tate  to be restored should the tran- 
saction abort. This information is kept  in the 
WriteHolder and WriteRetainers fields of the t- 
lock. The WriteRetainers field is a version stack, 
i.e., a stack of file versions with a n  entry for each 
transaction retaining a" write lock.* 

We now discuss how t-locks are used to 
manage locking information and perform file ~tate 
restoration. When a transaction T wishes to open a 
file F, the following TssOpen algorithm is per- 
formed: 

1. If a b lock does not exist for F, one is 
created. CurrentFileState is initialized 
from the state of F maintained in non- 
volatile storage. 

. If the open request is for modification, the 
request is denied if any other transaction 
holds a lock or there is a retainer of a lock 
tha t  is not an ancestor of T. If the request 
is granted, a WriteHolder entry for T con- 
taining a copy of CurrentFi leState  is en- 
tered. 

. Otherwise if the open reques t  is for read 
access, the request is denied if any other 
transaction holds a write lock or there is a 
retainer of a write lock that  is not an 
ancestor of T. If the request is granted, an 

* We do not require each entry in the version stack 
to be a complete version of the file. For each 
entry,  enough information is required to be able, to 
restore the file to the proper s tate  should t~e 
transaction fail. In the implementat ion of version 
stacks in LOCUS, we are able to save file versions 
incrementally, i.e., only those file pages that  are 
new since the last version need be recorded in the 
new version. This mechanism is very fast and 
inexpensive. No I /O  is required; little more than an 
in-core file descriptor copy is involved. For more 
details see [Mueller 83]. 
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lowing 

entry for T is added to ReadHolders. 

When a transaction T closes a file, the fol- 
TssClose algorithm is performed: 

1. If T holds a read lock, it is removed from 
ReadHolders. T is added to ReadRe- 
tainers, unless an entry for T is already 
present in ReadRetainers or WriteRe- 
tainers. 

. Otherwise if T holds a write lock, an entry 
for T containing the FileState in the 
WriteHolder entry is pushed onto WriteRe- 
tainers, unless an entry for T is already on 
top of WriteRetainers.* An entry for T 
which may be present in ReadRetainers is 
removed. The WriteHolder entry is re- 
moved.** 

When a transaction T commits,  the 
TssCommit algorithm is performed for each partici- 
pant  file of T: 

. If T is a subtransaction and T retains a 
read lock, it is removed from ReadRe- 
tainers. T ' s  parent  is added to ReadRe- 
tainers, unless an entry for T ' s  parent  is al- 
ready present in ReadRetainers  or Wri- 
teRetainers. 

. Otherwise if T is a subtransaction and T 
retains a write lock, the entry for T on top 
of WriteRetainers is changed to be an en- 
try for T 's  parent,  unless an entry for T ' s  
parent  is already present in WriteRetainers 
in which case the entry for T is merely 
popped. 

3. Otherwise if T is a top-level transaction 
and T retains a read lock, it is removed 
from ReadRetainers.  If ReadRetainers is 
empty,  the t-lock structure for this file is 
removed. 

4. Otherwise if T is a top-level transaction 
and T retains a write lock, the entry for T 
on top of WriteRetainers is popped. 

* This would be the case if T had previously 
opened and closed the file for modification or if a 
committed child of T had directly or indirectly 
modified the file. 

** Note that  this algorithm supports two-phase 
locking since, when a transaction closes a file that  
was open for modification, the transaction keeps a 
retained lock. No other transaction tha t  is not an 
inferior can access the file until the transaction 
commits or aborts. 

When 'a transaction T aborts, the TssAbort 
algorithm is performed for each part icipant  file of 
T: 

. If T retains a read lock, it is removed from 
ReadRetainers.  

. Otherwise if T retains a write lock, 
CurrentFileState is restored from the entry 
on top of WriteRetainers,  and the entry is 
popped. 

. If there are no remain ing  read or write re- 
tainers, the t-lock structure for the file is 
removed. 

As an example, suppose transaction T 1 has 
invoked transaction 7'2, and tha t  both transactions 
have modified a file F, as shown in Figure 1. Since 
both transactions have modified the file, both have 
an entry in the version stack for file F. F0 is the 
original state of the file, F 1 is the state of the file 
after T 1 has performed its modifications but before 
7'2 has performed its modifications, and /'2 is the 
state of the file after T~ has performed its 
modifications. F~ is the current s tate of the file at 
this point. Now suppose 7'2 commits.  In this case, 
the entry for T 2 on top of the version stack is sim- 
ply popped and discarded as shown in Figure 2a. 
If 7"2 instead aborts, the version for 7"2, i.e., /'1, 
which is on top of the version stack is popped and 
replaces the current version as shown in Figure 2b. 

FILE F: T2 FI CURRENT 
T~ Fo VERSION: 

F2 
VERSION 
STACK 

Figure 1 
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C FILE F: -~" CURRENT 
VERSION: 

VERSION F2 
STACK 

Figure 2a 

FILE F: "•" CURRENT 
VERSION" 

VERSION F1 
STACK 

Figure 2b 

Recall that  a transaction may lock a file in 
the current parti t ion even if there are copies of the 
file in other partitions. Given this policy, there is 
the possibility tha t  when partit ions merge there 
will be more than one TSS maintaining t-lock in- 
formation for a particular file. This situation is 
called a t-lock conflict. Methods for handling such 
conflicts are discussed elsewhere; see ]Edwards 82], 
and [Rudisin 80]. Essentially, the two conflicting t- 
locks will both be handled, and recovery will be in- 
voked when the operations complete, just as if the 
partition merge had occurred after the operations 
had completed. 

4.5 T r a n s a c t i o n  Invocat ion  a n d C o m p l e t l o n  

This section describes how a process in- 
vokes a transaction. The process which initiates 
the transaction is called the calling process. If the 
calling process is running as par t  of a transaction, 
the invoked transaction is a subtransaction.  Other-  
wise, the invoked transaction is a top-level transac- 
tion. The following algorithm is employed: 

1. At the site of the calling process P, a Tid 
T1 is generated for the new transaction. 

. If P is running on behalf of a transaction 
To, T1 is entered in the Subtrans field in 
the entry for P in T0's member  process list. 

. If the user (or context mechanism) wishes 
the transaction to be invoked at a remote 
site, it is necessary to pass to the remote 
site the name of the load module to be exe- 

cuted, the command-l ine arguments,  the 
Tid of the new transaction, and the Pid of 
the calling process.* 

4. At the home site for the new transaction 
T1, a transaction structure is created and 
the fields are filled in appropriately.  

5. Execution of a new transaction process is 
begun. 

6. The completion of T1 is awaited by calling 
process P. 

Whenever a transaction process performs a 
fork operation, an entry for the newly created pro- 
cess is added to the t ransact ion 's  member  process 
list. Each time a member  process of a transaction 
completes, its entry is removed from T ' s  member  
process list. In order for a transaction to be able to 
commit ,  its top-level process must  exit with a suc- 
cessful completion code. If the top-level process 
exits with an unsuccessful completion code, the 
transaction aborts. We will return to the details of 
commit t ing and aborting a transaction in the fol- 
lowing sections. After the called transaction has 
commit ted or aborted, the following is performed: 

. If T 1 is a subtransaction,  the Subtrans field 
in the entry for calling process P in its 
t ransact ion 's  member  process list is reset to 
NULL. 

2. Control is returned to calling process P. 

4.6 T r a n s a c t i o n  C o m m i t t i n g  

We take different actions to commit  a 
transaction depending on whether the transaction 
is a top-level transaction or a subtransaction.  We 
discuss subtransaction commit  first, and then we 
describe the commit  of top-level transactions. 

4.6.1 S u b t r a n s a c t i o n  C o m m i t  

In order to commit  a subtransaction,  the 
TssCommit  algorithm must  be performed for each 
file in the subtransact ion 's  part ic ipant  file list. The 
subtransaction commit algorithm is as follows: 

. At the home site of the commit t ing sub- 
transaction T, which we refer to as the 
child, if the TSSs for all par t ic ipant  files 
are not accessible to the child, T is aborted 
(to be described) and this algorithm exited. 

2. A R E Q C O M M I T  message containing T ' s  
part ic ipant  file list is sent to T ' s  parent. 

* The details of forking a remote process are dealt  
with elsewhere [Jagau 82]. 
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3. The home site of the parent transaction, 
which we refer to as the parent, adds the 
files in the received message to its partici- 
pant  file list.* A G R T C O M M I T  message is 
sent to the child. 

4. 

. 

The child receiving the message** sends 
TSSCOMMIT messages to each of the 
TSSs for the part icipant  files. Each mes- 
sage contains a list of files for which the 
TssCommit  algorithm must  be performed. 

Each TSS receiving tl~e message performs 
the TssComrnit  algorithm for each file and 
returns a RTSSCOMMIT response message 
along with a success code. 

. If the child receives a RTSSCOMMIT mes- 
sage from all TSSs and all TSSs have suc- 
ceeded, T has successfully been commit ted 
and a SUBCOMMIT message is sent to the 
parent.  

. Otherwise if the child has been parti t ioned 
from a TSS or a site was unsuccessful at 
performing the algorithm, a SUBCMTFAIL 
message is sent to the parent.  

. T ' s  transaction structure is removed by the 
child. 

. If the parent  receives the SUBCMTFAIL 
message or if it is parti t ioned away from 
the child, the parent  must abort  itself in 
order to recover properly. Otherwise, a 
SUBCOMMIT message is received. 

The reasons it is possible to recover in ease 
of commit  failure simply by aborting the parent  of 
the subtransaction are as follows. First, the parent  
inherits an)' locks of the subtransaction and thus 
since the parent  cannot commit  until the commit  
of the subtransaction has completed, only the 
parent and inferiors of the parent  can obtain locks 
to those files of the subtransaction for which the 
TssCommit  algorithm has been performed. Thus 
the only transactions which may view some of the 
subtransaction's  commit ted files are those which 
will be aborted. 

* The parent transaction must be aware of the 
part icipant files from this point on, so that  it can 
properly recover should the commit  fail as a result 
of subsequent partitioning. 

** If the child is parti t ioned away from the parent 
before receiving the G R T C O M M / T  message, the 
orphan removal algorithm to be described properly 
aborts the child. 

Second, it is possible to recover the files' 
t-locks properly. If the TssCommit  algorithm was 
not completed for a particular file, because sub- 
transaction commit  failed, then we must  still have 
the version to restore when we abort  the parent 
transaction. The version to restore is either in the 
WriteRetainers entry for the subtransaction that  
was a t tempt ing  to commit ,  or in an entry for the 
parent  if the parent modified the file. If, on the 
other hand, the TssCommit  algorithm was com- 
pleted, then either 1) the version to restore was 
given to the parent if the parent  did not already 
have an entry in WriteRetainers,  or 2) the parent  
already had an entry in WriteRetainers.  In both 
cases, we have the proper version to restore. Our 
TssAbort  algorithm must  be enhanced to handle 
commit  failure of course; how to do this will be 
shown in the section on handling network parti- 
tions. 

4.8.2 Top-Leve l  T r a n s a c t i o n  C o m m i t  

Top-level transaction cc:nmit  is accom- 
plished as follows. TSSCOMMIT messages are sent 
to each of the TSSs for the part icipant  files. This 
will cause all files that  were opened only for read 
by the entire transaction to have their t-lock struc- 
ture released at the TSS (unless transactions which 
are outside this entire transaction also retain or 
hold read locks). If any TssCommit  fails or a TSS 
is parti t ioned away, the top-level transaction must  
be aborted, and this is accomplished by sending 
TSSABORT messages to each of the TSSs for par- 
t icipant files.* If the entire transaction has 
modified a particular file, then after the top-level 
TssCommit ,  WriteRetainers will be empty  and 
CurrentFileState is the file state that  we wish to 
commit  to non-volatile storage. We invoke a dis- 
tr ibuted two-phase commit  protocol to accomplish 
these updates atomically and then remove the 
transaction structure. The part icipant  file list 
minus the files that  were only opened for read be- 
comes the part icipant  list for the two-phase com- 
mit  protocol. The two-phase commit  protocol used 
for committ ing a top-level transaction in LOCUS is 
described in detail in [Moore 82a] and is summar-  
ized in [Moore 82b]. The TssCommit  algorithm 
may be incorporated into the first phase of the 
two-phase commit  protocol, but this is ignored here 
for simplicity. During the second phase of the pro- 
tocol, the t-lock structure for the file is removed. 

Once the first phase of the protocol is com- 
plete, a T O P C O M M I T  message may be sent to the 
site of tile calling process. If the protocol fails oF~if 
the top-level transaction is aborted for some other 
reason, a TOPAr3ORT message is sent to the site 

* This is feasible at the top level because although 
we have discarded the version to restore from the 
version stack, we still have the original version in 
non-volatile storage. The TssAbort  algorithm must  
be able to handle this case. 
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of the calling process. 

4.7 Transact ion Abort ing  

Although a transaction may commit  only 
when all of its children complete, a transaction 
may decide to abort  at any time. Thus an aborting 
transaction may have running descendant subtran- 
sactions. In order to abort  a transaction T and 
each of its running descendants, the following tran- 
saction abort algorithm is employed: 

1. 

2. 

Each of T ' s  member  processes is destroyed. 

A F O R C E A B T  message is sent to the sites 
of each of T ' s  running child transactions 
and R F O R C E A B T  responses are awaited. 

3. After all responses have been received, a 
TSSABORT message is sent to each site 
having a part ic ipant  file of the aborting 
transaction, in order to perform the TssA- 
bort algorithm,* and RTSSABORT 
responses are awaited. 

4. A child receiving a F O R C E A B T  message 
in turn follows this abort  algorithm, des- 
troying its member  processes, aborting its 
child subtransactions by sending FOR-  
CEABT messages and waiting for 
responses, sending out TSSABORT mes- 
sages and waiting for responses, and finally 
returning a R F O R C E A B T  response. 

. A SUBABORT or T O P A B O R T  message, 
depending on whether  this is a subtransac- 
tion or a top-level transaction, is sent to 
the site of the invoking process. 

6. T ' s  transaction structure is removed. 

In the absence of partitions, this algorithm will 
abort all descendants of the aborting t r a n s a c t i o n  
and cause the TssAbort  algorithm to be invoked in 
the proper order for each file. Handling network 
partitions in this case will be discussed in detail in 
the next section. 

5. H A N D L I N G  N E T W O R K  P A R T I T I O N S  

This section extends our algorithms to cope 
fully with network partitioning. First, we extend 
our abort  algorithm to handle partitions. Then we 
consider the problem of aborting transactions tha t  
are separated from their calling transaction home 
sites as a result of a network partitions. This prob- 
lem has come to be known as the orphan problem 

* Recall that  this algorithm, which is invoked for 
each local and remote file, aborts the file updates, 
clears locks, and performs other cleanup. 

in the literature. Finally, we t reat  the situation in 
which a TSS for a part icipant  file is part i t ioned 
away from a transaction home site. 

5.1 Extens ions  to Abort  Algor i thm 

If an aborting transaction cannot  send a 
F O R C E A B T  message to its child transaction be- 
cause tha t  child is parti t ioned away, the aborting 
transaction must  ignore tha t  child in its abort  pro- 
cedure. As a result, when the aborting transaction 
performs the TssAbort  algorithm on its par t ic ipant  
files, some of those files may be locked by the inac- 
cessible child and its inferiors. Thus we must  modi- 
fy our TssAhort  algorithm to close any files which 
are open from inferiors and then effectively perform 
the old TssAbort  algorithm for all descendants of 
the aborting transaction. In addition, since any of" 
the inferiors of such an inaccessible child may also 
a t t empt  to abort  themselves, the TssAbort  algo- 
r i thm must  be idempotent .  This is required in case 
the aborting transaction completes the TssAbort  
algorithm after which an inferior invokes the algo- 
rithm. The TssAbort  algorithm must  also handle 
the case in which subtransaction commit  fails and 
it is necessary to abort  the parent  of the subtran-  
saction that  was being commit ted.  In this case the 
aborting transaction may not necessarily be on the 
stack. 

Our revised TssAbort algorithm for a tran- 
saction T is as follows: 

1. For each element of ReadHolders having T 
as a superior, the TssClose algorithm is in- 
voked. 

2. The TssClose algorithm is invoked if there 
is a WriteHolder. 

. Any entries in ReadRetainers  for a transac- 
tion having T as an ancestor are removed. 

4. Entries are popped from WriteRetainers  
until it is empty  or the top element is for a 
superior of T. The CurrentFi leState  is re- 
stored from the last entry popped. 

. If there are no remaining read or write re- 
tainers, the t-lock structure for this file~is 
removed. 

Note in addition that  we must  now handle 
read, write, and close messages from inferiors 
effectively aborted by this algorithm. Since each 
such message contains the Tid of the requesting 
transaction, read and write messages may be 
denied, and close message ignored, by first check- 
ing if the requesting transaction holds a lock on the 
file. 
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5.2 Orphan R e m o v a l  

If a network partition occurs, we wish to 
abort  any transactions which no longer have a path 
in the transaction invocation tree to the top-level 
transaction. We wish to eliminate such orphan 
transactions and effectively perform the TssAbort  
algorithm on any files for which they hold or retain 
locks. 

The orphan removal algorithm is driven by 
both the transaction home sites and the TSSs. As 
par t  of the topology change procedure at a site S, 
the following transaction-site-driven orphan remo- 
val algorithm is invoked for each transaction T 
whose home site is S: 

If a superior of T is inaccessible to S, a 
silent abort of T is performed. This con- 
sists of destroying all of the transaetion's  
member  processes and removing the tran- 
saction structure, thus aborting the tran- 
saction without performing the TssAbort  
algorithm on part icipant  files or forcing 
child subtransactions to abort. 

The abort  of an inferior transaction of T is effected 
when the topology change procedure detects the 
same condition for the inferior, i.e., one of its supe- 
riors is inaccessible. 

As part  of the topology change procedure 
at a site S, for each t-lock at S, the following file- 
site-driven orphan removal algorithm is invoked: 

1. For each element of ReadHolders having 
an ancestor inaccessible to S, the TssClose 
algorithm is invoked. 

. If the WriteHolder has an ancestor inacces- 
sible to S, the TssClose algorithm is in- 
voked. 

. For each element of ReadRetainers having 
an ancestor which is inaccessible to S, the 
entry is removed from the list. 

. If WriteRetainers is not empty,  the entry 
bo t tommost  in the stack which is for a 
transaction that  is inaccessible to S is lo- 
cated. Entries from the stack are popped 
until a superior of the located inaccessible 
transaction is on top or the stack is empty.  
CurrentFileState is restored from the last 
entry popped. 

. The t-lock is removed if there are no 
remaining write or read retainers or hold- 
ers. 

The orphan removal strategy is correct be- 
cause if a transaction is inaccessible to the TSS, 
then the transaction will be aborted since one of its 
files is inaccessible, as will be described in the fol- 
lowing section. If one of the transaction's  superiors 
is inaccessible to the TSS but the transaction is ac- 
cessible, then a superior of the transaction must  be 
inaccessible to the transaction and so the transac- 
tion will silently abort. 

FILE F: 

]'4 F3 

T3 F2 

T2 F1 

TI Fo 

VERSION 
STACK 

Figure 3a 

CURRENT 
VERSION: 

F4 

FILE F: "•-• CURRENT 
VERSION: 

VERSION F~ 
STACK 

Figure 3b 
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An example will serve to clarify our orphan 
removal algorithm. Assume transaction T 1 invoked 
T2 which invoked T~ which invoked Ta. Assume 
these transactions each execute at a different site 
and that  each retains a write lock for a particular 
file F, whose TSS is at yet  another site. For brevity 
we will refer to the sites as T1, T2, Ts, T4, and F. 
Suppose now that  T 2 and T 3 leave our partition 
and that  those two sites can communicate  in a new 
partition, i.e., the network is organized as the par- 
titions { T1, T4, F} and { T2, T~}, as shown in Fig- 
ure 3a. We can see tha t  we would like 7"2, T~, and 
T 4 all to be aborted, and for their retained locks to 
be freed so tha t  the only retainer of a write lock is 
T1. The following actions will be performed by the 
topology change procedure. Since transactions 7'2, 
Ts, and T~ all have an inaccessible superior, they 
are all aborted as described above. The bot tom-  
most retainer in the version stack (highest in the 
transaction invocation tree if the root transaction 
T1 is at the top) tha t  is inaccessible or has a supe- 
rior which is inaccessible to the TSS is T2. Thus  we 
perform the TssAbort  algorithm for T 2. Now the 
only remaining retainer of a write lock for the file 
is T1, as shown in Figure 3b. 

Note tha t  this orphan removal algorithm 
does not interact  with the two-phase commit  proto- 
col used to commit  a top-level transaction. Before 
two-phase commit  begins, part icipant  files are only 
locked by the top-level transaction. Thus orphan 
removal is not concerned with these files. However, 
other files may be locked by aborted orphans of the 
top-level transaction. These files are handled by or- 
phan removal.  

If orphan removal aborts a transaction, the 
transaction's  caller must  be notified. This is ac- 
complished by adding the following function to the 
topology change procedure. For any process hav- 
ing an active subtransaction whose home site is 
inaccessible to the calling process, an abort  comple- 
tion code is returned to the waiting process. Note 
tha t  returning control to a transaction may be un- 
necessary if tha t  transaction or one of its superiors 
is also aborting as a result of the partit ioning. Thus 
we should not return control unless all the 
t ransact ion 's  superiors are accessible. A process 
which called a top-level transaction also receives a 
special completion code, however it is unknown 
whether the transaction commit ted or aborted.* 

In the scheme that  we have described, 
there are two outstanding issues which must  be 
dealt with. First of all, when a lock on a file is re- 
quested, it may be impossible to grant  the request- 
ed lock because aborted transactions tha t  have not 
yet  completed their abort  algorithm hold or retain 

* There are two simple solutions to this problem. 
One is to build a mechanism to record completed 
top-level transactions. The other is advise users not 
to invoke remote top-level transactions. 

a conflicting lock on the file. This problem can be 
handled either by waiting and later retrying the 
lock request, or requiring the TSS to query the 
home site of the transaction supposedly holding or 
retaining a conflicting lock. If the response to the 
query is tha t  the transaction is ABORTED or 
N O N E X I S T E N T ,  we can clean up the 
t ransact ion 's  locks and its descendants '  locks for all 
files at  the TSS. This will generate extra  message 
traffic for opens tha t  truly are lock conflicts; how- 
ever, these may be rare. It is probably sufficient 
simply to retry up to some limit, as is done in our 
current implementat ion,  since in the normal case 
the calling process of an aborting transaction does 
not regain control until the abort  has completed, 
i.e., all locks have been properly updated.  T h a t  is, 
in the normal case a transaction invoked as an al- 
ternate  to an aborted transaction which wishes to 
lock some of the same files as the aborting transac- 
tion will not begin execution until the abort  has 
completed. It  is only when a transaction is 
separated from its child tha t  the al ternate transac- 
tion may request a lock before the abort  has com- 
pleted. 

The  second problem is tha t  when a tran- 
saction wishes to commit  and the TssCommit  algo- 
r i thm is invoked, it may encounter locks tha t  are 
held or retained by aborted inferior transactions 
whose aborts have not yet completed. This situa- 
tion can be handled simply by effectively perform- 
ing the TssAbort  algorithm for any inferiors of the 
commit t ing transaction before performing the usual 
TssCommit  algorithm. This strategy works be- 
cause all descendants of a transaction must  be 
resolved - either commit ted or aborted - in order 
for the transaction to commit,  and therefore any 
descendants still holding or retaining locks may be 
considered aborted since if they commit ted  they 
would not still hold or retain locks. Thus our re- 
vised TssCommit algorithm is: 

1. 

. 

Steps 1 and 2 of the revised TssAbort  algo- 
r i thm are invoked to close any files which 
are open from inferiors. 

Any entries in ReadRetainers  having T as 
a superior are removed. 

. Entries are popped from WriteRetainers 
until it is empty  or the top element is for a 
transaction which is an ancestor of T. 

4. Continue with Step 1 of the origiaal 
TssCommit  algorithm. 
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5.3 Inaccessible Storage Sites 

Whenever a site becomes partitioned away, 
all transactions having a participant file for which 
that  site is the TSS will be unable to commit. Thus 
our topology change procedure aborts a transaction 
if any of its participant files is inaccessible. This 
action, while correct, is inefficient. Since some of 
the transactions having inaccessible files have supe- 
riors who also have inaccessible files, many simul- 
taneous aborts will be performed, generating un- 

necessa ry  processing and network traffic. For ex- 
ample, suppose transaction Tt invoked T2 which 
invoked T~, and all three transactions have file F 
as a participant. If F is separated from .7"1, T~, and 
Ts, we will abort /'1, T~, and T~, when we actually 
need only abort Tv* Thus what we would like to 
do is to abort simply the topmost transaction in- 
volved with the inaccessible file. A method is 
presented in [Mueller 83] for determining the top- 
most involved transaction. 

6. R E M O T E  M E M B E R  P R O C E S S E S  

In order to extend our algorithms to allow 
remote member processes, we use the transaction 
home site as a centralized coordinator for all the 
transaction's processes. In this way, we limit the 
impact on other parts of our algorithm. The re- 
quired extensions are as follows. First, a message 
exchange is required between the remote site and 
the transaction home site whenever an action is ini- 
tiated at the remote site which calls for the 
tr,-msaction's member process list or participant file 
list to be updated. Second, the algorithm for 
aborting a transaction must be modified to send 
messages to destroy any remote member processes. 
Third, the topology change procedure must be 
modified to destroy a remote member process 
which becomes partitioned away from its home 
site, and abort a transaction having any remote 
member process which is inaccessible to the home 
site. Last, our t-lock structure must be extended 
to contain a list of USs for each transaction holding 
a read or write lock, and the topology change pro- 
cedure must be extended to invoke the TssAbort 
algorithm for any file having an inaccessible US. 
Details of remote member process management 
may be found in [Mueller 83]. 

7. C O N C L U S I O N S  

Programming in a distributed environment 
is complicated by the additional failure modes of 
that  environment. The transaction concept is an 
effective approach for coping with failures in a dis- 
tributed system. The extension of transactions to 
nested transactions allows programmers to compose 
transaction programs freely, just as subroutines (zan 
be composed. Nested transactions also allow the 
programmer t o  perform two supposedly indepen- 
dent tasks simultaneously. By running the two 
tasks as subtransactions, the programmer is assured 
of serializable results. 

A distributed implementation of nested 
transactions has been designed, implemented, and 
tested on the LOCUS operating system. The im- 
plementation consists of 7208 lines of C code,* 
which is a little more than twice that  required to 
implement simple nested transactions [Moore 82a] 
[Moore 82b]. Preliminary performance results 
shown in Appendix B indicate that transactions are 
not that  expensive. The major expense lies in the 
two-phase commit protocol, used to commit a top- 
level transaction. The additional reliability gained 
is well worth the added cost. 

Future  work includes completing remote 
member process support, taking extensive perfor- 
mance measurements, and incorporating appropri- 
ate optimizations. Now that  an operational en- 
vironment for nested transactions exists, we look 
forward to considerable actual experience with real 
problems to evaluate their utility. 

* We cannot perform a silent abort of the 
transactions upon detecting an inaccessible TSS, 
because this condition does not cause all 
transactions in a branch to be aborted. It only 
causes those with inaccessible TSSs to be aborted. 

* The current implementation does not contain all 
of the mechanism necessary to support remote 
member processes. 
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Appendix At Example of  Invoking Con- 
current Subtransactlons 

The following transaction program frag- 
ment  written in the C language executes two sub- 
transactions 8ubtransl and subtrans2 in parallel, 
commit t ing only if both subtransactions commit:  

if (fork() =~-~ CHILD~ { 
exit(relcall( subtraasl  , argsl)); 

} 
return code2 -~- relc~ll(" subtr~ns2", args2); 
wait(&ret urn code1); 
if ((return code1 = =  COMMIT) 

&& (return code2 = =  COMMIT)) exit(COMMIT); 
else exit(ABORT); 

This program, which we assume is running as the 
top-level process of a transaction, forks a child pro- 
cess which calls subtransact ion subt rans l  and then 
exits with the transaction completion code. At the 
same time, the parent  process invokes subtransac- 
tion subtrans2. When subtrans2 completes, the 
parent  process waits for its child process to com- 
plete and is passed its completion code, which 
corresponds to whether  subt rans l  commit ted  or 
aborted. The parent  process then instructs the sys- 
tem to commit  only if both subtransactions com- 
mitted,  and to abort  otherwise. A preprocessor 
may be used to provide a more natural  syntax for 
such an operation, but is not considered in this pa- 
per. The general problem of a distributed pro- 
gramming language incorporating nested transac- 
tions and abstract  da ta types  is being dealt  with in 
work on the Argus language [Lfskov 82]. 

Appendix B: Preliminary Performance Meas- 
urements 

In an a t t empt  to est imate the performance 
overhead incurred by nested transactions, we com- 
pare the difference in elapsed time between simply 
running a program, and running that  program as 
both a top-level transaction and as a subtransac- 
tion of some other transaction. We have per- 
formed these measurements  on LOCUS, executing 
on VAX 11/750s using RK07 disks for file storage 
and a 10 Mbps ring network. The activity being 
measured was the only user activity taking place in 
the system at the t ime the measurements  were tak- 
eR. 

The measurements  are of a program which 
modifies da ta  in several files. In each case, the 
second page of a two page file is updated (page size 
= 1024 bytes). The  files were initialized before 
each run. The program was run as a non- 
transaction, as a top-level transaction, and as a 
subtransaction of a top-level transaction.  For each 
of the cases, a program was run which modifies 0, 
1, 2, 4, 6, 8, and 10 files. Tests were run where all 
the files were local, and all the files were remote. 
All programs were run locally and the copy of the 

load module to be executed was stored locally. The 
additional t ime required to invoke and return from 
a remote transaction is comparable to tha t  required 
for a remote non-transaction process, and thus was 
not measured. 

For transactions, the measurement  is of 
the elapsed t ime from the t ime relcall was invoked, 
until it returned. For the non-transaction program, 
the t ime is measured from just  before the child 
process is forked to run the program, until the 
parent  process, which waits for the child process to 
complete, is awakened. 

The  measurements  are shown in Tables  1 
and 2. The  first observation is tha t  the t ime r e- 
quired to simply invoke and return from a program.  
which performs no file modifications is approxi- 
mately the same whether  the program is run as a 
non-transaction, top-level transaction, or subtran-  
saction. 

In Table 1, we give the measurements  for a 
program which modifies all local files. Running the 
program as a top-level transaction takes less than 
twice as long as running the program as a non- 
transaction. Running a program as a subtransac-  
tion is substantially faster than running it as a 
non-transaction, almost twice the speed. We can 
explain these results as follows. Much of the t ime 
required for running a non-transaction is taken by 
the file close operations, which write the file 
modifications to disk. Much of the t ime required 
for running a top-level transaction is taken by the 
two-phase commit  operation, which is used to 
atomically commit  a group of files, and requires 
more disk writes than simple closes. However, run- 
ning a program as a subtransaction does not cause 
any file modifications to be writ ten out to disk. 
This is because the modifications performed by a 
subtransaction are only written out when the top- 
level transaction commits.  Thus the time required 
to run the program as subtransaction is less than 
the t ime required to run it as a non-transaction 
program. Of course, the subtransaction must  up- 
date locking information for each of the files before 
it may commit,  as must  a top-level transaction. 
But  we can see tha t  these operations do not contri- 
bute much to the overall time. 

In Table  2, which gives measurements  for a 
program which modifies all remote files, we see 
tha t  the times for running the program as a sub- 
transaction and as a non-transaction become closer. 
This is because the time to send messages over the 
network starts  to dominate.  The times for a top- 
level transaction become closer to non-transactions 
for the same reason, although the two-phase com- 
mi t  protocol requires twice as many messages as 
would be required for non-atomic commit.  
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Extensive measurements of the two-phase 
commit protocol in our system are given in [Moore 
82a]. There it is reported that  for a moderate 
amount  of files, say 6, the two-phase commit proto- 
col is worse than simple file closing by a factor of 4 
in the local case, and 2.1 in the remote case. 

In conclusion, it appears that  the greatest 
cost in running transactions is in the two-phase 
commit protocol and that  there is little additional 
cost in the maintenance of locking information. 
Since the cost of the two-phase commit protocol 
becomes less significant as the amount of process- 
ing performed by the entire transaction increases, 
transactions are not that much more expensive 
than non-transaction programs. 

Number of Files 
0 
1 
2 
4 
6 
8 

10 

E L A P S E D  TIME Itn seconds) 
A l l  F i l e s  L , , ea l  , , 

Non-Transaction Toy-Level Transaction 
r 

.233 .183 

.350 .783 

.450 .916 

.700 1.233 

.966 1.483 
1.183 1.700 
1.384 .2.100 

Subtransaction 
.216 
.267 
.334 
.483 
.566 
.733 
.783 

Table 1: Elapsed Time -- All Files Local 

E L A P S E D  TIME (in seconds) 
A l l  File¢ Rcmo~¢  

i~llliil.,~l~l"IIll I I" l ~ 
0 
1 
2 
4 
6 
8 

10 

Non-Transaction 
.250 
.550 
.917 

1.650 
2.350 
3.000 
3.700 

Top-Level Transaction 
.200 

1.050 
1.450 
2.267 
3.016 
3.833 
4.616 

Stlbtransaetion 
.216 
.533 
.833 

1.467 
2.067 
2.717 
3.334 

Table 2: Elapsed Time - All Files Remote 
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