
A N e s t e d T r a n s a c t i o n M e c h a n i s m f o r L O C U S

Erik T. Mueller, Johanna D. Moore, and Gerald J. Popek

University of California at Los Angeles

A B S T R A C T

Atomic transactions are useful in distribut-
ed systems as a means of providing reliable opera-
tion in the face of hardware failures. Nested tran-
sactions are a generalization of traditional transac-
tions in which transactions may be composed of
other transactions. The programmer may initiate
several transactions from within a transaction, and
serializability of the transactions is guaranteed
even if they are executed concurrently. In addi-
tion, transactions invoked from within a given
transaction fail independently of their invoking
transaction and of one another, allowing use of al-
ternate transactions to accomplish the desired task
in the event that the original should fail. Thus
nested transactions are the basis for a general-
purpose reliable programming environment in
which transactions are modules which may be com-
posed freely.

A working implementat ion of nested tran-
sactions has been produced for LOCUS, an in-
tegrated distributed operating system which pro-
vides a high degree of network transparency.
Several aspects of our mechanism are novel. First,
the mechanism allows a transaction to access ob-
jects directly without regard to the location of the
object. Second, processes running off behalf of a
single transaction may be located at many sites.
Thus there is no need to invoke a new transaction
to perform processing or access objects at a remote
site. Third, unlike other environments, LOCUS al-

This research has been supported by the U.S.
Depar tment of Defense, ARPA, under contract
DSS-MDA-903-82-C-0189.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1983 ACM 0-89791-115-6/83/010/0071 $00.75

lows replication of da ta objects at more than one
site in the network, and this capabili ty is incor-
porated into the transaction mechanism. If the
copy of an object that is currently being accessed
becomes unavailable, it is possible to continue
work by using another one of the replicated copies.
Finally, an efficient orphan removal algorithm is
presented, and the problem of providing continued
operation during network parti t ions is addressed in
detail.

1. I N T R O D U C T I O N

An atomic transaction is a computat ion
consisting of a collection of operations which take
place indivisibly in the presence of both failures
and concurrent computations. Tha t is, either all of
the operations prevail or none of them prevail, and
other programs executing concurrently cannot
modify or observe intermediate states of the com-
putation. Transactions help to preserve the con-
sistency of a set of shared da ta objects in the face
of failures and concurrent access. While this is
true for a centralized system, transactions are even
more useful in a distributed environment where it
is necessary to deal with additional failure modes
such as the partial failure of a distributed compu-
tation. Although many transaction implementa-
tions currently exist, especially in database
management systems [Borr 811 [Gray 81ai, these
implementat ions typically have several limitations
which make them unsatisfactory for a general pro-
gramming tool in a distributed environment.

First, transactions cannot be nested. While
not significant in a database management system,
this restriction prevents users from constructing
new transaction applications by composing already
existing transactions. The programmer should be
able to write transactions as modules which may be
composed freely, just as procedures and functions
may be composed in ordinary programming

7 1

languages.*

Second, existing transaction mechanisms
are typically implemented as part of an
application-level program such as a database
manager. As a result, it is not possible for other
clients of the system to use the transaction
mechanism. Consider an application that invokes
some database actions as well as performing several
file updates directly. "In case of abort, the database
system undoes its updates, but it is the application
program's responsibility to deal with its own ac-
tions in a way that is synchronized with the data-
base system's behavior. For this reason, the tran-
saction facility should be provided in the underly-
ing operating system so that it is generally avail-
able. Given a transaction facility implemented in
this manner, the example of the application calling
the database system is straightforward to handle.**

Transactions which are composed of other
transactions, or nested transactions, have been the
subject of mucl~ current literature IMoss 81]
[Liskov 82] [Reed 78] [Svob 81]. A transaction in-
voked from within a transaction, or subtransaction,
appears atomic to its caller. Tha t is, the opera-
tions it performs take place indivisibly with respect
to both failures and concurrent computations, just
as for traditional transactions. Thus a nested tran-
saction mechanism must provide proper synchroni-
zation and recovery for subtransactions. Such a
mechanism guarantees that concurrently executing
transactions are serializable [Eswaran 76 I. Another
property of nested transactions is that subtransac-
tions of a given transaction fail independently of
their invoking transaction and of one another, so
that an alternate subtransaction may be invoked in
place of a failed suhtransaction in order to accom-
plish a similar task. It has been pointed out that
many applications naturally lend themselves to be-
ing implemented as nested transactions [Gray 81b]
[Moss 82].

An original algorithm for full nested tran-
sactions has been developed and an implementation
produced for the LOCUS distributed operating sys-
tem [Popek 81] [Walker 83]. To our knowledge,
this is the first actual implementation of nested
transactions on a distributed system. So far, others
have produced only a preliminary, centralized im-
plementation as part of the Argus language [Liskov
82] and a centralized simulation of a distributed
implementation [Moss 81]. Further, as discussed in
the next section, LOCUS nested transactions pro-

* The System R]Gray 81a] internal
implementation contains some support for nested
save points, but that functionality is not available
to applications.

** Much of the TMF [Borr 81] implementation, is
within the operating system, although there is no
support for nesting.

vide additional functionality beyond that which is
usually proposed. This paper summarizes the work
reported in [Mueller 83]. The implementation
builds on simple nested transactions, reported in
[Moore 82a I and [Moore 82b I.

2. O T H E R M O D E L S

Our model of nested transactions differs in
significant ways from traditional views. We discuss
these differences in this section.

2.1 R e p l i c a t i o n

Most models of nested transactions insist
that replication of data objects be built on top of
the transaction mechanism [Moss 82]. However,
the mechanism for replication of objects at more
than one site in the network is provided within the
LOCUS file system. Thus our transaction mechan-
ism assumes that each object may consist of
several replicated copies.

For the sake of availability during parti-
tioning of the network, transactions may continue
gracefully if copies of the necessary objects are
available within the partition. Of course, serious
consistency problems can result when partitions
merge and a given object has been independently
updated in several partitions. Difficulties are even
worse if that object has already been used by other
transactions as a basis to update other objects.
Nevertheless, there is potentially great value in
permitting these transactions to execute during a
partition. First, an algorithm has been developed
to detect any conflicts that have occurred upon
partition merge; see [Parker 83]. Second, for many
applications, including airline reservation and
banking, it is usually possible, and feasible, to au-
tomatically reconcile all data values at parti t ion
merge time. The problem of automatic reconcilia-
tion of replicated data in the context of network
partitioning is dealt with extensively in [Faissol
81]. This work breaks the semantics of operations
on data objects into several classes, develops rec(m-
ciliation algorithms for each class, and claims that
most real cases of data management fall into the
simpler of these classes.

One suspects that in many systems, au-
tomatic reconciliation will be feasible for the large
majority of data objects. For those applications for
which automatic reconciliation is not feasible, a
scheme such as voting [Menasce 77]]Thomas 781 or
primary sites [Alsberg 76] may be implemented at
the application level, in order to limit object
accesses to at most one partition. Of course, there
will remain cases that require human intervention,
such as when an external action has been taken
that cannot be undone and for which a compensat-
ing action cannot be taken. These cases are the
same ones for which general-purpose data manage-
ment recovery is also impossible.

7 2

2.2 N e t w o r k T r a n s p a r e n c y

Other models assume that a' transaction
directly modifies objects residing only at the site on
which the transaction is executing [Moss 81]
[Liskov 81]. In order to modify objects at another
site, it is necessary to invoke another transaction
at the remote site. In contrast, we believe that the
location of both da ta objects and processes should
be t ransparent to the programmer. Thus a transac-
tion may directly access objects at any site, the
same way that local objects are accessed. The ob-

' j ec t may in fact be replicated at more than one
site. Similarly, our model does not require that all
processes within a single transaction execute at the
same site as in other models [Moss 81] [Svob 81]
[Liskov 82]. A transaction may transparently con-
sist of processes at several sites just as it may be
composed of several processes at a single site. In
addition to transparency considerations, the ability
to exccute closely-cooperating processes within a
transaction at multiple sites and the ability to ac-
cess remote objects directly without artificially im-
posed mechanisms substantially improves transac-
tion performance.

3. U S E R M O D E L

In this section, we first present an overview
of LOCUS and then explain the model of nested
transactions which is presented to the user, includ-
ing transaction invocation, completion, and access
to data objects. Finally we discuss the user-visible
results of network partitioning.

3.1 O v e r v i e w o f L O C U S

LOCUS is an integrated distributed operat-
ing system providing a high degree of network
transparency, while at the same time supporting
high performance and reliability. LOCUS makes a
collection of computers connected by a communica-
tions network look to the user and application pro-
gram like a single UNIX* [Ritchie 78] system. For
example, there is one t ree-s t ructured llierarchical
name space for files and one may run processes lo-
cally or remotely with identical semantics. The sys-
tem in operational use at UCLA consists of a set of
VAX 11/750 computers connected by a standard
Ethernet.

LOCUS provides for graceful operation
during network partitions, i.e., the situation where
various sites in the network cannot communicate
with each other for some length of t ime due to net-
work or site failures. This is a very real problem in
a distributed system. A partition occurs if a site
becomes disconnected from the network for some
reason, such as if the site's network interface fails.
In some cases it may even be desirable to operate
in partitioned mode, for example if the site is a

* UNIX is a Trademark of Bell Laboratories.

personal workstation which connects to the rest of
the network via an expensive long-distance tele-
phone line. General partit ions are possible in an en-
vironment where local networks are connected by
gateways. LOCUS employs a sophisticated merge
algorithm which allows sites to leave and return to
the network gracefully without interrupting service
[Walker 83]. ,

3.2 T r a n s a c t i o n Invocat ion

The process model we use in this discussion
is the same as that of UNIX in which a process
may invoke another process only by creating a re-
plica of itself, an operation known as forking a pro-
cess. The new process, called a child process, can
distinguish itself from the original process, the
parent process, by the return value of the fork
operation.

A LOCUS process starts a transaction with
the following network-transparent* call:

relcall(load-module, args)

This system call causes load-module to be executed
as a transaction with command-l ine arguments
args, which is a list of character strings. Typically,
args gives the names of the input da ta objects to
the transaction. The call waits until the transac-
tion completes and then returns with a completion
code. When a transaction is started with relcall, it
consists of only one process, the top-level process of
the transaction. This process, however, may fork
locally or remotely giving rise to transactions con-
sisting of more than one process. Each process that
is a part of a transaction, including the top-level
process, is called a member process.

Processes running as part of a transaction
are permit ted to invoke other transactions, called
subtransactions. Subtransactions are frequently re-
ferred to merely as transactions. A transaction
whose initiator is not a transaction is called a top-
level transaction. To speak of the related family of
transactions, i.e., a top-level transaction and all of
its subtransactions, the term entire transaction is
used. Tree terminology will be used in discussing
relationships between transactions. When a tran-
saction calls a subtransaction, the calling transac-
tion will be the parent of the subtransaction, and
the subtransaction the child of the calling transac-
tion. We also speak of ancestors and descendants.
A transaction is an ancestor and descendant of it-
self. We also use the terms superior and inferior.
A transaction is neither a superior nor an inferior
of itself. We sometimes refer to the transaction in-
vocation tree.

* Specific site requests are done with a context
mechanism, such as that proposed in [Popek 83].

73

3.3 Transact ion Complet ion

A transaction completes either by commit-
ting or aborting. A transaction may commit only
after its children .have all completed. However, a
transaction may abort at any time. Processes com-
plete by issuing the exit system call which has an
argument indicating the success or failure of the
process. In order for a transaction to commit , its
top-level process must wait for the other member
processes to complete, and then issue an exit call
with a successful completion code. If a top-level
process issues an exit call with an unsuccessful
completion code, the transaction aborts.

A subtransact ion will be said to commit if
certain operations which must be performed by the
system complete successfully. If, for example, one
of the objects accessed by the subtransaction has
become inaccessible because of a network partition,
then the commit will fail. The actual commit t ing
of any updates performed by the subtransaction is
contingent upon the commit of each superior tran-
saction all the way up to the top-level transaction.
If a superior transaction aborts, then the updates
of all descendants of tha t transaction will
effectively be undone. Thus no updates performed
within an entire transaction are made permanent
until the top-level transaction commits. A top-
level transaction will commit if the two-phase com-
mit protocol [Gray 78] [Lindsay 791 [Lampson 79]
reaches the commit point. After a transaction
commits or aborts, control returns to the process
tha t invoked the transaction.

Since a calling process waits for the com-
pletion of a transaction, a single process may in-
voke at most one transaction at a time. A transac-
tion may initiate several subtransactions con-
currently by simultaneously invoking subtransac-
tions from several of its member processes. An ex-
ample of a transaction program invoking two con-
current subtransactions is given in Appendix A.

3.4 Data Access

LOCUS provides for the manipulation of
permanent objects called .files. A transaction re-
quests a lock on a file with the open system call
and releases it with the close call.* A transaction
holding a lock on a file reads and writes da ta with
the read and write system calls. When a transac-
tion commits, the t ransact ion 's caller and all the
caller's inferiors see the updates of the transaction.
If the transaction aborts, the updates of the tran-
saction are undone. In order to guarantee serializa-
bility of transactions, the locking rules of [Moss 81]
are extended (we have added the last rule and

* Our implementat ion does not provide general
support for lock waiting or deadlock detection and
resolution. If a lock cannot be granted after several
retries, the open call fails.

slightly modified the others):

A transaction may open a file for
modification (hold a lock in write mode) if
no other transaction holds the lock (in any
mode) and all retainers of the lock are
ancestors of the requesting transaction.

A transaction may open a file for read
(hold a lock in read mode) if no other tran-
saction holds the lock in write mode and
all retainers of write locks are ancestors of
the requesting transaction.

When a transaction commits, all its locks
are inherited by its parent (if any). This
means that the parent retains each of the
locks, in the same mode as the child held
or retained them.

When a transaction aborts, all its locks are
simply discarded. If any of its superiors
hold or retain the same lock, they continue
to do so, in the same mode as before the
abort.

When a transaction closes a file, the held
lock becomes a retained lock.

3.5 Part i t ioning

We now consider what happens when a
network partition occurs, i.e., if one or more sites
leave the current partit ion. Under certain condi-
tions, such an occurrence will cause some transac-
tions to be aborted. First, if a transaction is
separated from its cMler, the following will occur.
If the transaction is a subtransaction, it is aborted
and its caller is made aware of this fact by an ap-
propriate completion code of relcall. However, if
the transaction is a top-level transaction, the caller
is notified tha t the transaction has been part i t ioned
away, although it is impossible to determine
whether the transaction has commit ted or aborted.
Second, if a transaction holds or retains a lock for
a file which has become inaccessible, the transac-
tion is aborted. If another copy of the file is acces-
sible in the current partit ion, transactions left una-
borted by the network parti t ion may then open the
file.

4. B A S I C I M P L E M E N T A T I O N

This section describes the basic implemen-
tat ion of nested transactions in LOCUS. We be-
lieve tha t our algorithms depend little on the
LOCUS operating system and could be adapted to
many distributed environments. However, the
design and implementat ion of our architecture was
greatly simplified by the high degree of network
transparency which LOCUS provides and by its
parti t ion management algorithm.

7 4

4.1 Underlying Communications System

We assume that the communications sys-
tem delivers messages to their proper destination
and that the stream of data in the message remains
unaltered. For the sake of simplicity and brevity,
the description of our algorithms in this paper will
assume that the communications system does not
cause messages to be lost, except in the case of net-
work partitioning, and that the communications
system does not deliver duplicate messages, does
not delay messages arbitrarily, and delivers mes-
sages in tile order in which they were sent. In
Mueller 83] it is shown how our algorithms may
andle lost, duplicated, delayed, and reordered

messages if so desired.

4.2 L O C U S P a r t i t i o n M a n a g e m e n t

When the network is partitioned, we as-
sume that the collection of sites making up the
network is broken up into a number of disjoint sets
of sites. We assume that any site in a given parti-
tion can communicate with every other site in that
partition, and that no site in a partition may com-
municate with a site which is not in that partition.
Since this model of network partitioning differs in
some respects from what may actually occur,
LOCUS employs a partition management algorithm
[Walker 83] which enforces the partition model just
described.

Whenever any sites join or leave the net-
work, a topology change procedure is run. Each site
maintains a table of those sites with which it can
communicate, called the site table. This table is
managed by the topology change procedure and
may lag behind the actual physical state of the
network while topology changes are in progress.
The topology change procedure is responsible for
maintaining consistency of the system data struc-
tures. One of its tasks in this respect is to locate
any processes waiting [or messages from sites which
have become inaccessible, and to notify them of
this event. This prevents processes from waiting
indefinitely for messages from sites which have
crashed or been partitioned away. Another task of
the topology change procedure is to invoke
recovery, which performs reconciliation of replicat-
ed data objects.

4.3 Terminology and Data Structures

The site on which a transaction begins exe-
cuting is called the transaction home site. Each
transaction is uniquely identified in the network by
its transaction unique identifier (Tid). We assume
that it is possible to determine from a transaction's
Tid both the home site of the transaction as well as
the Tids of all the transaction's superiors.
Processes are uniquely identified in the network by
a process unique identifier (Pid), from which we as-
sume it is possible to determine the site on which

the process is executing.* Processes running as part
of a transaction may fork, giving rise to transac-
tions which have more than one member process.
Since processes may fork remotely as well as local-
ly, it is possible for a transaction to have member
processes at a site other than the transaction home
site. Such prot:esses are called remote member
processes. To simplify the description of our algo-
rithms, we will assume that all processes making
up a transaction reside at the same site. Later in
the paper we describe the extensions which are
necessary in order to handle remote member
processes.

Associated with each transaction, be it a
top-level transaction or a subtransaction, is a vola-
tile data structure called the transaction structure
which resides at the transaction home site:

Trans ~ StructITid , Status, Pid, Members, Files]

Status ~ Oneof UNDEFINED, COMMITTED ABORTED]
Members ~--- List[StructIPid Subtrans
Files ~ ListIStruct Filename, Site, Mode]
Subtrans = Oneof[NULL, Tid l
Mode ~ OneoI[READ, WRITE]

A transaction has status UNDEFINED from the
time it is initiated until its fate is determined, at
which time its status will be changed to COMMIT-
TED or ABORTED. A Pid identifies the process
which invoked the transaction and indicates where
to return control when this transaction completes.
The Members field contains a list of the member
processes of the transaction. This list is called the
member process list and it includes an entry for
each process making up the transaction. Each en-
try consists of the Pid of the process and any ac-
tive subtransaction of the process. The Files field
contains a list of the files involved with the tran-
saction, i.e., the files for which the transaction
holds or retains locks. This list is called the parti-
cipant file list and each of its entries contains the
name of the file and a site number which together
uniquely identify a physical copy of a file. Mode in-
dicates the type of access (READ or WRITE) the
transaction has to this file.

4.4 Transaction File Operations

For simp!!city, we will only discuss file
operations performed by transactions. Non-
transaction file operations in LOCUS are treated in
[Walker 83]. In this section, we first discuss the
protocols for file operations, and then descrihe the
locking and file recovery algorithms in more detail.

* We are speaking here of mechanisms internal to
the system implementation, where location
information is essential. The application interface is
nevertheless transparent.

75

4.4.1 File Protoco l s

For each file which is open from a transac-
tion, one of the sites storing the file in a given par-
tition is designated the transaction synchronization
site (TSS) for the file. This site manages synchron-
ization for the file and provides da ta access.* Other
copies of the file are brought up to date after top-
level transaction commit . The site of a transaction
accessing a file is called the using site (US).

When a transaction process invokes the
open system call,** a message is sent to the TSS
for the file.*** Upon receiving the message, the
TSS makes" a locking decision and takes appropri-
ate actions. The results of the decision are returned
to the US. If the open was successful, the US adds
the file to the transaction's part ic ipant file list and
returns control to the caller of the open system
call. For a US to read or write a data page, a mes-
sage which contains the Tid of the transaction is
sent to the TSS. When a US closes • file, it sends a
message to the TSS and waits for a response. The
close causes the t ransact ion 's held lock to become a
retained lock. Finally, when a transaction commits
or aborts, it informs the TSS. It is assumed tha t a
transaction closes all its files before commit t ing or
aborting.

* In LOCUS, the site which manages
synchronization for a file (CSS) may be different
from the site which provides da ta access {SS).
ttowever, since our transaction algorithms require
the site which provides da ta a£cess to be the same
as the site which manages file locking once the file
is open for modification by a transaction, we do
not make this distinction here. Thus when a file is
opened by a transaction, a TSS is assigned and this
site plays the role of both CSS and SS until the file
is no longer involved with transactions. Our
implementat ion could easily be extended to allow
many SSs for a file, but only if the file is not being
modified by any transaction. In this case,
transactions must still be aborted if the TSS for a
file becomes inaccessible, as will be discussed.
However, if only SSs become inaccessible, while the
TSS remains accessible, an al ternate SS may be
substituted and no transactions need be aborted as
a result.

** We assume that any pa thname searching has
already been performed; see]Walker 83].

*** From now on, we will speak of sending
messages with the understanding that if the site to
which we are sending the message is local, we do
not actually send a message. Instead, we directly
invoke the appropriate routine.

4.4.2 Locking and State Restorat ion

The TSS maintains the locking and
recovery information for a file involved with a
transaction in a volatile da ta structure called a t-
lock. A t-lock consists of a list of held and retained
locking transactions and file state restoration infor-
mation for write locks:

TLock ~-Str~ct[CurrentFileState Holders ReadRetainers,
WriteRetaiaers

Holders --~ Oaeof[NU. LL,. ReadHolders, WriteHolder]
ReadHolders = List[T!d
WriteHolder = StructlTid, FileSt~te]
ReadRetainers ~--- List~rid]
WriteRetainers = St,cklStructlTid, FileState]]

To enable recovery in the event of transaction
abort, for each file modified by a transaction, we
must save the s tate to be restored should the tran-
saction abort. This information is kept in the
WriteHolder and WriteRetainers fields of the t-
lock. The WriteRetainers field is a version stack,
i.e., a stack of file versions with a n entry for each
transaction retaining a" write lock.*

We now discuss how t-locks are used to
manage locking information and perform file ~tate
restoration. When a transaction T wishes to open a
file F, the following TssOpen algorithm is per-
formed:

1. If a b lock does not exist for F, one is
created. CurrentFileState is initialized
from the state of F maintained in non-
volatile storage.

. If the open request is for modification, the
request is denied if any other transaction
holds a lock or there is a retainer of a lock
tha t is not an ancestor of T. If the request
is granted, a WriteHolder entry for T con-
taining a copy of CurrentFi leState is en-
tered.

. Otherwise if the open reques t is for read
access, the request is denied if any other
transaction holds a write lock or there is a
retainer of a write lock that is not an
ancestor of T. If the request is granted, an

* We do not require each entry in the version stack
to be a complete version of the file. For each
entry, enough information is required to be able, to
restore the file to the proper s tate should t~e
transaction fail. In the implementat ion of version
stacks in LOCUS, we are able to save file versions
incrementally, i.e., only those file pages that are
new since the last version need be recorded in the
new version. This mechanism is very fast and
inexpensive. No I /O is required; little more than an
in-core file descriptor copy is involved. For more
details see [Mueller 83].

7 6

lowing

entry for T is added to ReadHolders.

When a transaction T closes a file, the fol-
TssClose algorithm is performed:

1. If T holds a read lock, it is removed from
ReadHolders. T is added to ReadRe-
tainers, unless an entry for T is already
present in ReadRetainers or WriteRe-
tainers.

. Otherwise if T holds a write lock, an entry
for T containing the FileState in the
WriteHolder entry is pushed onto WriteRe-
tainers, unless an entry for T is already on
top of WriteRetainers.* An entry for T
which may be present in ReadRetainers is
removed. The WriteHolder entry is re-
moved.**

When a transaction T commits, the
TssCommit algorithm is performed for each partici-
pant file of T:

. If T is a subtransaction and T retains a
read lock, it is removed from ReadRe-
tainers. T ' s parent is added to ReadRe-
tainers, unless an entry for T ' s parent is al-
ready present in ReadRetainers or Wri-
teRetainers.

. Otherwise if T is a subtransaction and T
retains a write lock, the entry for T on top
of WriteRetainers is changed to be an en-
try for T 's parent, unless an entry for T ' s
parent is already present in WriteRetainers
in which case the entry for T is merely
popped.

3. Otherwise if T is a top-level transaction
and T retains a read lock, it is removed
from ReadRetainers. If ReadRetainers is
empty, the t-lock structure for this file is
removed.

4. Otherwise if T is a top-level transaction
and T retains a write lock, the entry for T
on top of WriteRetainers is popped.

* This would be the case if T had previously
opened and closed the file for modification or if a
committed child of T had directly or indirectly
modified the file.

** Note that this algorithm supports two-phase
locking since, when a transaction closes a file that
was open for modification, the transaction keeps a
retained lock. No other transaction tha t is not an
inferior can access the file until the transaction
commits or aborts.

When 'a transaction T aborts, the TssAbort
algorithm is performed for each part icipant file of
T:

. If T retains a read lock, it is removed from
ReadRetainers.

. Otherwise if T retains a write lock,
CurrentFileState is restored from the entry
on top of WriteRetainers, and the entry is
popped.

. If there are no remain ing read or write re-
tainers, the t-lock structure for the file is
removed.

As an example, suppose transaction T 1 has
invoked transaction 7'2, and tha t both transactions
have modified a file F, as shown in Figure 1. Since
both transactions have modified the file, both have
an entry in the version stack for file F. F0 is the
original state of the file, F 1 is the state of the file
after T 1 has performed its modifications but before
7'2 has performed its modifications, and /'2 is the
state of the file after T~ has performed its
modifications. F~ is the current s tate of the file at
this point. Now suppose 7'2 commits. In this case,
the entry for T 2 on top of the version stack is sim-
ply popped and discarded as shown in Figure 2a.
If 7"2 instead aborts, the version for 7"2, i.e., /'1,
which is on top of the version stack is popped and
replaces the current version as shown in Figure 2b.

FILE F: T2 FI CURRENT
T~ Fo VERSION:

F2
VERSION
STACK

Figure 1

7 7

C FILE F: -~" CURRENT
VERSION:

VERSION F2
STACK

Figure 2a

FILE F: "•" CURRENT
VERSION"

VERSION F1
STACK

Figure 2b

Recall that a transaction may lock a file in
the current parti t ion even if there are copies of the
file in other partitions. Given this policy, there is
the possibility tha t when partit ions merge there
will be more than one TSS maintaining t-lock in-
formation for a particular file. This situation is
called a t-lock conflict. Methods for handling such
conflicts are discussed elsewhere; see]Edwards 82],
and [Rudisin 80]. Essentially, the two conflicting t-
locks will both be handled, and recovery will be in-
voked when the operations complete, just as if the
partition merge had occurred after the operations
had completed.

4.5 T r a n s a c t i o n Invocat ion a n d C o m p l e t l o n

This section describes how a process in-
vokes a transaction. The process which initiates
the transaction is called the calling process. If the
calling process is running as par t of a transaction,
the invoked transaction is a subtransaction. Other-
wise, the invoked transaction is a top-level transac-
tion. The following algorithm is employed:

1. At the site of the calling process P, a Tid
T1 is generated for the new transaction.

. If P is running on behalf of a transaction
To, T1 is entered in the Subtrans field in
the entry for P in T0's member process list.

. If the user (or context mechanism) wishes
the transaction to be invoked at a remote
site, it is necessary to pass to the remote
site the name of the load module to be exe-

cuted, the command-l ine arguments, the
Tid of the new transaction, and the Pid of
the calling process.*

4. At the home site for the new transaction
T1, a transaction structure is created and
the fields are filled in appropriately.

5. Execution of a new transaction process is
begun.

6. The completion of T1 is awaited by calling
process P.

Whenever a transaction process performs a
fork operation, an entry for the newly created pro-
cess is added to the t ransact ion 's member process
list. Each time a member process of a transaction
completes, its entry is removed from T ' s member
process list. In order for a transaction to be able to
commit , its top-level process must exit with a suc-
cessful completion code. If the top-level process
exits with an unsuccessful completion code, the
transaction aborts. We will return to the details of
commit t ing and aborting a transaction in the fol-
lowing sections. After the called transaction has
commit ted or aborted, the following is performed:

. If T 1 is a subtransaction, the Subtrans field
in the entry for calling process P in its
t ransact ion 's member process list is reset to
NULL.

2. Control is returned to calling process P.

4.6 T r a n s a c t i o n C o m m i t t i n g

We take different actions to commit a
transaction depending on whether the transaction
is a top-level transaction or a subtransaction. We
discuss subtransaction commit first, and then we
describe the commit of top-level transactions.

4.6.1 S u b t r a n s a c t i o n C o m m i t

In order to commit a subtransaction, the
TssCommit algorithm must be performed for each
file in the subtransact ion 's part ic ipant file list. The
subtransaction commit algorithm is as follows:

. At the home site of the commit t ing sub-
transaction T, which we refer to as the
child, if the TSSs for all par t ic ipant files
are not accessible to the child, T is aborted
(to be described) and this algorithm exited.

2. A R E Q C O M M I T message containing T ' s
part ic ipant file list is sent to T ' s parent.

* The details of forking a remote process are dealt
with elsewhere [Jagau 82].

7 8

3. The home site of the parent transaction,
which we refer to as the parent, adds the
files in the received message to its partici-
pant file list.* A G R T C O M M I T message is
sent to the child.

4.

.

The child receiving the message** sends
TSSCOMMIT messages to each of the
TSSs for the part icipant files. Each mes-
sage contains a list of files for which the
TssCommit algorithm must be performed.

Each TSS receiving tl~e message performs
the TssComrnit algorithm for each file and
returns a RTSSCOMMIT response message
along with a success code.

. If the child receives a RTSSCOMMIT mes-
sage from all TSSs and all TSSs have suc-
ceeded, T has successfully been commit ted
and a SUBCOMMIT message is sent to the
parent.

. Otherwise if the child has been parti t ioned
from a TSS or a site was unsuccessful at
performing the algorithm, a SUBCMTFAIL
message is sent to the parent.

. T ' s transaction structure is removed by the
child.

. If the parent receives the SUBCMTFAIL
message or if it is parti t ioned away from
the child, the parent must abort itself in
order to recover properly. Otherwise, a
SUBCOMMIT message is received.

The reasons it is possible to recover in ease
of commit failure simply by aborting the parent of
the subtransaction are as follows. First, the parent
inherits an)' locks of the subtransaction and thus
since the parent cannot commit until the commit
of the subtransaction has completed, only the
parent and inferiors of the parent can obtain locks
to those files of the subtransaction for which the
TssCommit algorithm has been performed. Thus
the only transactions which may view some of the
subtransaction's commit ted files are those which
will be aborted.

* The parent transaction must be aware of the
part icipant files from this point on, so that it can
properly recover should the commit fail as a result
of subsequent partitioning.

** If the child is parti t ioned away from the parent
before receiving the G R T C O M M / T message, the
orphan removal algorithm to be described properly
aborts the child.

Second, it is possible to recover the files'
t-locks properly. If the TssCommit algorithm was
not completed for a particular file, because sub-
transaction commit failed, then we must still have
the version to restore when we abort the parent
transaction. The version to restore is either in the
WriteRetainers entry for the subtransaction that
was a t tempt ing to commit , or in an entry for the
parent if the parent modified the file. If, on the
other hand, the TssCommit algorithm was com-
pleted, then either 1) the version to restore was
given to the parent if the parent did not already
have an entry in WriteRetainers, or 2) the parent
already had an entry in WriteRetainers. In both
cases, we have the proper version to restore. Our
TssAbort algorithm must be enhanced to handle
commit failure of course; how to do this will be
shown in the section on handling network parti-
tions.

4.8.2 Top-Leve l T r a n s a c t i o n C o m m i t

Top-level transaction cc:nmit is accom-
plished as follows. TSSCOMMIT messages are sent
to each of the TSSs for the part icipant files. This
will cause all files that were opened only for read
by the entire transaction to have their t-lock struc-
ture released at the TSS (unless transactions which
are outside this entire transaction also retain or
hold read locks). If any TssCommit fails or a TSS
is parti t ioned away, the top-level transaction must
be aborted, and this is accomplished by sending
TSSABORT messages to each of the TSSs for par-
t icipant files.* If the entire transaction has
modified a particular file, then after the top-level
TssCommit , WriteRetainers will be empty and
CurrentFileState is the file state that we wish to
commit to non-volatile storage. We invoke a dis-
tr ibuted two-phase commit protocol to accomplish
these updates atomically and then remove the
transaction structure. The part icipant file list
minus the files that were only opened for read be-
comes the part icipant list for the two-phase com-
mit protocol. The two-phase commit protocol used
for committ ing a top-level transaction in LOCUS is
described in detail in [Moore 82a] and is summar-
ized in [Moore 82b]. The TssCommit algorithm
may be incorporated into the first phase of the
two-phase commit protocol, but this is ignored here
for simplicity. During the second phase of the pro-
tocol, the t-lock structure for the file is removed.

Once the first phase of the protocol is com-
plete, a T O P C O M M I T message may be sent to the
site of tile calling process. If the protocol fails oF~if
the top-level transaction is aborted for some other
reason, a TOPAr3ORT message is sent to the site

* This is feasible at the top level because although
we have discarded the version to restore from the
version stack, we still have the original version in
non-volatile storage. The TssAbort algorithm must
be able to handle this case.

7 9

of the calling process.

4.7 Transact ion Abort ing

Although a transaction may commit only
when all of its children complete, a transaction
may decide to abort at any time. Thus an aborting
transaction may have running descendant subtran-
sactions. In order to abort a transaction T and
each of its running descendants, the following tran-
saction abort algorithm is employed:

1.

2.

Each of T ' s member processes is destroyed.

A F O R C E A B T message is sent to the sites
of each of T ' s running child transactions
and R F O R C E A B T responses are awaited.

3. After all responses have been received, a
TSSABORT message is sent to each site
having a part ic ipant file of the aborting
transaction, in order to perform the TssA-
bort algorithm,* and RTSSABORT
responses are awaited.

4. A child receiving a F O R C E A B T message
in turn follows this abort algorithm, des-
troying its member processes, aborting its
child subtransactions by sending FOR-
CEABT messages and waiting for
responses, sending out TSSABORT mes-
sages and waiting for responses, and finally
returning a R F O R C E A B T response.

. A SUBABORT or T O P A B O R T message,
depending on whether this is a subtransac-
tion or a top-level transaction, is sent to
the site of the invoking process.

6. T ' s transaction structure is removed.

In the absence of partitions, this algorithm will
abort all descendants of the aborting t r a n s a c t i o n
and cause the TssAbort algorithm to be invoked in
the proper order for each file. Handling network
partitions in this case will be discussed in detail in
the next section.

5. H A N D L I N G N E T W O R K P A R T I T I O N S

This section extends our algorithms to cope
fully with network partitioning. First, we extend
our abort algorithm to handle partitions. Then we
consider the problem of aborting transactions tha t
are separated from their calling transaction home
sites as a result of a network partitions. This prob-
lem has come to be known as the orphan problem

* Recall that this algorithm, which is invoked for
each local and remote file, aborts the file updates,
clears locks, and performs other cleanup.

in the literature. Finally, we t reat the situation in
which a TSS for a part icipant file is part i t ioned
away from a transaction home site.

5.1 Extens ions to Abort Algor i thm

If an aborting transaction cannot send a
F O R C E A B T message to its child transaction be-
cause tha t child is parti t ioned away, the aborting
transaction must ignore tha t child in its abort pro-
cedure. As a result, when the aborting transaction
performs the TssAbort algorithm on its par t ic ipant
files, some of those files may be locked by the inac-
cessible child and its inferiors. Thus we must modi-
fy our TssAhort algorithm to close any files which
are open from inferiors and then effectively perform
the old TssAbort algorithm for all descendants of
the aborting transaction. In addition, since any of"
the inferiors of such an inaccessible child may also
a t t empt to abort themselves, the TssAbort algo-
r i thm must be idempotent . This is required in case
the aborting transaction completes the TssAbort
algorithm after which an inferior invokes the algo-
rithm. The TssAbort algorithm must also handle
the case in which subtransaction commit fails and
it is necessary to abort the parent of the subtran-
saction that was being commit ted. In this case the
aborting transaction may not necessarily be on the
stack.

Our revised TssAbort algorithm for a tran-
saction T is as follows:

1. For each element of ReadHolders having T
as a superior, the TssClose algorithm is in-
voked.

2. The TssClose algorithm is invoked if there
is a WriteHolder.

. Any entries in ReadRetainers for a transac-
tion having T as an ancestor are removed.

4. Entries are popped from WriteRetainers
until it is empty or the top element is for a
superior of T. The CurrentFi leState is re-
stored from the last entry popped.

. If there are no remaining read or write re-
tainers, the t-lock structure for this file~is
removed.

Note in addition that we must now handle
read, write, and close messages from inferiors
effectively aborted by this algorithm. Since each
such message contains the Tid of the requesting
transaction, read and write messages may be
denied, and close message ignored, by first check-
ing if the requesting transaction holds a lock on the
file.

8 0

5.2 Orphan R e m o v a l

If a network partition occurs, we wish to
abort any transactions which no longer have a path
in the transaction invocation tree to the top-level
transaction. We wish to eliminate such orphan
transactions and effectively perform the TssAbort
algorithm on any files for which they hold or retain
locks.

The orphan removal algorithm is driven by
both the transaction home sites and the TSSs. As
par t of the topology change procedure at a site S,
the following transaction-site-driven orphan remo-
val algorithm is invoked for each transaction T
whose home site is S:

If a superior of T is inaccessible to S, a
silent abort of T is performed. This con-
sists of destroying all of the transaetion's
member processes and removing the tran-
saction structure, thus aborting the tran-
saction without performing the TssAbort
algorithm on part icipant files or forcing
child subtransactions to abort.

The abort of an inferior transaction of T is effected
when the topology change procedure detects the
same condition for the inferior, i.e., one of its supe-
riors is inaccessible.

As part of the topology change procedure
at a site S, for each t-lock at S, the following file-
site-driven orphan removal algorithm is invoked:

1. For each element of ReadHolders having
an ancestor inaccessible to S, the TssClose
algorithm is invoked.

. If the WriteHolder has an ancestor inacces-
sible to S, the TssClose algorithm is in-
voked.

. For each element of ReadRetainers having
an ancestor which is inaccessible to S, the
entry is removed from the list.

. If WriteRetainers is not empty, the entry
bo t tommost in the stack which is for a
transaction that is inaccessible to S is lo-
cated. Entries from the stack are popped
until a superior of the located inaccessible
transaction is on top or the stack is empty.
CurrentFileState is restored from the last
entry popped.

. The t-lock is removed if there are no
remaining write or read retainers or hold-
ers.

The orphan removal strategy is correct be-
cause if a transaction is inaccessible to the TSS,
then the transaction will be aborted since one of its
files is inaccessible, as will be described in the fol-
lowing section. If one of the transaction's superiors
is inaccessible to the TSS but the transaction is ac-
cessible, then a superior of the transaction must be
inaccessible to the transaction and so the transac-
tion will silently abort.

FILE F:

]'4 F3

T3 F2

T2 F1

TI Fo

VERSION
STACK

Figure 3a

CURRENT
VERSION:

F4

FILE F: "•-• CURRENT
VERSION:

VERSION F~
STACK

Figure 3b

8 1

An example will serve to clarify our orphan
removal algorithm. Assume transaction T 1 invoked
T2 which invoked T~ which invoked Ta. Assume
these transactions each execute at a different site
and that each retains a write lock for a particular
file F, whose TSS is at yet another site. For brevity
we will refer to the sites as T1, T2, Ts, T4, and F.
Suppose now that T 2 and T 3 leave our partition
and that those two sites can communicate in a new
partition, i.e., the network is organized as the par-
titions { T1, T4, F} and { T2, T~}, as shown in Fig-
ure 3a. We can see tha t we would like 7"2, T~, and
T 4 all to be aborted, and for their retained locks to
be freed so tha t the only retainer of a write lock is
T1. The following actions will be performed by the
topology change procedure. Since transactions 7'2,
Ts, and T~ all have an inaccessible superior, they
are all aborted as described above. The bot tom-
most retainer in the version stack (highest in the
transaction invocation tree if the root transaction
T1 is at the top) tha t is inaccessible or has a supe-
rior which is inaccessible to the TSS is T2. Thus we
perform the TssAbort algorithm for T 2. Now the
only remaining retainer of a write lock for the file
is T1, as shown in Figure 3b.

Note tha t this orphan removal algorithm
does not interact with the two-phase commit proto-
col used to commit a top-level transaction. Before
two-phase commit begins, part icipant files are only
locked by the top-level transaction. Thus orphan
removal is not concerned with these files. However,
other files may be locked by aborted orphans of the
top-level transaction. These files are handled by or-
phan removal.

If orphan removal aborts a transaction, the
transaction's caller must be notified. This is ac-
complished by adding the following function to the
topology change procedure. For any process hav-
ing an active subtransaction whose home site is
inaccessible to the calling process, an abort comple-
tion code is returned to the waiting process. Note
tha t returning control to a transaction may be un-
necessary if tha t transaction or one of its superiors
is also aborting as a result of the partit ioning. Thus
we should not return control unless all the
t ransact ion 's superiors are accessible. A process
which called a top-level transaction also receives a
special completion code, however it is unknown
whether the transaction commit ted or aborted.*

In the scheme that we have described,
there are two outstanding issues which must be
dealt with. First of all, when a lock on a file is re-
quested, it may be impossible to grant the request-
ed lock because aborted transactions tha t have not
yet completed their abort algorithm hold or retain

* There are two simple solutions to this problem.
One is to build a mechanism to record completed
top-level transactions. The other is advise users not
to invoke remote top-level transactions.

a conflicting lock on the file. This problem can be
handled either by waiting and later retrying the
lock request, or requiring the TSS to query the
home site of the transaction supposedly holding or
retaining a conflicting lock. If the response to the
query is tha t the transaction is ABORTED or
N O N E X I S T E N T , we can clean up the
t ransact ion 's locks and its descendants ' locks for all
files at the TSS. This will generate extra message
traffic for opens tha t truly are lock conflicts; how-
ever, these may be rare. It is probably sufficient
simply to retry up to some limit, as is done in our
current implementat ion, since in the normal case
the calling process of an aborting transaction does
not regain control until the abort has completed,
i.e., all locks have been properly updated. T h a t is,
in the normal case a transaction invoked as an al-
ternate to an aborted transaction which wishes to
lock some of the same files as the aborting transac-
tion will not begin execution until the abort has
completed. It is only when a transaction is
separated from its child tha t the al ternate transac-
tion may request a lock before the abort has com-
pleted.

The second problem is tha t when a tran-
saction wishes to commit and the TssCommit algo-
r i thm is invoked, it may encounter locks tha t are
held or retained by aborted inferior transactions
whose aborts have not yet completed. This situa-
tion can be handled simply by effectively perform-
ing the TssAbort algorithm for any inferiors of the
commit t ing transaction before performing the usual
TssCommit algorithm. This strategy works be-
cause all descendants of a transaction must be
resolved - either commit ted or aborted - in order
for the transaction to commit, and therefore any
descendants still holding or retaining locks may be
considered aborted since if they commit ted they
would not still hold or retain locks. Thus our re-
vised TssCommit algorithm is:

1.

.

Steps 1 and 2 of the revised TssAbort algo-
r i thm are invoked to close any files which
are open from inferiors.

Any entries in ReadRetainers having T as
a superior are removed.

. Entries are popped from WriteRetainers
until it is empty or the top element is for a
transaction which is an ancestor of T.

4. Continue with Step 1 of the origiaal
TssCommit algorithm.

8 2

5.3 Inaccessible Storage Sites

Whenever a site becomes partitioned away,
all transactions having a participant file for which
that site is the TSS will be unable to commit. Thus
our topology change procedure aborts a transaction
if any of its participant files is inaccessible. This
action, while correct, is inefficient. Since some of
the transactions having inaccessible files have supe-
riors who also have inaccessible files, many simul-
taneous aborts will be performed, generating un-

necessa ry processing and network traffic. For ex-
ample, suppose transaction Tt invoked T2 which
invoked T~, and all three transactions have file F
as a participant. If F is separated from .7"1, T~, and
Ts, we will abort /'1, T~, and T~, when we actually
need only abort Tv* Thus what we would like to
do is to abort simply the topmost transaction in-
volved with the inaccessible file. A method is
presented in [Mueller 83] for determining the top-
most involved transaction.

6. R E M O T E M E M B E R P R O C E S S E S

In order to extend our algorithms to allow
remote member processes, we use the transaction
home site as a centralized coordinator for all the
transaction's processes. In this way, we limit the
impact on other parts of our algorithm. The re-
quired extensions are as follows. First, a message
exchange is required between the remote site and
the transaction home site whenever an action is ini-
tiated at the remote site which calls for the
tr,-msaction's member process list or participant file
list to be updated. Second, the algorithm for
aborting a transaction must be modified to send
messages to destroy any remote member processes.
Third, the topology change procedure must be
modified to destroy a remote member process
which becomes partitioned away from its home
site, and abort a transaction having any remote
member process which is inaccessible to the home
site. Last, our t-lock structure must be extended
to contain a list of USs for each transaction holding
a read or write lock, and the topology change pro-
cedure must be extended to invoke the TssAbort
algorithm for any file having an inaccessible US.
Details of remote member process management
may be found in [Mueller 83].

7. C O N C L U S I O N S

Programming in a distributed environment
is complicated by the additional failure modes of
that environment. The transaction concept is an
effective approach for coping with failures in a dis-
tributed system. The extension of transactions to
nested transactions allows programmers to compose
transaction programs freely, just as subroutines (zan
be composed. Nested transactions also allow the
programmer t o perform two supposedly indepen-
dent tasks simultaneously. By running the two
tasks as subtransactions, the programmer is assured
of serializable results.

A distributed implementation of nested
transactions has been designed, implemented, and
tested on the LOCUS operating system. The im-
plementation consists of 7208 lines of C code,*
which is a little more than twice that required to
implement simple nested transactions [Moore 82a]
[Moore 82b]. Preliminary performance results
shown in Appendix B indicate that transactions are
not that expensive. The major expense lies in the
two-phase commit protocol, used to commit a top-
level transaction. The additional reliability gained
is well worth the added cost.

Future work includes completing remote
member process support, taking extensive perfor-
mance measurements, and incorporating appropri-
ate optimizations. Now that an operational en-
vironment for nested transactions exists, we look
forward to considerable actual experience with real
problems to evaluate their utility.

* We cannot perform a silent abort of the
transactions upon detecting an inaccessible TSS,
because this condition does not cause all
transactions in a branch to be aborted. It only
causes those with inaccessible TSSs to be aborted.

* The current implementation does not contain all
of the mechanism necessary to support remote
member processes.

8 3

R E F E R E N C E S

[Borr 81]

[Edwards 82]

[Eswaran 76]

[Faissol 81]

[Gray 78]

[Gray 81a}

lGray 81b]

Borr, A. J., "Transaction Moni-
toring in Encompass: Reliable
Distributed Transaction Process-
ing", Proceedings of 7th Interna-
tional Conference on Very Large
Data Bases, Cannes, France,
September 9-11, 1981, pp. 155-
165.

Edwards, D. A., "Implementa-
tion of Replication in LOCUS: A
Highly Reliable Distributed
Operating System", Masters
Thesis, Computer Science
Department, University of Cali-
fornia, Los Angeles, 1982.

Eswaran, K. P., Gray, J. N.,
Lorie, R. A., and Traiger, I. L.,
"The Notions of Consistency and
Predicate Locks in a Database
System", Communications of the
ACM, Vol. 19, No. 11, November
1976, pp. 624-633.

Faissoi, S., "Availability and Re-
liability Issues in Distributed Da-
tabases", Ph. D. Dissertation,
Computer Science Department,
University of California, Los
Angeles, 1981.

Gray, J. N., "Notes on Data
Base Operating Systems",
Operating Systems, An Ad-
vanced Course, Lecture Notes in
Computer Science 60, Springer-
Verlag, 1978, pp. 393-481.

Gray, J. N., Me Jones, P., Blas-
gen, M. W., Lorie, R. A., Price,
T. G., Putzulu, G. F., and
Traiger, I. L., "The Recovery
Manager of a Data Management
System", Computing Surveys,
Vol. 13, No. 12, June 1981, pp.
223-242.

Gray, J. N., "The Transaction
Concept: Virtues and Limita-
tions", Proceedings of the
Seventh International Conference
on Very Large Data Bases,
Cannes, France, September 9-11,
1981, pp. 144-154.

[Jagau 82]

[Lampson 79]

[Lindsay 791

[Liskov 82l

[Moore 82a]

[Moore 82b]

[Moss 81]

[Moss 82]

Jagau, August-Wilhelm, "Process
Management Under LOCUS",
LOCUS Internal Memorandum
11, Center for Experimental
Computer Science, University of
California, Los Angeles, De-
cember 16, 1982.

Lampson, B. W. and Sturgis, H.
E., "Crash Recovery in a Distri-
buted Data Storage System",
XEROX Palo Alto Research
Center, April 1979.

Lindsay, B. G., Selinger, P. G.,
Galtieri, C., Gray, J. N., Lorie,
R. A., Price, T. G., Putzolu, F.,
Traiger, I. L., and Wade, B. W.,
"Notes on Distributed Data-
bases", IBM Research Report
RJ2571(33471), IBM Research
Laboratory, San Jose, CA, July
14, 1979, pp. 44-50.

Liskov, Barbara, and Scheifler,
Robert, "Guardians and Actions:
Linguistic Support for Robust,
Distributed Programs", Proceed-
ings of the Ninth Annual Sympo-
sium on Principles of Program-
ming Languages, Albuquerque,
NM, January 1982, pp. 7-19.

Moore, Johanna D., "Simple
Nested Transactions in LOCUS:
A Distributed Operating Sys-
tem", Master's Thesis, Computer
Science Department, University
of California, Los Angeles, 1982.

Moore, Johanna D., Mueller,
Erik T., and Popek, Gerald J.,
"Nested Transactions and
Locus", unpublished paper,
UCLA Center for Experimental
Computer Science, October 1982.

Moss, J. Eliot B., "Nested Tran-
sactions: An Approach to Reli-
able Distributed Computing",
Technical Report
MIT/LCS/TR-260, Laboratory

'for Computer Science, M.I.T.,
1981.

Moss, J. Eliot B., "Nested Tran-
sactions and Reliable Comput-
ing", Proceedings, Second IEEE
Symposium on Reliability in Dis-
tributed Software and Database
Systems, Pittsburgh, PA, July
1982.

84

[Mueller 83]

IParker 83]

[Popek 83]

[Popek 81]

lReed 78]

[Ritchie 78]

[Rudisin 80]

[Svob 81]

Mueller, Erik T., "Implementa-
tion of Nested Transactions in a
Distributed System", Master's
Thesis, Computer Science
Department, University of Cali-
fornia, Los Angeles, 1983.

Parker, D. Stott, Popek, Gerald
J., Rudisin, G., Stoughton, A.,
Walker, B., Walton, E., Chow,
J., Edwards, D., Kiser, S., and
Kline, C., "Detection of Mutual
Inconsistency in Distributed Sys-
tems", IEEE Transactions on
Software Engineering, May 1983,
pp. 240-247.

Popek, Gerald J., and Walker,
Bruce J., "Network Transparen-
cy and its Limits in a Distributed
Operating System", unpublished
paper, UCLA Center for Experi-
mental Computer Science, Janu-
ary 1983.

Popek, G., Walker, B., Chow, J.,
Edwards, D., Kline, C., Rudisin,
G., and Thiel, G., "LOCUS: A
Network Transparent, High Reli-
ability Distributed System",
Proceedings of the Ei#hth Sympo-
sium on Operating Systems Prin-
ciples, Pacific Grove, California,
December 1981.

Reed, D. P., "Naming and Syn-
chronization in a Decentralized
Computer System", Technical
Report MIT]LCS]TR-205, La-
boratory for Computer Science,
M.I.T., 1978.

Ritchie, D. and Thompson, K.,
"The UNIX Timesharing Sys-
tem", Bell System Technical
Journal, vol. 57, no. 6, part £
July - August 1978, pp. 1905-
1930.

Rudisin, G., "Architectural Is-
sues in a Reliable Distributed
File System", Master's Thesis,
Computer Science Department,
University of California, Los
Angeles, 1980.

Svobodova, L., "Recovery in Dis-
tributed Processing Systems",
unpublished paper, INRIA, Roe-
quencourt, France, July 1981, re-
vised version to appear in IEEE
Transactions on Software En-

[Walker 83]

gineering.

Walker, Bruce J., Popek, Gerald
J., English, R. M., Kline, C., and
Thiel, G., "The LOCUS Distri-
buted Operating System",
Proceedin#s of the Ninth Sympo-
sium on Operating Systems Prin-
ciples, Bretton Woods, NH, Oc-
tober 10-13, 1983.

85

Appendix At Example of Invoking Con-
current Subtransactlons

The following transaction program frag-
ment written in the C language executes two sub-
transactions 8ubtransl and subtrans2 in parallel,
commit t ing only if both subtransactions commit:

if (fork() =~-~ CHILD~ {
exit(relcall(subtraasl , argsl));

}
return code2 -~- relc~ll(" subtr~ns2", args2);
wait(&ret urn code1);
if ((return code1 = = COMMIT)

&& (return code2 = = COMMIT)) exit(COMMIT);
else exit(ABORT);

This program, which we assume is running as the
top-level process of a transaction, forks a child pro-
cess which calls subtransact ion subt rans l and then
exits with the transaction completion code. At the
same time, the parent process invokes subtransac-
tion subtrans2. When subtrans2 completes, the
parent process waits for its child process to com-
plete and is passed its completion code, which
corresponds to whether subt rans l commit ted or
aborted. The parent process then instructs the sys-
tem to commit only if both subtransactions com-
mitted, and to abort otherwise. A preprocessor
may be used to provide a more natural syntax for
such an operation, but is not considered in this pa-
per. The general problem of a distributed pro-
gramming language incorporating nested transac-
tions and abstract da ta types is being dealt with in
work on the Argus language [Lfskov 82].

Appendix B: Preliminary Performance Meas-
urements

In an a t t empt to est imate the performance
overhead incurred by nested transactions, we com-
pare the difference in elapsed time between simply
running a program, and running that program as
both a top-level transaction and as a subtransac-
tion of some other transaction. We have per-
formed these measurements on LOCUS, executing
on VAX 11/750s using RK07 disks for file storage
and a 10 Mbps ring network. The activity being
measured was the only user activity taking place in
the system at the t ime the measurements were tak-
eR.

The measurements are of a program which
modifies da ta in several files. In each case, the
second page of a two page file is updated (page size
= 1024 bytes). The files were initialized before
each run. The program was run as a non-
transaction, as a top-level transaction, and as a
subtransaction of a top-level transaction. For each
of the cases, a program was run which modifies 0,
1, 2, 4, 6, 8, and 10 files. Tests were run where all
the files were local, and all the files were remote.
All programs were run locally and the copy of the

load module to be executed was stored locally. The
additional t ime required to invoke and return from
a remote transaction is comparable to tha t required
for a remote non-transaction process, and thus was
not measured.

For transactions, the measurement is of
the elapsed t ime from the t ime relcall was invoked,
until it returned. For the non-transaction program,
the t ime is measured from just before the child
process is forked to run the program, until the
parent process, which waits for the child process to
complete, is awakened.

The measurements are shown in Tables 1
and 2. The first observation is tha t the t ime r e-
quired to simply invoke and return from a program.
which performs no file modifications is approxi-
mately the same whether the program is run as a
non-transaction, top-level transaction, or subtran-
saction.

In Table 1, we give the measurements for a
program which modifies all local files. Running the
program as a top-level transaction takes less than
twice as long as running the program as a non-
transaction. Running a program as a subtransac-
tion is substantially faster than running it as a
non-transaction, almost twice the speed. We can
explain these results as follows. Much of the t ime
required for running a non-transaction is taken by
the file close operations, which write the file
modifications to disk. Much of the t ime required
for running a top-level transaction is taken by the
two-phase commit operation, which is used to
atomically commit a group of files, and requires
more disk writes than simple closes. However, run-
ning a program as a subtransaction does not cause
any file modifications to be writ ten out to disk.
This is because the modifications performed by a
subtransaction are only written out when the top-
level transaction commits. Thus the time required
to run the program as subtransaction is less than
the t ime required to run it as a non-transaction
program. Of course, the subtransaction must up-
date locking information for each of the files before
it may commit, as must a top-level transaction.
But we can see tha t these operations do not contri-
bute much to the overall time.

In Table 2, which gives measurements for a
program which modifies all remote files, we see
tha t the times for running the program as a sub-
transaction and as a non-transaction become closer.
This is because the time to send messages over the
network starts to dominate. The times for a top-
level transaction become closer to non-transactions
for the same reason, although the two-phase com-
mi t protocol requires twice as many messages as
would be required for non-atomic commit.

8 6

Extensive measurements of the two-phase
commit protocol in our system are given in [Moore
82a]. There it is reported that for a moderate
amount of files, say 6, the two-phase commit proto-
col is worse than simple file closing by a factor of 4
in the local case, and 2.1 in the remote case.

In conclusion, it appears that the greatest
cost in running transactions is in the two-phase
commit protocol and that there is little additional
cost in the maintenance of locking information.
Since the cost of the two-phase commit protocol
becomes less significant as the amount of process-
ing performed by the entire transaction increases,
transactions are not that much more expensive
than non-transaction programs.

Number of Files
0
1
2
4
6
8

10

E L A P S E D TIME Itn seconds)
A l l F i l e s L , , ea l , ,

Non-Transaction Toy-Level Transaction
r

.233 .183

.350 .783

.450 .916

.700 1.233

.966 1.483
1.183 1.700
1.384 .2.100

Subtransaction
.216
.267
.334
.483
.566
.733
.783

Table 1: Elapsed Time -- All Files Local

E L A P S E D TIME (in seconds)
A l l File¢ Rcmo~¢

i~llliil.,~l~l"IIll I I" l ~
0
1
2
4
6
8

10

Non-Transaction
.250
.550
.917

1.650
2.350
3.000
3.700

Top-Level Transaction
.200

1.050
1.450
2.267
3.016
3.833
4.616

Stlbtransaetion
.216
.533
.833

1.467
2.067
2.717
3.334

Table 2: Elapsed Time - All Files Remote

8 7

R E F E R E N C E S

[Alsberg 76]

[Borr 81]

[Edwards 821

[Eswaran 76]

[Faissol 81]

[Gray 78]

[Gray 81a]

Alsberg, P.A., and Day, J.D., "A
Principle for Resilient Sharing of
Distributed Resources", Proceed-
ings of Znd International Confer-
ence on Software Engineering,
October 1976.

Borr, A. J., "Transaction Moni-
~ring in Encompass: Reliable
Distributed Transaction Process-
ing", Proceedings of 7th Interna-
tional Conference on Very Large
Data Bases, Cannes, France,
September 9-11, 1981, pp. 155-
165.

Edwards, D. A., "Implementa-
tion of Replication in LOCUS: A
Highly Reliable Distributed
Operating System", Masters
Thesis, Computer Science
Department, University of Cali-
fornia, Los Angeles, 1982.

Eswaran, K. P., Gray, J. N.,
Lorie, R. A., and Traiger, I. L.,
"The Notions of Consistency and
Predicate Locks in a Database
System", Communications of the
ACM, Vol. 19, No. 11, November
1976, pp. 624-633.

Faissol, S., "Availability and Re-
liability Issues in Distributed Da-
tabases", Ph. D. Dissertation,
Computer Science Department,
University of California, Los
Angeles, 1981.

Gray, J. N., "Notes on Data
Base Operating Systems",
Operating Systems, An Ad-
vanced Course, Lecture Notes in
Computer Science 60, Springer-
Verlag, 1978, pp. 393-481.

Gray, J. N., Mr Jones, P., Blas-
gen, M. W., Lorie, R. A., Price,
T. G., Putzulu, G. F., and
Traiger, I. L., "The Recovery
Manager of a Data Management
System", Computing Surveys,
Vol. 13, No. 12., June 1981, pp.
223-242.

[Gray 81b]

l Jagau 82]

[Lampson 79]

[Lindsay 79]

[Liskov 82]

[Menasce 771

[Moore 82a]

[Moore 82b]

Gray, J. N., "The Transaction
Concept: Virtues and Limita-
tions", Proceedings of the
Seventh International Conference
on Very Large Data Bases,
Cannes, France, September 9-11,
1981, pp. 144-154.

Jagau, August-Wilhelm, "Process
Management Under LOCUS",
LOCUS Internal Memorandum
11, Center for Experimental
Computer Science, University of
California, Los Angeles, De-
cember 16, 1982.

Lampson, B. W. and Sturgis, H.
E., "Crash Recovery in a Distri-
buted Data Storage System",
XEROX Pals Alto Research
Center, April 1.979.

Lindsay, B. G., Selinger, P. G.,
Galtieri, C., Gray, J. N., Lorie,
R. A., Price, T. G., Putzolu, F.,
Traiger, I. L., and Wade, B. W.,
"Notes on Distributed Data-
bases", IBM Research Report
RJ2571(33471), IBM Research
Laboratory, San Jose, CA, July
14, 1979, pp. 44-50.

Liskov, Barbara, and Scheifier,
Robert, "Guardians and Actions:
Linguistic Support for Robust,
Distributed Programs", Proceed-
ings of the Ninth Annual Sympo-
sium on Principles of Program-
ming Languages, Albuquerque,
NM, January 1982, pp. 7-19.

Menasce, D.A., Popek, G.J., and
Muntz, R.R., "A Locking Proto-
col for Resource Coordination in
Distributed Systems," Technical
Report UCLA-ENG-7808,
Department of Computer Sci-
ence, UCLA, October 1977.

Moore, Johanna D., "Simple
Nested Transactions in LOCUS:
A Distributed Operating Sys-
tem", Master's Thesis, Computer
Science Department, University
of California, Los Angeles, 1982.

Moore, Johanna D., Mueller,
Erik T., and Popek, Gerald J.,
"Nested Transactions and
Locus", unpublished paper,
UCLA Center for Experimental
Computer Science, October 1982.

88

[Moss 81]

[Moss 82]

[Mueller 83]

[Parker 83]

[Popek 83]

[Popek 81]

[Reed 78}

Moss, J. Eliot B., "Nested Tran-
sactions: An Approach to Reli-
able Distributed Computing",
Technical Report
MIT/LCS/TR-260, Laboratory
for Computer Science, M.I.T.,
1981.

Moss, J. Eliot B., "Nested Tran-
sactions and Reliable Comput-
ing", Proceedings, Second IEEE
Symposium on Reliability in Dis-
tributed Software and Database
Systems, Pittsburgh, PA, July
1982.

Mueller, Erik T., "Implementa-
tion of Nested Transactions in a
Distributed System", Master's
Thesis, Computer Science
Department, University of Cali-
fornia, Los Angeles, 1983.

Parker, D. Stott, Popek, Gerald
J., Rudisin, G., Stoughton, A.,
Walker, B., Walton, E., Chow,
J., Edwards, D., Kiser, S., and
Kline, C., "Detection of Mutual
Inconsistency in Distributed Sys-
tems", IEEE Transactions on
Software Engineering, May 1983,
pp. 240-247.

Popek, Gerald J., and Walker,
Bruce J., "Network Transparen-
cy and its Limits in a Distributed
Operating System", unpublished
paper, UCLA Center for Experi-
mental Computer Science, Janu-
ary 1983.

Popek, G., Walker, B., Chow, J.,
Edwards, D., Kline, C., Rudisin,
G., and Thiel, G., "LOCUS: A
Network Transparent, High Reli-
ability Distributed System",
Proceedings of the Eighth Sympo-
sium on Operating Systems Prin-
ciples, Pacific Grove, California,
December 1981.

Reed, D. P., "Naming and Syn-
chronization in a Decentralized
Computer System", Technical
Report MIT/LCS/TR-205, La-
boratory for Computer Science,
M.I.T., 1978.

[Ritchie 78]

[Rudisin 80]

[Svob 81]

[Thomas 78]

[Walker 83]

Ritchie, D. and Thompson, K.,
"The UNIX Timesharing Sys-
tem", Bell System Technical
Journal, vol. 57, no. 6, part 2
July - August 1978, pp. 1905-
1930.

Rudisin, G., "Architectural Is-
sues in a Reliable Dis t r ibuted
File System", Master's Thesis,
Computer Science Department,
University of California, Los
Angeles, 1980.

Svobodova, L., "Recovery in Dis-
tributed Processing Systems",
unpublished paper, INRIA, Roc-
queneourt, France, July 1981, re-
vised version to appear in IEEE
Transactions on Software En-
gineering.

Thomas, R.F., "A Solution to
the Concurrency Control Prob-
lem for Multiple Copy Data
Bases," Proceedings Spring
COMPCON, Feb 28 - Mar 3,
1978.

Walker, Bruce J., Popek, Gerald
J., English, R. M., Kline, C., and
Thiel, G., "The LOCUS Distri-
buted Operating System",
Proceedings of the Ninth Sympo-
sium on Operating Systems Prin-
ciples, Bretton Woods, NH, Oc-
tober 10-13, 1983.

89

