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This paper has two objectives: first, to set the context 
for the two ' companion papers in these proceedings, and 
second to discuss the methodology used in the implementation 
and our experience with it. To fulfill the first objective we 
first br ief ly discuss the hardware environment on which Hydra 
was implemented, then discuss the philosophy on which the 
system is based, and finally exhibit some of the ways in which 
the philosophy is instantiated. The final section discusses the 
construction methodology. 

2. The Hardware Context 

C.mmp is organized as a canonical multiprocessor 
computer system; it consists of a number of equal, 
asynchronous central processors (Pc's) that share a large 
primary memory. C.mmp differs from earlier multiprocessors 
such as the Burroughs D825, IBM 360/67, Honeywell 645 
(Multics), etc. in two essential respects: 

1. It is designed to have up to 16 Pc's (presently 
there are 6) while other multiprocessors usually 
have no more than 2. 

2. It is constructed with minicomputer Pc's (DEC 
PDP-1Vs [DEC73]) rather than the larger (32 to 
.48 bits/word) Pc's used in the other 
multiprocessors. 

In other words, the effective use of C.mmp requires that 
we find and exploit a much higher degree of parallelism than 
has been needed by other multiprocessors in the past. The 
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Figure I 
only other current multiprocessor comparable to C.mmp is the 
1.4 Pc Pluribus computer system at BBN [Hea73]. To date 
Pluribus has been successfully applied to the task of digital 
communications; it remains to be seen how well Pluribus can be 
applied to a wider range of applications. 

The C.mmp computer system is illustrated in figure L As 
may be seen, the principal components are 16 modules of 
shared memory, Mp(0:15); a 16 x 16 switch, Stop; 16 
processors, Pc(0:15); address relocation hardware, Dmap, 
associated with each processor; and an interprocessor bus 
with special devices attached to it (K.clock, K.halt, etc.). 

It is crucial to an understanding of C.mmp to appreciate 
that, from the outset, it was envisioned as a distributed 
system. All components were envisioned as a pool of 
resources to be shared among whatever tasks were to be 
done. This was to be (is) true of processors, I/O, and memory 
singly and in combination. There was to be no master-slave 
relation between the processors, for example, and any process 
(user job) was to be able to execute on any processor at any 
instant. 
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Two features of the hardware organization significantly 
impact the operating system structure and thus are discussed 
in somewhat more detail: (a) the memory address translation 
(relocation), and (b) the interprocessor communication 
mechanism. 

2.1 Memory Mapping and Relocation 

Probably the greatest problem in building a large 
computing system from minicomputers is their small address 
space. In C.mmp we must be able to address several million 
bytes of primary memory from the processors. The basic 
PDP-11 architecture, on the other hand, is only capable of 
generating 16 bit addresses. Although the processor (i.e., 
programs operating on it) may generate only a 16 bit address, 
the Unibus supports an 18 bit address, and the shared memory 
uses a 25 bit address. Somewhat arbitrarily we chose to 
divide these address spaces into 8K-byte units called pages. 
Thus processor generated addresses are divided into 8 pages, 
Unibus addresses are divided into 32 pages, and the shared 
memory is divided into 4096 pages. Recall that the processor 
generates a 16 bit address but that 18 bits are present on the 
Unibus. As shown in figure II, the two extra bits are obtained 
from the Brogram status register (PS) in the processor. As we 
shall see in a moment, these bits may not be altered by a user 
program. Thus user programs are actually bound to operate 
within the eight pages described by a subset of the relocation 
registers. Such a subset is called a space and is named by the 
two bits, e.g. '00' or '11' space. 

The address mapping registers and PS register are 
themselves located in the peripheral page and therefore can 
only be accessed by a process in the '11' space (i.e. a process 
executing with the PS bits 8 and 9 set to '11'). Thus a user 
program cannot directly alter the address mapping. Operating 
system operations are provided, however, so that after 
appropriate validation, the user may manipulate it. 

Each relocation register also contains a number of 
control and status bits: 

The non-existent memory ~ can be set by the 
operating system to prevent access to shared 
memory through the register. This permits the 
system to place a small user job in the machine 
without allocating a full 64K byte address space. 

The write protects ~ when set, permits read 
cycles to proceed through the register while 
blocking write cycles. This feature can be used to 
guarantee the integrity of reentrant code. 

The written into ('dirty') b~ is an indicator which 
flags write cycles through a register. This 
provides an inexpensive mechanism to facilitate 
paging out only those pages which have been 
changed. 

2.2 The Interprocessor Communication Mechanism 

Interprocessor communciation is an important 
consideration in controlling a multiprocessor. Furthermore, in a 
ful ly distributed multiprocessor it is necessary for each 
processor to control these functions on every other processor. 
This control is provided by an interprocessor bus, a controller 
for it, and interfaces to it (see Figure I). 
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Figure I[ 

The interface allows a processor to evoke a certain 
function on any subset of the processors, including itself, by 
simply 'ORing' a mask into the interface register associated 
with that function. The interface currently contains six such 
registers, one each for HALT, START, CONTINUE and three for 
dif ferent levels of interruption. Each of these function 
registers is 16 bits wide. Setting the iT[th] bit of the register 
(to one) associated with one of the functions will evoke that 
function on the ith processor. Thus, for example, moving a 
mask of all l 's into the halt register will stop the entire 
machine. In addition to these functions, the bus provides other 
facilities to the processors; such as a (per processor) 
programmable interval timer and a 56-bit, one-microsecond 
resolution, time-of-day clock. 

3. The System Philosophy 

The basic philosophy upon which the specific Hydra 
mechanisms rest is a desire to allow nearly all of the facilities 
one normally associates with an operating system to be built 
as "normal" user programs. This central goal suggests that at 
the heart of the system one should build a collection of basic, 
or "kernel", mechanisms of "universal applicability" --  a set 
from which arbitrary user-visible operating system facilities 
can be conveniently, flexibly, efficiently, reliably, and quickly 
constructed. Moreover, lest the flexibility be constrained at 
any instant, it should be possible for an arbitrary number of 
systems created from these mechanisms to co-exist 
simultaneously. 

This is obviously a tall order. Nevertheless, Hydra is an 
attempt to provide just such a set. Whether or not the 
particular Hydra mechanisms satisfy these criteria and whether 
or not they form the best set, are, of course, still open 
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questions. The answers will come, if at all, only after 
extensive use. 

We can easily rationalize two properties that the kernel 
mechanisms must possess: (1) protection and (2) no policy. 
The Hydra mechanisms to support these properties are 
discussed in two companion papers; here we focus only on the 
rationale for them. Consider for the, moment two common 
descriptions of the purpose of an operating system: 

1) An operating system provides a "virtual 
machine" which is more hospitable than the base 
hardware for two reasons: (a) it makes available 
certain "virtual resources" such as files, 
directories, virtual memory, etc., absent from the 
base hardware. (b) It makes certain unpleasant 
hardware features, such as interrupts, from the 
user and maps them into more acceptable ones, 
such as P-V synchronization primitives. 

2) An operating system manages the physical 
resources of the computer, such as primary 
memory, processor, channels, etc. so as to 
improve their utilization. 

Even though these descriptions are quite different they 
are not incompatible --  they merely express two quite 
dif ferent views of what is a single object with multiple goals. 

From the first of these descriptions we see that an 
individual (program) must be able to behave as though it is 
running in isolation; that is, as though it has exclusive access 
to the machine. In practice, of course, we relax this slightly by 
saying ',except for possible differences in real-time behavior". 
With this exception, however, we see that a uniform 
requirement of all "operating systems" is that they provide 
protection, in our case, since operating systems are 
themselves user programs, the only candidate for providing 
the necessary protection is the kernel. 

From the second description we derive a negative 
criterion on the kernel mechanisms -- namely that they should 
not impose a policy on the way in which (physical) resources 
are used. If the kernel mechaisms were to do this they would 
preempt the possibility of specifying these at the user level --  
and hence preclude an important dimension of operating 
system variation. We refer to this negative criterion as the 
principle of "policy/mechanism separation'; Brinch Hansen 
[Bri70] has made cogent arguments for this separation. 

The fact that the kernel should provide protection but 
should not define resource policies does not of itself provide 
sufficient information on which to base a design; it merely 
specifies some properties that the design must have. To 
develop the appropriate basis for the design we choose to 
turn away from traditional operating system design 
considerations and to look instead at some of the more recent 
results of "structured programming". 

3.1 Program Structuring 

It is unfortunate that the term "structured programming" 
has too often been equated with "goto-less programming" or 
"top-down design". Far more central to the issue is the 
concept of "abstraction". Several authors have noted the close 
relation between many programming abstractions and the 
concept of "type" as it appears in programming languages 
[DDH74,Bri73,Wu174b]. Specifically, the concept of a "class" in 

Simula '67 [Dah66] and its extension to "monitors" 
[Hoa74,Bri75], "clusters" [Lis74], and "forms" [Wu174b] seems 
especially well suited to expressing these abstractions. A 
class in Simula defines an abstract data type by specifying 
both an underlying storage structure and a set of operations 
which operate on it. 2 Thus, for example, the abstract concept 
of a set of integers might be introduced into a language by a 
definition of the form 3 

type intset = 
begin 

va__E a: array[t:100] of integer, n: integer; 
2P_ union(u,v: intset) returns(intset); begin ... enid" 

intersect(u,v: intset) returns(intset)~ begin ... end; 
end; 

Such a definition is intended to describe how any 
particular variable of type intset is to be represented and how 
operations on this type of variable are to be performed. Thus 
the declaration "vat a: array[l:100] of. integer, n: integer;" 
defines how storage is to be allocated for each variable of 
type intset. The operator definit~ns, e.g. that for "union', 
define how such variables are manipulated. An important 
p rope r t y  of such definitions is that all the representational 
information is localized and "hidden" [Par72a,Par72b,Par72c] in 
the type definition; the only way to manipulate variables of a 
defined type is by invoking the operations defined in the type 
definition. 

After having made such a definition, the programmer 
may wri te such things as declarations of variables of type 
intset and statements which operate on these sets, e.g. 

var a,b,c: intset; 
a := union(b,c); 

This style of programming captures the notion of 
abstraction because it effectively separates the application of 
the abstract "primitives" from the details of their 
implementation. The programmer, working at a level where 
intsets are an appropriate medium of expression, need never 
concern himself with the details of how they are represented 
or manipulated. Conversely, the implementor of the realization 
of the type intset may freely alter that realization (to improve 
efficiency, for example) without concerning himself with the 
details of how it is used, so long as he preserves the 
functional properties of the operations. 

It is not our purpose here to advocate a particular 
approach to structuring programs. However, the brief 
description given above is the model on which Hydra is based. 
Except for a slight change in terminology, extensions to 
provide protection, and a more dynamic definition of types 
than is common in programming languages, the Hydra kernel 
mechanisms were chosen to support this model. The same 
structuring philosophy is also used in the implementation of 
the system. 

2. The definition of a data type in terms of both its 
representation and the operations on it, is called an 
"extensive" definition; an "intensive" definition is one in which 
only the objects of the given type are defined. 

3. We have purposely chosen a neutral syntax whose meaning 
should be clear; it is not Simula '67 or any other specific 
language. 
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Earlier in this discussion we used the phrase "virtual 
resources" to describe some of the facilities provided by an 
operating system (e.g. files). Notice that this phrase is 
essentially identical to the word "type" as used in the 
immediately preceding discussion. A virtual resource (e.g. file, 
directory, semaphore, ...) is an abstract concept with a set of 
operations defined on it (e.g. read, write, append, open, close, 
...). Moreover, the virtual resource has some realization in 
terms of more primitive concepts (e.g. disk segments). Just as 
with well-structured programs, we want the user of the file 
system to be unconcerned with the details of its 
implementation. Conversely, we want the implementor of the 
file system to focus on the issues related to that specific 
realization without concern for the details of the idiosyncratic 
use of a particular file. 

Without yet concerning ourselves with the details of the 
Hydra mechanisms, we proceed by analogy with the 
programming language model and list further properties w h i c h  

these mechanisms must have (the first two are copied from the 
earlier discussion for completeness): 

- protection 
- policy/mechanism separation 
- creation of new kinds of virtual resources 

(new types) 
- specification of the representation of, and the 

operations on a virtual resource (type) 
- creation of instances of a resource (type) 
- application of operations to an instance of a 

resource (type) 
- certain "generic" operations, e.g. "storing", 

which are applicable to all resources (types) 

3 .2  The  Protect ion M e c h a n i s m  

In the sequel we shall often use the phrase "subsystem" 
when speaking of operating system facilities; it wilt mean 
essentially the same thing as "type definition" in the previous 
discussion. That is, a subsystem is a collection of information 
which specifies the representation of a virtual resource (type) 
and the nature of the implementation of various operations on 
that type of resource. All knowledge about these 
representational and operational details are contained and 
"hidden" within the subsystem. In those cases where resource 
allocation (policy) issues are involved, these policies are also 
embedded in the subsystem. Global knowledge about a 
specific type of virtual resource is limited to that supplied in 
the external specifications of the subsystem which implements 
that resource. Manipulation of the representation of a 
resource is restricted by the protection mechanism to only 
that code which defines the operations within a subsystem. 

At this point we can pose a question about the 
protection structure of the system which we purposely 
avoided previously, namely "what should be protected and 
against what"? This apparently simple question is complicated 
by two issues; one endemic to operating systems, the other 
arising from the primary goal of Hydra. 

First,. we recognize that sharing is as important as 
protection. That is, we don't really want complete isolation of 
the virtual machines seen by various users. Users want to 
selectively share files, pages, directories, semaphores, or any 
of the other virtual resources provided to them. This is true 
in any "computing util ity" [Gra68], but especially so in a 

multiprocessor where a single user will wish to divide his job 
into parallel cooperating processes and share resources 
between these processes. Second, because we wish to 
provide virtual resources through user-level programs, we 
don't know a_ priori what kinds of resources will exist. Hence 
we don't know what sorts of things will need to be protected, 
or what sorts of access should be granted (or inhibited) to 
them. 

Both of these questions can be answered in terms of the 
model posited above. The objects to be protected are 
instances of virtual resources. Since we shall insist that only 
the operations defined to operate on a type may manipulate 
the representation of objects of that type, we shall provide 
protection against the application of those operations to 
instances of that type. Thus, for example, suppose type 'file', 
with associated operations 'read', 'write', 'append', 'open', etc. 
has been defined. The protection mechanism will allow 
application of, for example, the 'write' operation to specific 
instances of files to be selectively granted or inhibited. 
(Clearly, similar protection must be (and is) provided against 
application of the generic operations provided by the kernel, 
e.g. 'store'.) 

The "capability" based protection mechanisms 
[Den66,Lam69,Fab74, GD72] are ideal for supporting the 
philosophy espoused above. With two extensions these 
mechanisms were adopted for Hydra. The Hydra version of 
capability protection is discussed in [Wu174a] and is further 
elaborated in the companion paper [CJ75]. It is desirable, 
however, to mention here the two extensions and their relation 
to the previous discussion. 

(a) Capabilities in Objects: In order to implement 
new abstractions, the representation of these 
abstractions must be expressed in terms of extant 
object types, and the operations on the new 
abstraction must be expressed in terms of the 
operations of the representing objects. |n the 
general case the representing objects will be 
arbitrary abstractions realized in terms of yet 
further abstract types. To support this Hydra 
allows an object to be represented in terms of 
both simple data and capabilities (protected 
references) for other objects. 

(b) Rights Amplification: The operations provided 
by a subsystem, in general, may require quite 
different accesses to an object than those 
required by the user of the abstraction. In order 
to achieve the goal that representational 
information should be 'hidden', and thus that there 
should be operations which the subsystem can 
perform but users cannot, we provided a 
mechanism for expanding the rights to an object 
when a subsystem is invoked. 

3 .3  Summary of t h e  P h i l o s o p h y  

The basic philosophy on which the design of Hydra rests 
is essentially the admission that its designers were incapable 
of anticipating all of the ways in which it might be used. Thus 
there has been a conscious attempt to permit almost all of the 
functions normally associated with an operating system to be 
(re)defined by the motivated user -- both in terms of the 
facilities provided and the policies which govern the use of the 
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resources of the system. As a corollary of this philosophy, 
Hydra attempts to preempt as few resources and modes of 
using them as possible. 

There appear to be limits beyond which this philosophy 
cannot be pushed and still permit simultaneous access by 
competing users. Thus, for example, Hydra defines a basic 
protection mechanism which must be used by all. We have 
chosen a capability mechanism because of its close relation to 
what we believe to be good program structuring principles. 
Although, for example, some user may define an authority- 
based file protection mechanism on top of the capability 
scheme provided by Hydra, he can never be totally unaware of 
the underlying capability-based protection mechanism. Thus 
there are limits on the variability possible within the Hydra 
scheme; we did not try to provide a "virtual machine" identical 
to the C.rnmp hardware. 

There are also limits placed on the users with respect to 
the policies which may be defined to govern resource 
util ization. Both for protection and efficiency reasons, limits 
a r e  placed on the policies which may be defined by the user 
(see [Lev75]). 

Within these limitations however, we believe, and our 
early experience corroborates, that usel"s will be able to 
define a broad spectrum of facilities and policies. 

4. The Construction Methodology 

The previous sections have dealt with the hardware and 
philosophic context in which the Hydra design was done. In 
this section we shall focus on the approach to the detailed 
design and implementation and summarize some of our 
experiences. 

4.1 Stages in the Design 

Perhaps the earliest major design decision was the 
choice of the kernel approach. To determine the precise set 
of primitives to include in the kernel, we concentrated heavily 
on the "virtual machine" Hydra should provide. Since we 
wished to provide maximum flexibility in  the use of the 
rnultiprocessor facilities, we emphasized the  notion of 
protected access to resources, from which evolved the 
abstracted resource (object), access control mechanism 
(capability), and protected environment (LNS!. Object types 
and rights amplification supported the subsystem concept, 
which we viewed as the key idea in construction of operating 
system facilities outside the kernel. 

Once the important kernel primitives had been 
postulated, we turned to the task of designing selected 
subsystems (e.g. directory). This initial "user system" design 
would, we hoped, expose the shortcomings of the kernel 
primitives and permit us to iterate the kernel design before 
implementation proceeded too far. In fact, several iterations 
occurred and at least one more is presently planned. It should 
be noted, however, that much of the kernel and subsystem 
design could and did proceed in parallel. Furthermore, since 
not all of the kernel facilities were required by these initial 
user subsystems design of these additional primitives could 
also occur in parallel. In fact, the individuals within the 
development group worked as both designers and 

implementors, with some implementing one part of Hydra while 
designing another. The feasibility of this overlapping derives 
from the modular decomposition approach, to be discussed 
next. However, it should be emphasized here that the stages 
in the system design were therefore not strictly sequential in 
time. Figure HI presents a time-line of the construction of 
major system components. 
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4.2 The Decomposition Strategy 

The subsystem notion is pervasive in Hydra and extends 
to the implementation of the kernel. In the early phases of the 
implementation, when the subsystem concept was a central 
concern, we expended considerable effort to decompose the 
kernel into a set of carefully-specified modules. We were 
strongly influenced by the work of Parnas [Par72b], but did 
not, for reasons to be discussed later, adopt the specification 
technique he proposes. We did, however, establish some rules 
for module construction, which might be regarded as informally 
defining our notion of "module"; these are a subset of the 
Parnas criteria: 

1) A module performs a well-defined set of 
actions, and specifies the necessary conditions for 
successful operation of those actions. 

2) The actions of a module are made available to 
other modules as functions, and these functions 
constitute the only access to the ser.vices of the 
module. In particular, the data manipulated by the 
module is only made available to other modules by 
function invocations; other modules have no direct 
knowledge of the location or representation of 
any data used by the module to implement its 
actions. 
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3) Modules detect conditions which violate their 
specifications and prevent execution of functions 
when the necessary conditions are not met. 

The first two rules obviously relate closely to the 
subsystem concept and follow directly from the earlier 
discussion. The third rule stresses reliable operation of 
modules so that a local failure will frequently be detected 
before it can spread and cause serious disruption [Par72d]. 

Although these module specifications were produced in 
detailed written form for only a few modules, the techniques 
served as the basis for the entire Hydra implementation. We 
believe that the localization of data structure manipulations 
and the careful encapsulation of functions as module actions 
strongly encourage both coherent decomposition and flexible 
maintenance of the system software. We did not follow the 
rigid regime of formal specification advocated by Parnas in 
part because of a desire to "get on with it", but also because 
our early attempts to follow this regime were frustrated by 
several problems: 

I) Recursive structures. Recursive structures 
commonly cause trouble in any hierarchical 
decomposition, because one is essentially forced 
to produce simultaneous specifications for two or 
more modules. In Hydra, this situation arises, for 
example, in connection with the protection data 
base. A capability references an object, which in 
turn contains a list of capabilities. It is difficult to 
separate objects, capabilitiesp and C-lists in a 
formal specification in which this recursive 
relationship obtains. 

2) Evolution. All operating systems, even the most 
carefully designed ones, evolve. A precise, formal 
specification has difficulty accommodating such 
perturbations; informal ones are less brittle. Our 
experience suggests that the effort necessary to 
update formal specifications (compared to informal 
ones) is often not expended, 4 leaving only the 
original, obsolete ones. These are undoubtedly 
worse than up-to-date, informal specifications. 

3) Context conditions. Not all calling conditions 
are easily expressed as restrictions °n the 
parameters; some are best described as limitations 
on the context in which the functions may be 
invoked. For example, certain routines may only 
be callable inside a critical section, or may not be 
executed as part of an interrupt servicing 
operation. Formal descriptions of such conditions 
tend to be represented in terms of "state 
funntions" which are constructed to capture 
context for which no explicit data representation 
is available. $uchdevices are of obvious use if 
the specifications are to be subjected to 
mechanical verification. Conversely, if the 
specifications are intended to guide the 
implementation and debugging processes, less 
formal and more intuitive context conditions are 
preferable. 

4. This results at least in part from the nature of our 
research environment. 

It should be noted that even an informal specification 
technique requires descipline. If one adopts the formal 
specification approach and fails to follow through, at least a 
partial specification results. With our technique, a lack of 
discipline results in no useful specification at all. Where we 
failed to complete specification, we later encountered trouble 
in debugging because some case had been overlooked as a 
direct consequence of our informal approach. Thus this 
technique has its risks. 

It is important that the source language version of the 
implementation reflect the module decomposition of the design. 
To do this most effectively it would have been ideal if the 
implementation language had provided a type definition 
mechanism similar to the $imula "class" concept (see section 
3.1); unfortunately such a mechanism was not available to us 
and the expense of designing and implementing a new language 
did not seem justified. Thus we set out to achieve the same 
effect by imposing an appropriate discipline upon our coding 
practice. 

In particular, each abstraction (module) is implemented 
as (at least) two files. One of these files defines the data 
structures and routines which implement the operations of the 
module. This file may be (is) compiled separately. The second 
file contains the declarations necessary for another module to 
create instances of the abstraction and apply the operations, 
functions, defined in the first file to these instances of the 
abstraction. This second file is not, indeed cannot be, compiled 
separately. Rather, upon request it is automatically included as 
part of the compilation of other modules which use the 
abstraction. This rather simple discipline achieves two goals: 
First, it localizes all of the code dealing with a particular 
abstraction to a single module, usually two files, thus making 
changes relatively easy. Second, it "hides" all the 
representational decisions in these same files; the only access 
to the abstraction is through the interfaces declared in the 
second file. 

(Note, however, that the interfaces are often macros so 
that the ultimate object code is often distributed quite 
dif ferently than is apparent from the source code. This is 
essential to the efficiency of the system.) 

4.3 Stages in the Construction 

Construction of a complex system is a difficult task, even 
with a carefully specified design. We can summarize the 
lessons we learned in a single maxim: "Use the best tools you 
can reasonably obtain. If the tools aren't available when you 
start, build them first." This is another of those "motherhood" 
st'atements and is difficult to dispute. When one is actually in 
the throes of implementation, however, it is easy to ignore. 
This section indicates the cases in which we heeded this rule 
and reaped the benefits, and points up the times when we 
ignored it and paid the price. 

The task of system construction was complicated by the 
embryonic state of our eventual multiprocessor configurationp 
and the instability of the hardware available. (See Figure IV.) 
We needed a more stable tool than C.mmp on which to 
establish a base of development operations. Happily, we had a 
PDP-iO system available, and we used it extensively for 
programming Hydra and suppport software. 
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Having established the hardware to be used, we next 
selected an implementation language. The arguments for 
building systems in higher-level languages are well-known; we 
will not repeat them here. We chose BLISS [Wul71]. 

Our next problem was the near impossibility of 
debugging Hydra itself, because of the la~k of adequate tools. 
We therefore chose to implement the initial modules of the 
kernel (and several subsystems) in a compatible subset of 
Bliss/lO (for the PDP-IO) and Bliss/11 (for PDP-]I's), and to 
run and debug these modules on the PDP-]O. Because we 
were concerned with synchronization errors, the PDP-IO 
version was designed to switch (simulated) processors before 
and after every critical section) thereby increasing the 
probabil i ty of actually encountering a latent synchronization 
error. This facility enabled us to detect a number of subtle 
mistakes. Clearly, we could not detect all the timing- 
dependent problems using this approach, but the vast majority 
of other logical errors were found and corrected. 

To facilitate check-out, we also incorporated a 
debugging mechanism which allowed us to control the 
execution of the several "processors", start and stop selected 
processes, inspect process state, and trace major actions. 
(This mechanism was later developed into a sophisticated) 
BLiSS-oriented debugger called SIXI2.) it required 
approximately four weeks of debugging to get the entire 
"basic" kernel operational on the PDP-IO. 

When the initial C.mmp configuration came up, we 
recompiled the kernel using BLISS/I 1 and brought the system 
over to C.mmp. The only new software necessary was 
machine-dependent initialization, and over half the debugging 
time (at this point) on C.mmp was expended on these 
procedures. After that, the rest moved swiftly - the entire 
PDP-10 kernel was transferred to C.mmp and operational in 
about two weeks, with debugging tools little more 
sophisticated than the console switches! However, we now 
realized a major error in our implementation method - we had 
no tools to aid our further debugging on C.mmp. Work then 
began in earnest on the construction of $iX12 for C.mmp, but 
kernel development was decidedly impeded until it was 
available (a period of about two months). 
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4 .4  Produc t iv i t y  

Although we would like to present some conclusive data 
demonstrating the success of our design and implementation 
approaches, the figures we have are only indicators. It is a 
difficult task to measure the progress of a research project in 
quantitative terms, and a still harder one to compare it to the 
progress of other projects. After all, what is a reasonable 
measure of productivity? Perhaps the most obvious choice is 
rate of production of debugged code, say in instructions per 
man-day. This is a common metric, but it is difficult to apply 
fairly. We may have trouble identifying what parts of the 
system legitimately may be included in the instruction total, 
and we may be unable to obtain an accurate measure of the 
human effort required to produce the final product. Before 
presenting the productivity statistics for the Hydra project, we 
must examine these sources of error in more detail. 

We indicated earlier that the system construction 
process often may (should) involve the production of software 
tools. These support facilities may require substantial design 
and programming effort by themselves, so one may legitimately 
ask whether such code should be included in the final product 
total. Plausible arguments exist supporting both sides of this 
question, but it is difficult to compare projects if a consistent 
accounting method is not used. For the figures reported below 
we included only the code in the end-product; support 
software, intermediate versions, stopgap kludges, and 
debugging aids were no___t, counted. 

Similar questions may be raised concerning the amount 
of effort  expended. We chose to include all design and 
implementation effort until system "stabilization" (see next 
paragraph), including that required to build tools, intermediate 
versions, etc. The notion is to compute the total human effort 
required to produce a "finished" product and compare that 
ratio with other research system-building projects. This 
method of comparison ignores differences in projects due to 
methodology; only the end-result is important. Thus it is 
essential to establish exactly what constitutes that "finished 
product". 

When is a system complete? Certainly, not when it first 
turns over; but how about when users first begin to work on 
it? Should we include the time until it "stabilizes", whatever 
that may mean? Do we keep the meter running until all bugs 
which significantly impact user productivity are removed? 
These moments in the system's history are difficult or 
impossible to pinpoint, and they may be widely separated in 
time. Thus considerable subjective judgment is involved in 
establishing the duration of the system construction period. 
For Hydra we attempted to choose a "stabilization point" 
identifying a time when the system was available to users and 
capable of performing useful work on their behalf. It still 
crashed relatively often and was far from stable in the s e n s e  

that the term might be applied to a commercial system. 
Nevertheless, software construction on the initial version of 
the system was complete, and enough bugs had been fixed that 
the system was minimally useful. 

We hope that we have chosen a rather conservative 
measure of productivity. We include the time to produce tools 
and other support software, but exclude these items from the 
finished product. We believe that this still yields a fair basis 
for comparison, and, in a way, provides an indication of the 
value of producing such "secondary" software. On the other 
hand, all productivity figures we have are based on estimates, 
and thus must be interpreted with care. With these caveats in 
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mind, let us turn to the data on Hydra. Our productivity at 
several points in the development is summarized in the 
fol lowing table (the "checkpoints" are noted in Figure IV): 

Date Instructions Man-Months 
(x 1000) 

Checkpoint 1 12 28 
Checkpoint 2 21 49 
Checkpoint 3 34 73 
Checkpoint 4 42 89 
Checkpoint 5 53 115 

The overall productivity at the fifth checkpoint is an 
average of 21 instructions per man-day. A commonly accepted 
"industry average" for complex systems is 5-8 instructions per 
man-day, although it has been significantly lower for some 
projects [Wol74]. ]n an informal survey of eight research 
operating systems we found an average productivity of eight 
instructions per man-day --  measured at roughly the same 
state as Hydra's checkpoint 5. 

A number of explanations for the productivity of the 
Hydra group might be advanced; we will examine these in more 
detail below. However, two obvious ones are the use of a 
high-level language and the decomposition methodology used. 
We believe the latter to be the more important; in effect we 
believe the decomposition methodology has decreased the 
complexity of the task to a point where the higher productivity 
rate is common (see [Met71]). To support this belief let us 
consider the hypothesis that it is the use of the high-level 
language which caused the productivity increase. 

It is widely believed that the number of lines of code 
wr i t ten per man-day is independent of the language in which it 
is written. (Although this belief is open to challenge, let us 
accept it for a moment; further corroboration of the conclusion 
we shall draw using it will follow.) From this premise one must 
assume that the Bliss/11 "expansion factor', object instructions 
generated per line of source code, is in the range 2.6-4.5 to 
account for the observed productivity (i.e. 2.6x8 ~ 4.2x5 ~ 21). 
However, in a sample of over 43,000 lines of source code the 
expansion factor was observed to be less than 1.5. In other 
words, the observed productivity in terms of souce lines per 
man-day is in excess of 14. Under the assumption above this 
can only be accounted for by a reduction in the complexity of 
the task - -  that is, by the decomposition methodology. 

(It should be noted at this point that the low expansion 
factor of Bliss/t 1 is no..t, the result of Bliss being a "low level" 
language. Excepting formatted i/o, which is uncommon in an 
operating system, Bliss programs are generally line-for-line 
comparable with, for example, PL/L The low expansion rate is 
almost exclusively due to the optimization quality of the 
Bl iss/ t  t compiler [Wu175a].) 

The instructions/man-day metric is not an altogether 
satisfying measure of the productivity in a large software 
effort  - -  partially for the difficulties in obtaining comparable 
figures, but also because one suspects that the number may 
change during the history of the system's development, 
maintenance, and use. Specifically, one suspects that after the 
inevitable enhancement and repair cycle, the effort which will 
be expended per new instruction, or per incremental increase 
in size, will increase. Saying the same thing another way, it 
seems reasonable that if one computes the productivity as the 
ration of the total number of instructions 'in the system' to the 
total effort expended, as we have, this ratio should decrease 
with time. 

/ 
Belady and Lehman [Be171] have built a macro-econom~:~ 

model of this phenomenon. They derive an expression for Me 
total work invested in a system at its ith release, wh~h is of 
the form I / ~  

W i = w(i) + C'2 F(i) 

where 

w(i) is ell the effort related to new features in the 
ith release, and to general overhead, except for 
that effort explicitly acconted for in the second 
term. 

C is the average effort related to the correlation 
between simultaneous activities and/or between 
current ones and previous components of the 
system. 

F(i) is a complex expression in their presentation 
and accounts for the number of simultaneous 
activities, the extent to which the total system is 
complete and correct, the positive effects of 
increasing familiarity with the system, and so on. 

The complete model as presented in [Be171] is 
considerably more elaborate than the expression given above. 
For our purposes, however, it is the form of the expression 
rather than its details which are important. It predicts that the 
effort  invested is exponentially related to time. This result has 
both frightening implications and a certain intuitive appeal; that 
is, it predicts the observed behavior of many extant systems. 

Figure V plots the size vs. effort at five points during 
the development of Hydra. Each point represents the size and 
effort (measured as discussed above) measured at an 
identifiable 'stable' point; that is, a point at which some portion 
of the system was complete and 'operational' in the sense that 
it rel iably performed its intended function. 
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As is obvious, the productivity rate has been 
approximately linear. It has not required more effort to 
prodt:me the later modules than the earlier ones. This result is 
somewha~sutl:~rising, even to us, although we are certainly 
pleased by it. It seems to be at variance with the Belady- 
Lehman model. 

Several things might explain the discrepancy between 
the predicted and observed behavior. First, the model may not 
be applicable. The model was devised to predict the effort on 
successive releases of a 'finished' system, while our own graph 
displays development effort. There may be some truth to this, 
but because of the style of our development - in which design, 
coding, debugging, documentation, redesign, recoding, and so 
on were carried on in parallel on separate portions of the 
system --  the major assumptions of the model seem to apply 
quite well. Specifically, for example, the period covered by 
the graph includes two substantial design and coding iterations 
on the kernel interface module. 

Second, the system may simply not be large enough to 
exhibit the predicted behavior --  but then this simply becomes 
an argument for the kernel approach. 

Third, the model may in fact be applicable, but the 
values of C and/or F(i) are small enough that the second term 
does not dominate, it would be nice if this were true, since it 
would constitute direct evidence that the methodology 
significantly reduces the intellectual complexity of the task. 

In reality, of course, probably all these factors, and 
others, are responsible for the observed behavior. We don't 
know the relative contribution of each of the factors, but we 
believe the methodology to be an important influence. 

The fact that most user-visible operating systems are 
built as user-level programs, which can be viewed as an 
extension of the decomposition methodology used inside the 
kernel, is another important factor. It is well known that the 
productivity rates for systems programs such as compilers are 
significantly higher than those for operating systems. What we 
have done, in effect, is to elevate more code to the user level, 
make it more like a compiler than like an operating system, and 
thus realize the correspondingly higher productivity rates. 

4.5 Shortcomings 

Up to this point we have dealt mostly with the successes 
of Hydra. It is appropriate to mention some of our 
shortcomings, in the hope that other system-builders will be 
able to profit from some of our mistakes. We can identify two 
classes of difficulties: hardware and software. 

The most significant hardware difficulty is the small 
address space, a restriction imposed by the choice of 
processor. A machine with at least 24 address bits would 
provide a much more comfortable user environment than is 
currently possible. A segmented address space is more 
appropriate for Hydra. An i/o architecture carefully integrated 
with the segmentation scheme could eliminate much of the 
kernel i /o mechanism and permit some direct user control of 
devices. Reliability is compromised by the lack of error 
detection on the Unibus, and by the trusting nature of some 
standard peripherals. The lack of protection facilities in the 
processor creates awkward situations in the user program 
environment - -  in particular, the resulting restrictions on the 
use of the stack pare are auite unattractive. A processor 

designed to support multiprogramming can incorporate these 
protection restrictions more naturally and make many of them 
transparent to the user program. It can also minimize the cost 
of the process context-swap, which is substantial on C.mmp. 
Finally, a tagged architecture would eliminate much of the 
software checking necessary to support capabilities. 

Software shortcomings are less obvious, largely because 
our operating experience with Hydra to date has been limited. 
We do know, however, that the initial user subsystems 
(directory, command language, terminal handling) were not 
given sufficient attention in the design phase. We are 
presently involved in a substantial re-design of these facilities. 
Several important issues which were consciously ignored 
earl ier are now surfacing as major problems, including 
debugging of an interconnected set of processes and 
checkpointing a collection of processes. Some of these 
problems are currently under study, others remain to be 
tackled, but many should have been considered earlier. We 
can only attribute these shortcomings to lack of foresight and, 
in some cases, lack of personnel. 

We can also identify some issues in methodology. Our 
failure to construct adequate tools for ourselves on some 
occasions during the implementation process must be 
considered e serious failing. In particular, the lack of a 
debugger probably delayed the system by several months. It 
can also be argued that our approach to the task of system- 
buildin was incorrect. We chose to iterate the design of a 
system component until it appeared satisfactory, then 
implement it. Of course, we have on occasion found it 
necessary to redesign and reimplement after the initial version 
proved inadequate --  this evolution is inevitable. However, an 
alternate approach to system building [New71] stresses early 
implementation and experimentation with the prototype. In 
this approach, iterations on the design frequently involve 
reimplementation; thus, the design rarely reaches an advanced 
stage without receiving "the acid test". This technique can 
prevent design oversights from becoming costly iterations, but 
it relies heavily on a flexible system-building environment with 
a short "code-compile-debug" loop. Such an environment was 
not available when the Hydra project began. Whether this 
approach would have produced a Hydra system without the 
above shortcomings we cannot say, nor can we determine if it 
could have done so with less total effort. 

5. Conclusion 

We are learning, albeit slowly, that some programs we 
can conceive may be so complex as to be intellectually 
unmanageable. Concurrently we have generated ample 
evidence that no operating system, however sophisticated, can 
be perfect for all applications. Some  contemporary 
researchers, observing these facts, have chosen to retrench 
and consider only very simple systems with a single style of 
use in mind. Hydra, on the other hand, attempts to respond to 
this same situation by providing a kernel and a view of how 
user-specific features may be built using that kernel. The 
same view is used in the construction of the kernel, and there 
seems to be some evidence of its success in that context. The 
test of its success outside the kernel is still in progress. Initial 
subsystems for directories, files, terminal handling, a command 
language, scheduling, and so on have been built and have gone 
reasonably smoothly, but the real test lies in the future when 
many more people are using the system. 
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