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ABSTRACT 

Recently various attempts have been 
made to study the limitations of Dijkstr~s 
semaphore primitives for the synchroniza- 
tion problem of cooperating sequential 
processes [3,4,6,8]. Patil [8] proves 
that the semaphores with the P and V 
primitives are not sufficiently powerful. 
He suggests a generalization of the P 
primitive. We prove that certain synchrcri- 
zation problems cannot be realized with the 
above generalization and even with arrays 
of semaphores. We also show that even the 
general Petri nets will not be able to 
handle some synchronization problemsj con- 
tradicting a conjecture of Patil (P.28 
[7]) . 

I. INTRODUCTION 

In general, a synchronization problem 
deals with the problem of achieving a 
required co-ordination between a system 
of coordinating processes. A precise def- 
inition is still lacking. As a first step, 
we advocate that only autonomous systems 
of processes should be considered for 
this problem• If a system of processes 
responds to external processes, then we 
should include those processes also within 
the system. 

Semaphores 

A semaphore is an integer valued 
variable, whose initial value is non- 
negative. The only operations that could 
be performed on semaphores are p and V. 
Each P or V operation is considered 
indivisible. In the literature there 
seems to be a certain ambiguity over the 
semantics of programs written with P and 
V primitives. 

First interpretation (P. 199 [ i]) 

P(S): IS e S-l; if S ~ 0 the ca~er 
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v(s) : 

placem himself in the queue QS' 

enters the waiting state, and 
releases the processor] # 

IS ~ S+i; if S ~ 0 remove 
some process from QS and add 

it to the work queue of the pro- 
cessors]. 

Second interpretation 

P(S): [Can be executed when S > 0 
which results in decrementing 
S by i] 

v(s): [s ~ s+l] 

The first interpretation seems to be con- 
venient for implementation, and the second 
interpretation is easier for analysis. 
Another confusion is when we have a sequence 
of instructions Ii, I2,...Ij,..., whether 

the execution of Ij+ 1 starts immediately 

after the completion of I. or there is 
3 

an arbitrary delay in between. We assume 
arbitrary delays which seems to be the 
general understanding and also very natural 
in asynchronous operation. With this 
assumption, the theoretical distinction 
between the two interpretations disappears. 
For example, consider the following situ- 
ation with S = 0. 

Control A ~ V(S) X 
P(S) Control B ~ P(S) 
• 

B is waiting on the queue for S. As 
soon as A completes its V(S) operation, 
either B or A could execute a P(S) 
under the second interpretation; whereas 
under the first interpretation B is 

+Ix] : X is an indivisible operation. 
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awakened, since it is already on the queue, 
and immediately starts executing its P(S). 
Under the arbitrary delay assumption we 
could assume that B has not yet been 
placed on the queue, but instead has been 
delayed between X and P(S), and hence 
we can make A execute P(S) even for 
the first interpretation. 

Petri nets 

In a Petri net, there are a finite 
number of nodes, each node being a place 
or a transition. There are branches from 
places to transitions and from transitions 
to places. (We represent a process by a 
transition with one incoming branch and 
with one out-going branch). At any instant 
each place holds an integer • 0. The 
places which have branches to (from) a 
transition are the input (output) places 
of that transition. 

At any instant, if every input place 
of a transition contains a number m i, 
then the transition could fire (but need 
not), which results in decrementing the 
stored number of each input place by 1 
and in incrementing the stored number of 
each output place by i. For a compre- 
hensive discussion of Petri nets the 
reader is referred to [7]. 

II. A SYNCHRONIZATION PROBLEM 

There are 2 Producers, P1 and P2' 

2 Consumers, C 1 and C2, and 2 Buffers, 

B 1 and B 2 . When Producer Pi is 

activated, it produces an item and deposits 
it on top of the Buffer, Bi(i = 1,2) 

then deactivates itself. When Consumer C. 
1 

is activated, it gets the bottom item of 
the Buffer, Bi(i = 1,2) consumes it and 
then deactivates itself. Thus Buffers are 
resources, shared by producers and con~ 
sumers, and each buffer is organized as a 
queue. To attempt to consume from an 
empty buffer is illegal. Initially each 
buffer is empty and producers are in an 
inactivate condition. 

D vice  ~7 --J 
B 2 

As given in Figure i, C 1 and C 2 

communicate with their respective buffers 
through a common device X. We add the 
constraint, due to the limitations of X, 
that at any instant, C 1 and C 2 cannot 

be active simultaneously; C 1 has pr~rity 

over C2, i.e. if both C 1 and C 2 are 

both inactive and buffer B 1 is not empty, 

~hen C 2 cannot consume from B 2 (since 

C 1 can be activated) at that instant. 

Some other similar synchronization 
problems are discussed in [5]. 

III. LIMITATIONS OF PETRI NETS 

In this section we want to show that 
Petri nets cannot realize the 2 Producer 
2 consumer problem. 

Definition: 

(al, a 2, .... a n ) -< (bl,b 2 ..... b n) 

a i -< b i for i = i, ...,n. 

Lemma 1 : 

iff 

Let A be any subset of N n where 
N = [0,1,2,...} . If no 2 distinct members 
of A are comparable under ~, then A 
is a finite set. 

Proof: Induction on n 

n = i: A could be @ (the empty set) or 
[i] where i 6 N. If il, l 2 E N, 

then trivially, i I ~ i 2 or 

i 2 ~ i I . 

Let the Lemma hold for some n e i. 
n+l 

Let A ~ N , be any set of pairwise 
incomparable elements under ~. Let 

(al, a2,...,an+ I) E A. For 1 ~ i ~ n+l and 

0 ~ j ~ ai, let 

Ai, j = [ (~i,c2 , ,..,Ci_l, Ci+ 1 ..... Cn+ I) I 

(Cl,C 2 ..... ci_ I, J,ci+ 1 ..... Cn+ ~ EA}. 

Each such Ai, j 

wise incomparable n-tuples. Hence, by 
inductive hypothesis, each Ai, j is a 

finite set. In addition, for any 
< a for some (bl,b2, ..... bn+l)6 A, b i 1 

(otherwise (al, a2, ...,an+ 1 ) 

(bl,b 2, ...,bn+ I)) • 

Hence #A .< # 1 ~ i ~3 -< n+l Ai, j'# 
0 .< j < a. 

1 

must be a set of pair- 

Figure I: 2 Producer 2 Consumer Problem t #B = number of members of set B. 
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Any finite union of finite sets is a finite 
set. Hence A is a finite set. Q.E.D. 

Thus the following Remark holds. 

Remark i: Let Xi, X2,X 3 .... be any in- 

finite sequence of n-tuples of natural 
numbers. Then there exist i,j s.t. i~j 
and X. ~ X. or X. ~ X.. 

l 3 3 i 

Theorem i: The 2 Producer 2 Consumer prob- 
lem cannot be realized by Petri nets. 

Proof: If not, let there exist such a 
Petri net F. Let there be n places in 
the net. n is a finite number. At any 
instant, when no transition is firing, the 
control state of the net is given by the 
n-tuple (al,...,an) where a i gives the 

number stored in place i. 

Lemma 2: At two different instants 
1 

and T2' if the corresponding control 
states X 1 and X 2 satisfy ~ ~ ~, 

then the sequence of transformations under- 
gone from ~i can also be achieved from 
T 2 • 

Proof: Trivial. At instant • if 
1 

certain transitions fire resulting in 
control state X~, then at instant T 2 

the same transitions can fire resulting in 
control state X~ with X~ ~ X" 2. Apply 

this inductively. Q.E.D. 
Consider the sequence of activations shown 
in Figure 2. 

Time Production run of 

i ~/ Pl 

P1, P2,'P1, P1,. . . ,P11 

C 1 --~ 

Figure 2: An activation Sequence 

In this sequence, P1 produces the first 

item and C 1 begins to consume this item. 

Since the synchronizer F must work for 
any relative speeds of Producers and Con- 
sumers, we may consider the case where C 1 

takes so long in consuming the first item 
that P2 may produce an item, followed 

by the production of i items by Pl' 

(Production run of P1 ) for arbitrarily 

large i. This relation is indicated in 
the above diagram by the overlap of C 1 

operation with the production sequence 
i 

P2Pi . 

Consider the control states after 

each production by Pl in its production 

run. We recognize that many control state 
transformations may occur after any P1 

production and before the next P1 pro- 

duction, but for this proof, we may pick 
any one of those control states as being 
representative. Thus for the production 

i 
run Pi; we get a sequence of i control 

states. Let this sequence be Xi,X2,...,X i. 

By Remark i, for sufficiently large i, 
we can always find two distinct t I and 

t 2 s.t. Xtl ~ Xt2. Observe that  the 
following activation sequence is valid. 

t 1 

Pi' P2'rPi ' Pi' " " " ' P1 l 

C 
1 ~' C1,C I, ...,Ci,C 2 

i j 

t I 

By Lemma 2, 

t 2 
] 

Pi, P2,1Pi, Pi,...,Pi 
t 1 

C 1 > , 'Ci, Ci,...,Ci, C 2 

must be valid too. But the above is 
invalid since C 2 gets activated when 

B 1 is non-empty if t 2 > t I or C 1 gets 

activated when B 1 is empty if t 2 < t I. 

Thus we get a contradiction. Q.E.D. 

IV. LIMITATIONS OF SEMAPHORE PRIMITIVES 

Patil [8] presents a synchronization 
problem, which he calls the Cigarette 
Smokers' Problem (denoted here by CSP), 
and proves that the necessary synchroniza- 
tion cannot be achieved with just sema- 
phores and the P and V primitives. He 
suggests a generalization of P (denoted 
here by PG ) to include simultaneous 

operation over a finite number of sema- 
phores; e.g. PG(Si,S2,S3) can get 

executed when SI,S2,S 3 a 1 and the 

execution decreases each of Si,S2,S 3 
by i. 

Subsequent to Patil's work, Parnas [6] 
observes that Dijkstra allows arrays of 
semaphores and using an array of semaphores 
he gives a realization of CSP. It is not 
clear what types of operations should be 
allowed on array index variables. However, 
at least the array index variable should 
not be allowed to take over any other 
function. Hence, we consider the follow- 
ing framework: 
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We allow arrays of semaphores, 
with the limitation that the total 
number of semaphores is finite and 
bounded. Thus, each array becomes 
finite and bounded; let the maximum 
size be q. We also allow a finite 
bounded number of array index vari- 
ables: Yi,Y2,Y3, ...,ym. We do not 

allow any Yi taking a value greater 

than q. We place this restriction 
to make sure that the array index 
variables are used only as array 
indexes and not used in other dis- 
guised forms. 

We allow any assignment statement of 
the form Yje f(Yi,Y2,...,Ym), where 

f is any function. 

Theorem 2: The 2 Producer 2 Consumer 
problem cannot be realized with arrays of 
semaphores and PG and V primitives. 

Proof: If possible, let there exist such 
a synchronization control F. We could 
assume that each process (Pi, P2,Ci or C 2) 

is an instruction. Then the control net 
F is composed of the following types of 
instructions: PG and V primitives, 

array index assignment statements, GOTO'~ 
and Pi, P2,Ci and C 2. Since there are 

no test instructions, the control can be 
decomposed into a set of sub-controls, 
where each sub-control is a sequence of 
non-GOTO instructions or a sequence of 
non-GOTO instructions followed by a GOTO 
a designated instruction in the sequence. 
Initially the point of control is at the 
start of each sub-control. In F, let 
there be n semaphores, Si,S2,...,Sn, 

and m array index variables, 
Yi,Y2,...,Ym. At any instant when no 

instruction is being executed, the point 
of control within each sub-control will be 
in between 2 instructions. Note that 
there are only a finite number of possible 
control point combinations. Let there be 
6 sub-controls and for the i-th sub- 
control let there be b control points. 

l 
Then the number of possible control point 
combinations = blb2...b6(= K). Denote 

these control point combinations by 
el, e2,...,e K. At any instant when no 

instruction is being executed, the control 
state of the net F is given by (e,U,Z) 
where e is a control point combination, 
U is an m-tuple of values of the m 
array index variables and Z is an 
n-tuple of values of n semaphore vari- 
ables. Let us define a relation 
between control states as follows: 

(e,U,Z) ~ (e',U',Z') <=> e = e', U = U ~, 

Z ~ z'. 

Now the proof runs exactly as that of 
Theorem i, starting from Lemma 2 (in the 

proof of Lemma 2 firing of a transition 
should be replaced by execution of an 
instruction). Q.E.D. 

V. COMMENTS 

In the CSP of Patil [8] there are 4 
processes, an agent and three smokers, 
sitting at a table. One of the smokers 
has tobacco, another has cigarette papers, 
and the third has matches. Basically the 
agent throws 2 items on the table and 
communicates through semaphores, to the 
agents which 2 items have been placed. The 
Smoker with the third item should pick up 
those items, make a cigarette and smoke it. 
The agent's control net is pre-specified 
and the problem is to design the control 
for each smoker. The agent is described 
(using semaphores S,a,b,c) by: 

R a R b R c 

ra: P(S) rb: P(S) rc: P(S) 

Throw Throw Throw 
Wrapper Match Wrapper 

& & & 
Match Tobacco Tobacco 

v(b) v(a~ V(a) 
V(C) V(C) V(b) 
goto r a goto r b goto r c 

Thus the agent throws 2 items and sets 2 
semaphores to 1 (initially S = l, 
a = b = c = 0). 

Let us modify the agemt as follows (using 
only semaphores S,a,b) 

R a R b R c 

ra: P(S) rb: P(S) rc: P(S) 

Throw Throw Throw 
Wrapper Match Wrapper 

& & & 

Match Tobacco Tobacco 

v(a) V(a) v(a) 
v(b) v(a) V(a) 
goto r a V(b) V(a) 

goto r b V(b) 
goto r c 

(Initially S = i, a = b = 0). 

This agent communicates (through 
semaphores a and b) to the Smokers 
enough information to indicate which 2 
items have been thrown in. A major prob- 
lem in the design of smokers will be 
information decoding to find which 2 items 
have been thrown in. For this agent, there 
is no way of designing the Smokers without 
(directly or indirectly) testing the sema- 
phore a. If the only operations we could 
perform on a are PG and V, then 

irrespective of the other semaphores, 
variables and their operations, the con- 
trols of the Smokers cannot be designed. 
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The argument is very simple. Suppose that 
when wrapper and Match are thrown in, if 
the Smoker with Tobacco can pick them up 
(correctly) by following a certain path; 
then even when Match and Tobacco are thrown 
in, by following exactly the earlier path, 
the Smoker with Tobacco can pick them up, 
leading to a contradiction. This is a 
trivial application of Lemma 2. 

We agree with Parnas [6] that it is 
unrealistic to fix certain control sections. 
In the 2 Producer 2 Consumer problem, we 
let the designer have a free hand on every 
producer and consumer so that the system 
becomes autonomous. 

Finally, from our limited experience, 
we could perceive that there are dangers 
involved in the usage of P's and V's, 
perhaps even more than those encountered 
when usin 9 GoTo's in sequential programs. 
Hansen's L4~ structured approach seems to 
be a step in the right direction. We are 
presently developing structures for multi- 
programming from a different perspective. 
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