
LIMITATIONS OF DIJKSTRA'S SEMAPHORE PRIMITIVES AND PETRI NETS

S. Rao Kosaraju*
Department of Electrical Engineering

The Johns Hopkins university
Baltimore, Maryland 21218

ABSTRACT

Recently various attempts have been
made to study the limitations of Dijkstr~s
semaphore primitives for the synchroniza-
tion problem of cooperating sequential
processes [3,4,6,8]. Patil [8] proves
that the semaphores with the P and V
primitives are not sufficiently powerful.
He suggests a generalization of the P
primitive. We prove that certain synchrcri-
zation problems cannot be realized with the
above generalization and even with arrays
of semaphores. We also show that even the
general Petri nets will not be able to
handle some synchronization problemsj con-
tradicting a conjecture of Patil (P.28
[7]) .

I. INTRODUCTION

In general, a synchronization problem
deals with the problem of achieving a
required co-ordination between a system
of coordinating processes. A precise def-
inition is still lacking. As a first step,
we advocate that only autonomous systems
of processes should be considered for
this problem• If a system of processes
responds to external processes, then we
should include those processes also within
the system.

Semaphores

A semaphore is an integer valued
variable, whose initial value is non-
negative. The only operations that could
be performed on semaphores are p and V.
Each P or V operation is considered
indivisible. In the literature there
seems to be a certain ambiguity over the
semantics of programs written with P and
V primitives.

First interpretation (P. 199 [i])

P(S): IS e S-l; if S ~ 0 the ca~er

Supported by the U.S. Atomic Energy Com-
mission under contract AT(ii-i)-3288

v(s) :

placem himself in the queue QS'

enters the waiting state, and
releases the processor] #

IS ~ S+i; if S ~ 0 remove
some process from QS and add

it to the work queue of the pro-
cessors].

Second interpretation

P(S): [Can be executed when S > 0
which results in decrementing
S by i]

v(s): [s ~ s+l]

The first interpretation seems to be con-
venient for implementation, and the second
interpretation is easier for analysis.
Another confusion is when we have a sequence
of instructions Ii, I2,...Ij,..., whether

the execution of Ij+ 1 starts immediately

after the completion of I. or there is
3

an arbitrary delay in between. We assume
arbitrary delays which seems to be the
general understanding and also very natural
in asynchronous operation. With this
assumption, the theoretical distinction
between the two interpretations disappears.
For example, consider the following situ-
ation with S = 0.

Control A ~ V(S) X
P(S) Control B ~ P(S)
•

B is waiting on the queue for S. As
soon as A completes its V(S) operation,
either B or A could execute a P(S)
under the second interpretation; whereas
under the first interpretation B is

+Ix] : X is an indivisible operation.

122

awakened, since it is already on the queue,
and immediately starts executing its P(S).
Under the arbitrary delay assumption we
could assume that B has not yet been
placed on the queue, but instead has been
delayed between X and P(S), and hence
we can make A execute P(S) even for
the first interpretation.

Petri nets

In a Petri net, there are a finite
number of nodes, each node being a place
or a transition. There are branches from
places to transitions and from transitions
to places. (We represent a process by a
transition with one incoming branch and
with one out-going branch). At any instant
each place holds an integer • 0. The
places which have branches to (from) a
transition are the input (output) places
of that transition.

At any instant, if every input place
of a transition contains a number m i,
then the transition could fire (but need
not), which results in decrementing the
stored number of each input place by 1
and in incrementing the stored number of
each output place by i. For a compre-
hensive discussion of Petri nets the
reader is referred to [7].

II. A SYNCHRONIZATION PROBLEM

There are 2 Producers, P1 and P2'

2 Consumers, C 1 and C2, and 2 Buffers,

B 1 and B 2 . When Producer Pi is

activated, it produces an item and deposits
it on top of the Buffer, Bi(i = 1,2)

then deactivates itself. When Consumer C.
1

is activated, it gets the bottom item of
the Buffer, Bi(i = 1,2) consumes it and
then deactivates itself. Thus Buffers are
resources, shared by producers and con~
sumers, and each buffer is organized as a
queue. To attempt to consume from an
empty buffer is illegal. Initially each
buffer is empty and producers are in an
inactivate condition.

D vice ~7 --J
B 2

As given in Figure i, C 1 and C 2

communicate with their respective buffers
through a common device X. We add the
constraint, due to the limitations of X,
that at any instant, C 1 and C 2 cannot

be active simultaneously; C 1 has pr~rity

over C2, i.e. if both C 1 and C 2 are

both inactive and buffer B 1 is not empty,

~hen C 2 cannot consume from B 2 (since

C 1 can be activated) at that instant.

Some other similar synchronization
problems are discussed in [5].

III. LIMITATIONS OF PETRI NETS

In this section we want to show that
Petri nets cannot realize the 2 Producer
2 consumer problem.

Definition:

(al, a 2, a n) -< (bl,b 2 b n)

a i -< b i for i = i, ...,n.

Lemma 1 :

iff

Let A be any subset of N n where
N = [0,1,2,...} . If no 2 distinct members
of A are comparable under ~, then A
is a finite set.

Proof: Induction on n

n = i: A could be @ (the empty set) or
[i] where i 6 N. If il, l 2 E N,

then trivially, i I ~ i 2 or

i 2 ~ i I .

Let the Lemma hold for some n e i.
n+l

Let A ~ N , be any set of pairwise
incomparable elements under ~. Let

(al, a2,...,an+ I) E A. For 1 ~ i ~ n+l and

0 ~ j ~ ai, let

Ai, j = [(~i,c2 , ,..,Ci_l, Ci+ 1 Cn+ I) I

(Cl,C 2 ci_ I, J,ci+ 1 Cn+ ~ EA}.

Each such Ai, j

wise incomparable n-tuples. Hence, by
inductive hypothesis, each Ai, j is a

finite set. In addition, for any
< a for some (bl,b2, bn+l)6 A, b i 1

(otherwise (al, a2, ...,an+ 1)

(bl,b 2, ...,bn+ I)) •

Hence #A .< # 1 ~ i ~3 -< n+l Ai, j'#
0 .< j < a.

1

must be a set of pair-

Figure I: 2 Producer 2 Consumer Problem t #B = number of members of set B.

123

Any finite union of finite sets is a finite
set. Hence A is a finite set. Q.E.D.

Thus the following Remark holds.

Remark i: Let Xi, X2,X 3 be any in-

finite sequence of n-tuples of natural
numbers. Then there exist i,j s.t. i~j
and X. ~ X. or X. ~ X..

l 3 3 i

Theorem i: The 2 Producer 2 Consumer prob-
lem cannot be realized by Petri nets.

Proof: If not, let there exist such a
Petri net F. Let there be n places in
the net. n is a finite number. At any
instant, when no transition is firing, the
control state of the net is given by the
n-tuple (al,...,an) where a i gives the

number stored in place i.

Lemma 2: At two different instants
1

and T2' if the corresponding control
states X 1 and X 2 satisfy ~ ~ ~,

then the sequence of transformations under-
gone from ~i can also be achieved from
T 2 •

Proof: Trivial. At instant • if
1

certain transitions fire resulting in
control state X~, then at instant T 2

the same transitions can fire resulting in
control state X~ with X~ ~ X" 2. Apply

this inductively. Q.E.D.
Consider the sequence of activations shown
in Figure 2.

Time Production run of

i ~/ Pl

P1, P2,'P1, P1,. . . ,P11

C 1 --~

Figure 2: An activation Sequence

In this sequence, P1 produces the first

item and C 1 begins to consume this item.

Since the synchronizer F must work for
any relative speeds of Producers and Con-
sumers, we may consider the case where C 1

takes so long in consuming the first item
that P2 may produce an item, followed

by the production of i items by Pl'

(Production run of P1) for arbitrarily

large i. This relation is indicated in
the above diagram by the overlap of C 1

operation with the production sequence
i

P2Pi .

Consider the control states after

each production by Pl in its production

run. We recognize that many control state
transformations may occur after any P1

production and before the next P1 pro-

duction, but for this proof, we may pick
any one of those control states as being
representative. Thus for the production

i
run Pi; we get a sequence of i control

states. Let this sequence be Xi,X2,...,X i.

By Remark i, for sufficiently large i,
we can always find two distinct t I and

t 2 s.t. Xtl ~ Xt2. Observe that the
following activation sequence is valid.

t 1

Pi' P2'rPi ' Pi' " " " ' P1 l

C
1 ~' C1,C I, ...,Ci,C 2

i j

t I

By Lemma 2,

t 2
]

Pi, P2,1Pi, Pi,...,Pi
t 1

C 1 > , 'Ci, Ci,...,Ci, C 2

must be valid too. But the above is
invalid since C 2 gets activated when

B 1 is non-empty if t 2 > t I or C 1 gets

activated when B 1 is empty if t 2 < t I.

Thus we get a contradiction. Q.E.D.

IV. LIMITATIONS OF SEMAPHORE PRIMITIVES

Patil [8] presents a synchronization
problem, which he calls the Cigarette
Smokers' Problem (denoted here by CSP),
and proves that the necessary synchroniza-
tion cannot be achieved with just sema-
phores and the P and V primitives. He
suggests a generalization of P (denoted
here by PG) to include simultaneous

operation over a finite number of sema-
phores; e.g. PG(Si,S2,S3) can get

executed when SI,S2,S 3 a 1 and the

execution decreases each of Si,S2,S 3
by i.

Subsequent to Patil's work, Parnas [6]
observes that Dijkstra allows arrays of
semaphores and using an array of semaphores
he gives a realization of CSP. It is not
clear what types of operations should be
allowed on array index variables. However,
at least the array index variable should
not be allowed to take over any other
function. Hence, we consider the follow-
ing framework:

124

We allow arrays of semaphores,
with the limitation that the total
number of semaphores is finite and
bounded. Thus, each array becomes
finite and bounded; let the maximum
size be q. We also allow a finite
bounded number of array index vari-
ables: Yi,Y2,Y3, ...,ym. We do not

allow any Yi taking a value greater

than q. We place this restriction
to make sure that the array index
variables are used only as array
indexes and not used in other dis-
guised forms.

We allow any assignment statement of
the form Yje f(Yi,Y2,...,Ym), where

f is any function.

Theorem 2: The 2 Producer 2 Consumer
problem cannot be realized with arrays of
semaphores and PG and V primitives.

Proof: If possible, let there exist such
a synchronization control F. We could
assume that each process (Pi, P2,Ci or C 2)

is an instruction. Then the control net
F is composed of the following types of
instructions: PG and V primitives,

array index assignment statements, GOTO'~
and Pi, P2,Ci and C 2. Since there are

no test instructions, the control can be
decomposed into a set of sub-controls,
where each sub-control is a sequence of
non-GOTO instructions or a sequence of
non-GOTO instructions followed by a GOTO
a designated instruction in the sequence.
Initially the point of control is at the
start of each sub-control. In F, let
there be n semaphores, Si,S2,...,Sn,

and m array index variables,
Yi,Y2,...,Ym. At any instant when no

instruction is being executed, the point
of control within each sub-control will be
in between 2 instructions. Note that
there are only a finite number of possible
control point combinations. Let there be
6 sub-controls and for the i-th sub-
control let there be b control points.

l
Then the number of possible control point
combinations = blb2...b6(= K). Denote

these control point combinations by
el, e2,...,e K. At any instant when no

instruction is being executed, the control
state of the net F is given by (e,U,Z)
where e is a control point combination,
U is an m-tuple of values of the m
array index variables and Z is an
n-tuple of values of n semaphore vari-
ables. Let us define a relation
between control states as follows:

(e,U,Z) ~ (e',U',Z') <=> e = e', U = U ~,

Z ~ z'.

Now the proof runs exactly as that of
Theorem i, starting from Lemma 2 (in the

proof of Lemma 2 firing of a transition
should be replaced by execution of an
instruction). Q.E.D.

V. COMMENTS

In the CSP of Patil [8] there are 4
processes, an agent and three smokers,
sitting at a table. One of the smokers
has tobacco, another has cigarette papers,
and the third has matches. Basically the
agent throws 2 items on the table and
communicates through semaphores, to the
agents which 2 items have been placed. The
Smoker with the third item should pick up
those items, make a cigarette and smoke it.
The agent's control net is pre-specified
and the problem is to design the control
for each smoker. The agent is described
(using semaphores S,a,b,c) by:

R a R b R c

ra: P(S) rb: P(S) rc: P(S)

Throw Throw Throw
Wrapper Match Wrapper

& & &
Match Tobacco Tobacco

v(b) v(a~ V(a)
V(C) V(C) V(b)
goto r a goto r b goto r c

Thus the agent throws 2 items and sets 2
semaphores to 1 (initially S = l,
a = b = c = 0).

Let us modify the agemt as follows (using
only semaphores S,a,b)

R a R b R c

ra: P(S) rb: P(S) rc: P(S)

Throw Throw Throw
Wrapper Match Wrapper

& & &

Match Tobacco Tobacco

v(a) V(a) v(a)
v(b) v(a) V(a)
goto r a V(b) V(a)

goto r b V(b)
goto r c

(Initially S = i, a = b = 0).

This agent communicates (through
semaphores a and b) to the Smokers
enough information to indicate which 2
items have been thrown in. A major prob-
lem in the design of smokers will be
information decoding to find which 2 items
have been thrown in. For this agent, there
is no way of designing the Smokers without
(directly or indirectly) testing the sema-
phore a. If the only operations we could
perform on a are PG and V, then

irrespective of the other semaphores,
variables and their operations, the con-
trols of the Smokers cannot be designed.

125

The argument is very simple. Suppose that
when wrapper and Match are thrown in, if
the Smoker with Tobacco can pick them up
(correctly) by following a certain path;
then even when Match and Tobacco are thrown
in, by following exactly the earlier path,
the Smoker with Tobacco can pick them up,
leading to a contradiction. This is a
trivial application of Lemma 2.

We agree with Parnas [6] that it is
unrealistic to fix certain control sections.
In the 2 Producer 2 Consumer problem, we
let the designer have a free hand on every
producer and consumer so that the system
becomes autonomous.

Finally, from our limited experience,
we could perceive that there are dangers
involved in the usage of P's and V's,
perhaps even more than those encountered
when usin 9 GoTo's in sequential programs.
Hansen's L4~ structured approach seems to
be a step in the right direction. We are
presently developing structures for multi-
programming from a different perspective.

ACKNOWLEDGMENTS

Thanks are due to Professor M.J. Flynn
for his many helpful comments. The author
is grateful to Mr. Lee Hoevel for a careful
reading of the manuscript.

REFERENCES

i. P.J. Denning, Third Generation Com-
puter Systems, Computing Surveys,
Vol. 3, 1971, pp. 175-216.

2. E.W. Dijkstra, Cooperating Sequential
Processes, in Programming Languages,
ed. F. Genuys, Academic Press, 1968.

3. N. Habermann, On a solution and a
generalization of the Cigarette
Smokers' Problem, Tech. Report,
Carnegie-Mellon University, August
1972.

4.

5.

6.

P.B. Hansen, A Comparison of Two
Synchronizing Concepts, Acta
Informaticap 1972, pp. 190-199.

S.R. Kosaraju, Limitations of Dijkstr~s
semaphore primitives and Petri nets,
Tech. Report #25~ The Johns Hopkins
University~ Maryland, May 1973.

D.L. Parnas, On a solution to the
Cigarette Smokers' problem (without
conditional statements), Tech. Repor~
Carnegie-Mellon University, July 1972.

7. S.S. Patil, Coordination of Asyn-
chronous Events, Project MAC TR-72,
June 1970.

8. S.S. Patil, Limitations and Capabilit/es
of Dijkstra's Semaphore Primitives for
Coordination among Processes, Project
MAC Memo 57, February 1971.

126

