
OVERVIEW OF THE
HYDRA OPERATING SYSTEM DEVELOPMENT

W. Wulf, R. Levin, C. Pierson 1
Carnegie-Mellon University

Pittsburgh, Pa.

Abstract: An overview of the hardware and philosophic
context in which the Hydra design was done is discussed. The
construction methodology is discussed together with some data
which suggests the success of this methodological approach.

Key Words and Phrases: Operating systems, kernel,
policy/mechanism separation, capability-based protection,
modular decompositions, programmer productivity.

1. introduction

j ... J
Smp

(~6x, 6 ~'r,,~ sp. i,,t

This paper has two objectives: first, to set the context
for the two ' companion papers in these proceedings, and
second to discuss the methodology used in the implementation
and our experience with it. To fulfill the first objective we
first br ief ly discuss the hardware environment on which Hydra
was implemented, then discuss the philosophy on which the
system is based, and finally exhibit some of the ways in which
the philosophy is instantiated. The final section discusses the
construction methodology.

2. The Hardware Context

C.mmp is organized as a canonical multiprocessor
computer system; it consists of a number of equal,
asynchronous central processors (Pc's) that share a large
primary memory. C.mmp differs from earlier multiprocessors
such as the Burroughs D825, IBM 360/67, Honeywell 645
(Multics), etc. in two essential respects:

1. It is designed to have up to 16 Pc's (presently
there are 6) while other multiprocessors usually
have no more than 2.

2. It is constructed with minicomputer Pc's (DEC
PDP-1Vs [DEC73]) rather than the larger (32 to
.48 bits/word) Pc's used in the other
multiprocessors.

In other words, the effective use of C.mmp requires that
we find and exploit a much higher degree of parallelism than
has been needed by other multiprocessors in the past. The

1. This work was supported by the Defense Advanced
Research Projects Agency under Contract F44620-73-C-0074
and is monitored by the Air Force Office of Scientific Research.

........ {E } -

I I

I K, I

Figure I
only other current multiprocessor comparable to C.mmp is the
1.4 Pc Pluribus computer system at BBN [Hea73]. To date
Pluribus has been successfully applied to the task of digital
communications; it remains to be seen how well Pluribus can be
applied to a wider range of applications.

The C.mmp computer system is illustrated in figure L As
may be seen, the principal components are 16 modules of
shared memory, Mp(0:15); a 16 x 16 switch, Stop; 16
processors, Pc(0:15); address relocation hardware, Dmap,
associated with each processor; and an interprocessor bus
with special devices attached to it (K.clock, K.halt, etc.).

It is crucial to an understanding of C.mmp to appreciate
that, from the outset, it was envisioned as a distributed
system. All components were envisioned as a pool of
resources to be shared among whatever tasks were to be
done. This was to be (is) true of processors, I/O, and memory
singly and in combination. There was to be no master-slave
relation between the processors, for example, and any process
(user job) was to be able to execute on any processor at any
instant.

122

Two features of the hardware organization significantly
impact the operating system structure and thus are discussed
in somewhat more detail: (a) the memory address translation
(relocation), and (b) the interprocessor communication
mechanism.

2.1 Memory Mapping and Relocation

Probably the greatest problem in building a large
computing system from minicomputers is their small address
space. In C.mmp we must be able to address several million
bytes of primary memory from the processors. The basic
PDP-11 architecture, on the other hand, is only capable of
generating 16 bit addresses. Although the processor (i.e.,
programs operating on it) may generate only a 16 bit address,
the Unibus supports an 18 bit address, and the shared memory
uses a 25 bit address. Somewhat arbitrarily we chose to
divide these address spaces into 8K-byte units called pages.
Thus processor generated addresses are divided into 8 pages,
Unibus addresses are divided into 32 pages, and the shared
memory is divided into 4096 pages. Recall that the processor
generates a 16 bit address but that 18 bits are present on the
Unibus. As shown in figure II, the two extra bits are obtained
from the Brogram status register (PS) in the processor. As we
shall see in a moment, these bits may not be altered by a user
program. Thus user programs are actually bound to operate
within the eight pages described by a subset of the relocation
registers. Such a subset is called a space and is named by the
two bits, e.g. '00' or '11' space.

The address mapping registers and PS register are
themselves located in the peripheral page and therefore can
only be accessed by a process in the '11' space (i.e. a process
executing with the PS bits 8 and 9 set to '11'). Thus a user
program cannot directly alter the address mapping. Operating
system operations are provided, however, so that after
appropriate validation, the user may manipulate it.

Each relocation register also contains a number of
control and status bits:

The non-existent memory ~ can be set by the
operating system to prevent access to shared
memory through the register. This permits the
system to place a small user job in the machine
without allocating a full 64K byte address space.

The write protects ~ when set, permits read
cycles to proceed through the register while
blocking write cycles. This feature can be used to
guarantee the integrity of reentrant code.

The written into ('dirty') b~ is an indicator which
flags write cycles through a register. This
provides an inexpensive mechanism to facilitate
paging out only those pages which have been
changed.

2.2 The Interprocessor Communication Mechanism

Interprocessor communciation is an important
consideration in controlling a multiprocessor. Furthermore, in a
ful ly distributed multiprocessor it is necessary for each
processor to control these functions on every other processor.
This control is provided by an interprocessor bus, a controller
for it, and interfaces to it (see Figure I).

l lzLiik
I)lJ

I11

I~.¢.k
I I

I ,s v , , r d

I 11 I I

),I,,I
RI : I . ~ I i]A I IOX I lk:(; ISI~]RS i 7 I , 1 '

i.
o

g ~ . h l c d l tl;tgl'

I

. '4 _

Pri~L~y

~ddr~ .~s

Figure I[

The interface allows a processor to evoke a certain
function on any subset of the processors, including itself, by
simply 'ORing' a mask into the interface register associated
with that function. The interface currently contains six such
registers, one each for HALT, START, CONTINUE and three for
dif ferent levels of interruption. Each of these function
registers is 16 bits wide. Setting the iT[th] bit of the register
(to one) associated with one of the functions will evoke that
function on the ith processor. Thus, for example, moving a
mask of all l 's into the halt register will stop the entire
machine. In addition to these functions, the bus provides other
facilities to the processors; such as a (per processor)
programmable interval timer and a 56-bit, one-microsecond
resolution, time-of-day clock.

3. The System Philosophy

The basic philosophy upon which the specific Hydra
mechanisms rest is a desire to allow nearly all of the facilities
one normally associates with an operating system to be built
as "normal" user programs. This central goal suggests that at
the heart of the system one should build a collection of basic,
or "kernel", mechanisms of "universal applicability" -- a set
from which arbitrary user-visible operating system facilities
can be conveniently, flexibly, efficiently, reliably, and quickly
constructed. Moreover, lest the flexibility be constrained at
any instant, it should be possible for an arbitrary number of
systems created from these mechanisms to co-exist
simultaneously.

This is obviously a tall order. Nevertheless, Hydra is an
attempt to provide just such a set. Whether or not the
particular Hydra mechanisms satisfy these criteria and whether
or not they form the best set, are, of course, still open

123

questions. The answers will come, if at all, only after
extensive use.

We can easily rationalize two properties that the kernel
mechanisms must possess: (1) protection and (2) no policy.
The Hydra mechanisms to support these properties are
discussed in two companion papers; here we focus only on the
rationale for them. Consider for the, moment two common
descriptions of the purpose of an operating system:

1) An operating system provides a "virtual
machine" which is more hospitable than the base
hardware for two reasons: (a) it makes available
certain "virtual resources" such as files,
directories, virtual memory, etc., absent from the
base hardware. (b) It makes certain unpleasant
hardware features, such as interrupts, from the
user and maps them into more acceptable ones,
such as P-V synchronization primitives.

2) An operating system manages the physical
resources of the computer, such as primary
memory, processor, channels, etc. so as to
improve their utilization.

Even though these descriptions are quite different they
are not incompatible -- they merely express two quite
dif ferent views of what is a single object with multiple goals.

From the first of these descriptions we see that an
individual (program) must be able to behave as though it is
running in isolation; that is, as though it has exclusive access
to the machine. In practice, of course, we relax this slightly by
saying ',except for possible differences in real-time behavior".
With this exception, however, we see that a uniform
requirement of all "operating systems" is that they provide
protection, in our case, since operating systems are
themselves user programs, the only candidate for providing
the necessary protection is the kernel.

From the second description we derive a negative
criterion on the kernel mechanisms -- namely that they should
not impose a policy on the way in which (physical) resources
are used. If the kernel mechaisms were to do this they would
preempt the possibility of specifying these at the user level --
and hence preclude an important dimension of operating
system variation. We refer to this negative criterion as the
principle of "policy/mechanism separation'; Brinch Hansen
[Bri70] has made cogent arguments for this separation.

The fact that the kernel should provide protection but
should not define resource policies does not of itself provide
sufficient information on which to base a design; it merely
specifies some properties that the design must have. To
develop the appropriate basis for the design we choose to
turn away from traditional operating system design
considerations and to look instead at some of the more recent
results of "structured programming".

3.1 Program Structuring

It is unfortunate that the term "structured programming"
has too often been equated with "goto-less programming" or
"top-down design". Far more central to the issue is the
concept of "abstraction". Several authors have noted the close
relation between many programming abstractions and the
concept of "type" as it appears in programming languages
[DDH74,Bri73,Wu174b]. Specifically, the concept of a "class" in

Simula '67 [Dah66] and its extension to "monitors"
[Hoa74,Bri75], "clusters" [Lis74], and "forms" [Wu174b] seems
especially well suited to expressing these abstractions. A
class in Simula defines an abstract data type by specifying
both an underlying storage structure and a set of operations
which operate on it. 2 Thus, for example, the abstract concept
of a set of integers might be introduced into a language by a
definition of the form 3

type intset =
begin

va__E a: array[t:100] of integer, n: integer;
2P_ union(u,v: intset) returns(intset); begin ... enid"

intersect(u,v: intset) returns(intset)~ begin ... end;
end;

Such a definition is intended to describe how any
particular variable of type intset is to be represented and how
operations on this type of variable are to be performed. Thus
the declaration "vat a: array[l:100] of. integer, n: integer;"
defines how storage is to be allocated for each variable of
type intset. The operator definit~ns, e.g. that for "union',
define how such variables are manipulated. An important
p rope r t y of such definitions is that all the representational
information is localized and "hidden" [Par72a,Par72b,Par72c] in
the type definition; the only way to manipulate variables of a
defined type is by invoking the operations defined in the type
definition.

After having made such a definition, the programmer
may wri te such things as declarations of variables of type
intset and statements which operate on these sets, e.g.

var a,b,c: intset;
a := union(b,c);

This style of programming captures the notion of
abstraction because it effectively separates the application of
the abstract "primitives" from the details of their
implementation. The programmer, working at a level where
intsets are an appropriate medium of expression, need never
concern himself with the details of how they are represented
or manipulated. Conversely, the implementor of the realization
of the type intset may freely alter that realization (to improve
efficiency, for example) without concerning himself with the
details of how it is used, so long as he preserves the
functional properties of the operations.

It is not our purpose here to advocate a particular
approach to structuring programs. However, the brief
description given above is the model on which Hydra is based.
Except for a slight change in terminology, extensions to
provide protection, and a more dynamic definition of types
than is common in programming languages, the Hydra kernel
mechanisms were chosen to support this model. The same
structuring philosophy is also used in the implementation of
the system.

2. The definition of a data type in terms of both its
representation and the operations on it, is called an
"extensive" definition; an "intensive" definition is one in which
only the objects of the given type are defined.

3. We have purposely chosen a neutral syntax whose meaning
should be clear; it is not Simula '67 or any other specific
language.

124

Earlier in this discussion we used the phrase "virtual
resources" to describe some of the facilities provided by an
operating system (e.g. files). Notice that this phrase is
essentially identical to the word "type" as used in the
immediately preceding discussion. A virtual resource (e.g. file,
directory, semaphore, ...) is an abstract concept with a set of
operations defined on it (e.g. read, write, append, open, close,
...). Moreover, the virtual resource has some realization in
terms of more primitive concepts (e.g. disk segments). Just as
with well-structured programs, we want the user of the file
system to be unconcerned with the details of its
implementation. Conversely, we want the implementor of the
file system to focus on the issues related to that specific
realization without concern for the details of the idiosyncratic
use of a particular file.

Without yet concerning ourselves with the details of the
Hydra mechanisms, we proceed by analogy with the
programming language model and list further properties w h i c h

these mechanisms must have (the first two are copied from the
earlier discussion for completeness):

- protection
- policy/mechanism separation
- creation of new kinds of virtual resources

(new types)
- specification of the representation of, and the

operations on a virtual resource (type)
- creation of instances of a resource (type)
- application of operations to an instance of a

resource (type)
- certain "generic" operations, e.g. "storing",

which are applicable to all resources (types)

3 .2 The Protect ion M e c h a n i s m

In the sequel we shall often use the phrase "subsystem"
when speaking of operating system facilities; it wilt mean
essentially the same thing as "type definition" in the previous
discussion. That is, a subsystem is a collection of information
which specifies the representation of a virtual resource (type)
and the nature of the implementation of various operations on
that type of resource. All knowledge about these
representational and operational details are contained and
"hidden" within the subsystem. In those cases where resource
allocation (policy) issues are involved, these policies are also
embedded in the subsystem. Global knowledge about a
specific type of virtual resource is limited to that supplied in
the external specifications of the subsystem which implements
that resource. Manipulation of the representation of a
resource is restricted by the protection mechanism to only
that code which defines the operations within a subsystem.

At this point we can pose a question about the
protection structure of the system which we purposely
avoided previously, namely "what should be protected and
against what"? This apparently simple question is complicated
by two issues; one endemic to operating systems, the other
arising from the primary goal of Hydra.

First,. we recognize that sharing is as important as
protection. That is, we don't really want complete isolation of
the virtual machines seen by various users. Users want to
selectively share files, pages, directories, semaphores, or any
of the other virtual resources provided to them. This is true
in any "computing util ity" [Gra68], but especially so in a

multiprocessor where a single user will wish to divide his job
into parallel cooperating processes and share resources
between these processes. Second, because we wish to
provide virtual resources through user-level programs, we
don't know a_ priori what kinds of resources will exist. Hence
we don't know what sorts of things will need to be protected,
or what sorts of access should be granted (or inhibited) to
them.

Both of these questions can be answered in terms of the
model posited above. The objects to be protected are
instances of virtual resources. Since we shall insist that only
the operations defined to operate on a type may manipulate
the representation of objects of that type, we shall provide
protection against the application of those operations to
instances of that type. Thus, for example, suppose type 'file',
with associated operations 'read', 'write', 'append', 'open', etc.
has been defined. The protection mechanism will allow
application of, for example, the 'write' operation to specific
instances of files to be selectively granted or inhibited.
(Clearly, similar protection must be (and is) provided against
application of the generic operations provided by the kernel,
e.g. 'store'.)

The "capability" based protection mechanisms
[Den66,Lam69,Fab74, GD72] are ideal for supporting the
philosophy espoused above. With two extensions these
mechanisms were adopted for Hydra. The Hydra version of
capability protection is discussed in [Wu174a] and is further
elaborated in the companion paper [CJ75]. It is desirable,
however, to mention here the two extensions and their relation
to the previous discussion.

(a) Capabilities in Objects: In order to implement
new abstractions, the representation of these
abstractions must be expressed in terms of extant
object types, and the operations on the new
abstraction must be expressed in terms of the
operations of the representing objects. |n the
general case the representing objects will be
arbitrary abstractions realized in terms of yet
further abstract types. To support this Hydra
allows an object to be represented in terms of
both simple data and capabilities (protected
references) for other objects.

(b) Rights Amplification: The operations provided
by a subsystem, in general, may require quite
different accesses to an object than those
required by the user of the abstraction. In order
to achieve the goal that representational
information should be 'hidden', and thus that there
should be operations which the subsystem can
perform but users cannot, we provided a
mechanism for expanding the rights to an object
when a subsystem is invoked.

3 .3 Summary of t h e P h i l o s o p h y

The basic philosophy on which the design of Hydra rests
is essentially the admission that its designers were incapable
of anticipating all of the ways in which it might be used. Thus
there has been a conscious attempt to permit almost all of the
functions normally associated with an operating system to be
(re)defined by the motivated user -- both in terms of the
facilities provided and the policies which govern the use of the

125

resources of the system. As a corollary of this philosophy,
Hydra attempts to preempt as few resources and modes of
using them as possible.

There appear to be limits beyond which this philosophy
cannot be pushed and still permit simultaneous access by
competing users. Thus, for example, Hydra defines a basic
protection mechanism which must be used by all. We have
chosen a capability mechanism because of its close relation to
what we believe to be good program structuring principles.
Although, for example, some user may define an authority-
based file protection mechanism on top of the capability
scheme provided by Hydra, he can never be totally unaware of
the underlying capability-based protection mechanism. Thus
there are limits on the variability possible within the Hydra
scheme; we did not try to provide a "virtual machine" identical
to the C.rnmp hardware.

There are also limits placed on the users with respect to
the policies which may be defined to govern resource
util ization. Both for protection and efficiency reasons, limits
a r e placed on the policies which may be defined by the user
(see [Lev75]).

Within these limitations however, we believe, and our
early experience corroborates, that usel"s will be able to
define a broad spectrum of facilities and policies.

4. The Construction Methodology

The previous sections have dealt with the hardware and
philosophic context in which the Hydra design was done. In
this section we shall focus on the approach to the detailed
design and implementation and summarize some of our
experiences.

4.1 Stages in the Design

Perhaps the earliest major design decision was the
choice of the kernel approach. To determine the precise set
of primitives to include in the kernel, we concentrated heavily
on the "virtual machine" Hydra should provide. Since we
wished to provide maximum flexibility in the use of the
rnultiprocessor facilities, we emphasized the notion of
protected access to resources, from which evolved the
abstracted resource (object), access control mechanism
(capability), and protected environment (LNS!. Object types
and rights amplification supported the subsystem concept,
which we viewed as the key idea in construction of operating
system facilities outside the kernel.

Once the important kernel primitives had been
postulated, we turned to the task of designing selected
subsystems (e.g. directory). This initial "user system" design
would, we hoped, expose the shortcomings of the kernel
primitives and permit us to iterate the kernel design before
implementation proceeded too far. In fact, several iterations
occurred and at least one more is presently planned. It should
be noted, however, that much of the kernel and subsystem
design could and did proceed in parallel. Furthermore, since
not all of the kernel facilities were required by these initial
user subsystems design of these additional primitives could
also occur in parallel. In fact, the individuals within the
development group worked as both designers and

implementors, with some implementing one part of Hydra while
designing another. The feasibility of this overlapping derives
from the modular decomposition approach, to be discussed
next. However, it should be emphasized here that the stages
in the system design were therefore not strictly sequential in
time. Figure HI presents a time-line of the construction of
major system components.

'/ " 't 'i I I I I

l aE~L MOgUUES

YJCPS

S70~ACE

CST

~R IC

10

PACE

PORT

DISK ALLOC

RESTART

EXTERNAL SUBSYS~

DIRECTORY

POLICY MODULE 0

A~A~T

TERMINAL SYS~ !H

LINKER

LOADER

DIAGNOST [CS

½LiSS-] 1

7 i | ;

m

® ® ®

Figure III

4.2 The Decomposition Strategy

The subsystem notion is pervasive in Hydra and extends
to the implementation of the kernel. In the early phases of the
implementation, when the subsystem concept was a central
concern, we expended considerable effort to decompose the
kernel into a set of carefully-specified modules. We were
strongly influenced by the work of Parnas [Par72b], but did
not, for reasons to be discussed later, adopt the specification
technique he proposes. We did, however, establish some rules
for module construction, which might be regarded as informally
defining our notion of "module"; these are a subset of the
Parnas criteria:

1) A module performs a well-defined set of
actions, and specifies the necessary conditions for
successful operation of those actions.

2) The actions of a module are made available to
other modules as functions, and these functions
constitute the only access to the ser.vices of the
module. In particular, the data manipulated by the
module is only made available to other modules by
function invocations; other modules have no direct
knowledge of the location or representation of
any data used by the module to implement its
actions.

126

3) Modules detect conditions which violate their
specifications and prevent execution of functions
when the necessary conditions are not met.

The first two rules obviously relate closely to the
subsystem concept and follow directly from the earlier
discussion. The third rule stresses reliable operation of
modules so that a local failure will frequently be detected
before it can spread and cause serious disruption [Par72d].

Although these module specifications were produced in
detailed written form for only a few modules, the techniques
served as the basis for the entire Hydra implementation. We
believe that the localization of data structure manipulations
and the careful encapsulation of functions as module actions
strongly encourage both coherent decomposition and flexible
maintenance of the system software. We did not follow the
rigid regime of formal specification advocated by Parnas in
part because of a desire to "get on with it", but also because
our early attempts to follow this regime were frustrated by
several problems:

I) Recursive structures. Recursive structures
commonly cause trouble in any hierarchical
decomposition, because one is essentially forced
to produce simultaneous specifications for two or
more modules. In Hydra, this situation arises, for
example, in connection with the protection data
base. A capability references an object, which in
turn contains a list of capabilities. It is difficult to
separate objects, capabilitiesp and C-lists in a
formal specification in which this recursive
relationship obtains.

2) Evolution. All operating systems, even the most
carefully designed ones, evolve. A precise, formal
specification has difficulty accommodating such
perturbations; informal ones are less brittle. Our
experience suggests that the effort necessary to
update formal specifications (compared to informal
ones) is often not expended, 4 leaving only the
original, obsolete ones. These are undoubtedly
worse than up-to-date, informal specifications.

3) Context conditions. Not all calling conditions
are easily expressed as restrictions °n the
parameters; some are best described as limitations
on the context in which the functions may be
invoked. For example, certain routines may only
be callable inside a critical section, or may not be
executed as part of an interrupt servicing
operation. Formal descriptions of such conditions
tend to be represented in terms of "state
funntions" which are constructed to capture
context for which no explicit data representation
is available. $uchdevices are of obvious use if
the specifications are to be subjected to
mechanical verification. Conversely, if the
specifications are intended to guide the
implementation and debugging processes, less
formal and more intuitive context conditions are
preferable.

4. This results at least in part from the nature of our
research environment.

It should be noted that even an informal specification
technique requires descipline. If one adopts the formal
specification approach and fails to follow through, at least a
partial specification results. With our technique, a lack of
discipline results in no useful specification at all. Where we
failed to complete specification, we later encountered trouble
in debugging because some case had been overlooked as a
direct consequence of our informal approach. Thus this
technique has its risks.

It is important that the source language version of the
implementation reflect the module decomposition of the design.
To do this most effectively it would have been ideal if the
implementation language had provided a type definition
mechanism similar to the $imula "class" concept (see section
3.1); unfortunately such a mechanism was not available to us
and the expense of designing and implementing a new language
did not seem justified. Thus we set out to achieve the same
effect by imposing an appropriate discipline upon our coding
practice.

In particular, each abstraction (module) is implemented
as (at least) two files. One of these files defines the data
structures and routines which implement the operations of the
module. This file may be (is) compiled separately. The second
file contains the declarations necessary for another module to
create instances of the abstraction and apply the operations,
functions, defined in the first file to these instances of the
abstraction. This second file is not, indeed cannot be, compiled
separately. Rather, upon request it is automatically included as
part of the compilation of other modules which use the
abstraction. This rather simple discipline achieves two goals:
First, it localizes all of the code dealing with a particular
abstraction to a single module, usually two files, thus making
changes relatively easy. Second, it "hides" all the
representational decisions in these same files; the only access
to the abstraction is through the interfaces declared in the
second file.

(Note, however, that the interfaces are often macros so
that the ultimate object code is often distributed quite
dif ferently than is apparent from the source code. This is
essential to the efficiency of the system.)

4.3 Stages in the Construction

Construction of a complex system is a difficult task, even
with a carefully specified design. We can summarize the
lessons we learned in a single maxim: "Use the best tools you
can reasonably obtain. If the tools aren't available when you
start, build them first." This is another of those "motherhood"
st'atements and is difficult to dispute. When one is actually in
the throes of implementation, however, it is easy to ignore.
This section indicates the cases in which we heeded this rule
and reaped the benefits, and points up the times when we
ignored it and paid the price.

The task of system construction was complicated by the
embryonic state of our eventual multiprocessor configurationp
and the instability of the hardware available. (See Figure IV.)
We needed a more stable tool than C.mmp on which to
establish a base of development operations. Happily, we had a
PDP-iO system available, and we used it extensively for
programming Hydra and suppport software.

127

Having established the hardware to be used, we next
selected an implementation language. The arguments for
building systems in higher-level languages are well-known; we
will not repeat them here. We chose BLISS [Wul71].

Our next problem was the near impossibility of
debugging Hydra itself, because of the la~k of adequate tools.
We therefore chose to implement the initial modules of the
kernel (and several subsystems) in a compatible subset of
Bliss/lO (for the PDP-IO) and Bliss/11 (for PDP-]I's), and to
run and debug these modules on the PDP-]O. Because we
were concerned with synchronization errors, the PDP-IO
version was designed to switch (simulated) processors before
and after every critical section) thereby increasing the
probabil i ty of actually encountering a latent synchronization
error. This facility enabled us to detect a number of subtle
mistakes. Clearly, we could not detect all the timing-
dependent problems using this approach, but the vast majority
of other logical errors were found and corrected.

To facilitate check-out, we also incorporated a
debugging mechanism which allowed us to control the
execution of the several "processors", start and stop selected
processes, inspect process state, and trace major actions.
(This mechanism was later developed into a sophisticated)
BLiSS-oriented debugger called SIXI2.) it required
approximately four weeks of debugging to get the entire
"basic" kernel operational on the PDP-IO.

When the initial C.mmp configuration came up, we
recompiled the kernel using BLISS/I 1 and brought the system
over to C.mmp. The only new software necessary was
machine-dependent initialization, and over half the debugging
time (at this point) on C.mmp was expended on these
procedures. After that, the rest moved swiftly - the entire
PDP-10 kernel was transferred to C.mmp and operational in
about two weeks, with debugging tools little more
sophisticated than the console switches! However, we now
realized a major error in our implementation method - we had
no tools to aid our further debugging on C.mmp. Work then
began in earnest on the construction of $iX12 for C.mmp, but
kernel development was decidedly impeded until it was
available (a period of about two months).

® ® ® ® ®

LI ,
, , P I) P - 1 ,

Fizure IV

4 .4 Produc t iv i t y

Although we would like to present some conclusive data
demonstrating the success of our design and implementation
approaches, the figures we have are only indicators. It is a
difficult task to measure the progress of a research project in
quantitative terms, and a still harder one to compare it to the
progress of other projects. After all, what is a reasonable
measure of productivity? Perhaps the most obvious choice is
rate of production of debugged code, say in instructions per
man-day. This is a common metric, but it is difficult to apply
fairly. We may have trouble identifying what parts of the
system legitimately may be included in the instruction total,
and we may be unable to obtain an accurate measure of the
human effort required to produce the final product. Before
presenting the productivity statistics for the Hydra project, we
must examine these sources of error in more detail.

We indicated earlier that the system construction
process often may (should) involve the production of software
tools. These support facilities may require substantial design
and programming effort by themselves, so one may legitimately
ask whether such code should be included in the final product
total. Plausible arguments exist supporting both sides of this
question, but it is difficult to compare projects if a consistent
accounting method is not used. For the figures reported below
we included only the code in the end-product; support
software, intermediate versions, stopgap kludges, and
debugging aids were no___t, counted.

Similar questions may be raised concerning the amount
of effort expended. We chose to include all design and
implementation effort until system "stabilization" (see next
paragraph), including that required to build tools, intermediate
versions, etc. The notion is to compute the total human effort
required to produce a "finished" product and compare that
ratio with other research system-building projects. This
method of comparison ignores differences in projects due to
methodology; only the end-result is important. Thus it is
essential to establish exactly what constitutes that "finished
product".

When is a system complete? Certainly, not when it first
turns over; but how about when users first begin to work on
it? Should we include the time until it "stabilizes", whatever
that may mean? Do we keep the meter running until all bugs
which significantly impact user productivity are removed?
These moments in the system's history are difficult or
impossible to pinpoint, and they may be widely separated in
time. Thus considerable subjective judgment is involved in
establishing the duration of the system construction period.
For Hydra we attempted to choose a "stabilization point"
identifying a time when the system was available to users and
capable of performing useful work on their behalf. It still
crashed relatively often and was far from stable in the s e n s e

that the term might be applied to a commercial system.
Nevertheless, software construction on the initial version of
the system was complete, and enough bugs had been fixed that
the system was minimally useful.

We hope that we have chosen a rather conservative
measure of productivity. We include the time to produce tools
and other support software, but exclude these items from the
finished product. We believe that this still yields a fair basis
for comparison, and, in a way, provides an indication of the
value of producing such "secondary" software. On the other
hand, all productivity figures we have are based on estimates,
and thus must be interpreted with care. With these caveats in

128

mind, let us turn to the data on Hydra. Our productivity at
several points in the development is summarized in the
fol lowing table (the "checkpoints" are noted in Figure IV):

Date Instructions Man-Months
(x 1000)

Checkpoint 1 12 28
Checkpoint 2 21 49
Checkpoint 3 34 73
Checkpoint 4 42 89
Checkpoint 5 53 115

The overall productivity at the fifth checkpoint is an
average of 21 instructions per man-day. A commonly accepted
"industry average" for complex systems is 5-8 instructions per
man-day, although it has been significantly lower for some
projects [Wol74].]n an informal survey of eight research
operating systems we found an average productivity of eight
instructions per man-day -- measured at roughly the same
state as Hydra's checkpoint 5.

A number of explanations for the productivity of the
Hydra group might be advanced; we will examine these in more
detail below. However, two obvious ones are the use of a
high-level language and the decomposition methodology used.
We believe the latter to be the more important; in effect we
believe the decomposition methodology has decreased the
complexity of the task to a point where the higher productivity
rate is common (see [Met71]). To support this belief let us
consider the hypothesis that it is the use of the high-level
language which caused the productivity increase.

It is widely believed that the number of lines of code
wr i t ten per man-day is independent of the language in which it
is written. (Although this belief is open to challenge, let us
accept it for a moment; further corroboration of the conclusion
we shall draw using it will follow.) From this premise one must
assume that the Bliss/11 "expansion factor', object instructions
generated per line of source code, is in the range 2.6-4.5 to
account for the observed productivity (i.e. 2.6x8 ~ 4.2x5 ~ 21).
However, in a sample of over 43,000 lines of source code the
expansion factor was observed to be less than 1.5. In other
words, the observed productivity in terms of souce lines per
man-day is in excess of 14. Under the assumption above this
can only be accounted for by a reduction in the complexity of
the task - - that is, by the decomposition methodology.

(It should be noted at this point that the low expansion
factor of Bliss/t 1 is no..t, the result of Bliss being a "low level"
language. Excepting formatted i/o, which is uncommon in an
operating system, Bliss programs are generally line-for-line
comparable with, for example, PL/L The low expansion rate is
almost exclusively due to the optimization quality of the
Bl iss/ t t compiler [Wu175a].)

The instructions/man-day metric is not an altogether
satisfying measure of the productivity in a large software
effort - - partially for the difficulties in obtaining comparable
figures, but also because one suspects that the number may
change during the history of the system's development,
maintenance, and use. Specifically, one suspects that after the
inevitable enhancement and repair cycle, the effort which will
be expended per new instruction, or per incremental increase
in size, will increase. Saying the same thing another way, it
seems reasonable that if one computes the productivity as the
ration of the total number of instructions 'in the system' to the
total effort expended, as we have, this ratio should decrease
with time.

/
Belady and Lehman [Be171] have built a macro-econom~:~

model of this phenomenon. They derive an expression for Me
total work invested in a system at its ith release, wh~h is of
the form I / ~

W i = w(i) + C'2 F(i)

where

w(i) is ell the effort related to new features in the
ith release, and to general overhead, except for
that effort explicitly acconted for in the second
term.

C is the average effort related to the correlation
between simultaneous activities and/or between
current ones and previous components of the
system.

F(i) is a complex expression in their presentation
and accounts for the number of simultaneous
activities, the extent to which the total system is
complete and correct, the positive effects of
increasing familiarity with the system, and so on.

The complete model as presented in [Be171] is
considerably more elaborate than the expression given above.
For our purposes, however, it is the form of the expression
rather than its details which are important. It predicts that the
effort invested is exponentially related to time. This result has
both frightening implications and a certain intuitive appeal; that
is, it predicts the observed behavior of many extant systems.

Figure V plots the size vs. effort at five points during
the development of Hydra. Each point represents the size and
effort (measured as discussed above) measured at an
identifiable 'stable' point; that is, a point at which some portion
of the system was complete and 'operational' in the sense that
it rel iably performed its intended function.

7 O .

rl
0

Z

1o_

53 ,115)

(42 ,89) /
,49)

(12 ,28)

I I I) I

1OK EOK 3OK 4OK BOK

INgT IE IUCT ION8

Figure V

129

As is obvious, the productivity rate has been
approximately linear. It has not required more effort to
prodt:me the later modules than the earlier ones. This result is
somewha~sutl:~rising, even to us, although we are certainly
pleased by it. It seems to be at variance with the Belady-
Lehman model.

Several things might explain the discrepancy between
the predicted and observed behavior. First, the model may not
be applicable. The model was devised to predict the effort on
successive releases of a 'finished' system, while our own graph
displays development effort. There may be some truth to this,
but because of the style of our development - in which design,
coding, debugging, documentation, redesign, recoding, and so
on were carried on in parallel on separate portions of the
system -- the major assumptions of the model seem to apply
quite well. Specifically, for example, the period covered by
the graph includes two substantial design and coding iterations
on the kernel interface module.

Second, the system may simply not be large enough to
exhibit the predicted behavior -- but then this simply becomes
an argument for the kernel approach.

Third, the model may in fact be applicable, but the
values of C and/or F(i) are small enough that the second term
does not dominate, it would be nice if this were true, since it
would constitute direct evidence that the methodology
significantly reduces the intellectual complexity of the task.

In reality, of course, probably all these factors, and
others, are responsible for the observed behavior. We don't
know the relative contribution of each of the factors, but we
believe the methodology to be an important influence.

The fact that most user-visible operating systems are
built as user-level programs, which can be viewed as an
extension of the decomposition methodology used inside the
kernel, is another important factor. It is well known that the
productivity rates for systems programs such as compilers are
significantly higher than those for operating systems. What we
have done, in effect, is to elevate more code to the user level,
make it more like a compiler than like an operating system, and
thus realize the correspondingly higher productivity rates.

4.5 Shortcomings

Up to this point we have dealt mostly with the successes
of Hydra. It is appropriate to mention some of our
shortcomings, in the hope that other system-builders will be
able to profit from some of our mistakes. We can identify two
classes of difficulties: hardware and software.

The most significant hardware difficulty is the small
address space, a restriction imposed by the choice of
processor. A machine with at least 24 address bits would
provide a much more comfortable user environment than is
currently possible. A segmented address space is more
appropriate for Hydra. An i/o architecture carefully integrated
with the segmentation scheme could eliminate much of the
kernel i /o mechanism and permit some direct user control of
devices. Reliability is compromised by the lack of error
detection on the Unibus, and by the trusting nature of some
standard peripherals. The lack of protection facilities in the
processor creates awkward situations in the user program
environment - - in particular, the resulting restrictions on the
use of the stack pare are auite unattractive. A processor

designed to support multiprogramming can incorporate these
protection restrictions more naturally and make many of them
transparent to the user program. It can also minimize the cost
of the process context-swap, which is substantial on C.mmp.
Finally, a tagged architecture would eliminate much of the
software checking necessary to support capabilities.

Software shortcomings are less obvious, largely because
our operating experience with Hydra to date has been limited.
We do know, however, that the initial user subsystems
(directory, command language, terminal handling) were not
given sufficient attention in the design phase. We are
presently involved in a substantial re-design of these facilities.
Several important issues which were consciously ignored
earl ier are now surfacing as major problems, including
debugging of an interconnected set of processes and
checkpointing a collection of processes. Some of these
problems are currently under study, others remain to be
tackled, but many should have been considered earlier. We
can only attribute these shortcomings to lack of foresight and,
in some cases, lack of personnel.

We can also identify some issues in methodology. Our
failure to construct adequate tools for ourselves on some
occasions during the implementation process must be
considered e serious failing. In particular, the lack of a
debugger probably delayed the system by several months. It
can also be argued that our approach to the task of system-
buildin was incorrect. We chose to iterate the design of a
system component until it appeared satisfactory, then
implement it. Of course, we have on occasion found it
necessary to redesign and reimplement after the initial version
proved inadequate -- this evolution is inevitable. However, an
alternate approach to system building [New71] stresses early
implementation and experimentation with the prototype. In
this approach, iterations on the design frequently involve
reimplementation; thus, the design rarely reaches an advanced
stage without receiving "the acid test". This technique can
prevent design oversights from becoming costly iterations, but
it relies heavily on a flexible system-building environment with
a short "code-compile-debug" loop. Such an environment was
not available when the Hydra project began. Whether this
approach would have produced a Hydra system without the
above shortcomings we cannot say, nor can we determine if it
could have done so with less total effort.

5. Conclusion

We are learning, albeit slowly, that some programs we
can conceive may be so complex as to be intellectually
unmanageable. Concurrently we have generated ample
evidence that no operating system, however sophisticated, can
be perfect for all applications. Some contemporary
researchers, observing these facts, have chosen to retrench
and consider only very simple systems with a single style of
use in mind. Hydra, on the other hand, attempts to respond to
this same situation by providing a kernel and a view of how
user-specific features may be built using that kernel. The
same view is used in the construction of the kernel, and there
seems to be some evidence of its success in that context. The
test of its success outside the kernel is still in progress. Initial
subsystems for directories, files, terminal handling, a command
language, scheduling, and so on have been built and have gone
reasonably smoothly, but the real test lies in the future when
many more people are using the system.

130

6. References

Bel71

Bri70

Bri73

Bri75

CJ75

DDH74

Dah66

DEC73

Den66

Fab74

Gra68

GD72

Hea73

Hoa74

Lain69

Lev75

Belady, L. and Lehman, M.,. Programming System
Dynamics, IBM Thomas J. Watson Research Center
Report RC 3546, Yorktown Heights, N. Y., July 1971.

Brinch-Hansen, P., "The Nucleus of a Multiprogramming
System", Communications of the ACM 13, 4 (April
1970).

Brinch-Hansen, P., Operating System Principles,
Prentice-Hall, Englewood Cliffs, N. 1, 1973.

Brinch-Hansen, P., "A Programming Methodology for
Operating System Design", Proceedings of the 1975
International Conference on Reliable Software, 1975.

Cohen, E. and Jefferson, D., "Protection in the Hydra
Operating System", Proceedings of the 5th Symposium
on Operating System Principles, Austin, Texas, Nov.
1975.

Dahl, 0.-1, Dijkstra, E. W., and Hoare, C. A. R.,
Structured Programming, Academic Press, New York,
1974.

Dahl, O.-J., and Nygaard, K., "Simula - An Algol-Based
Simulation Language", Communications of the ACM 9, 9
(September 1966).

Digital Equipment Corporation, PDP-I 1/05/10/35/40
Processor Handbook~ Maynard, Massachusetts, 1973.

Dennis, J. and E. Van Horn, "Programming Semantics
for Multiprogrammed Systems", Communications of the
ACM 9, 5 (May 1966).

Fabry, R., "Capability-Based Addressing",
Communications of the ACM 17, 7 (July 1974).

Graham, R. M., "Protection in an Information
Processing Utility", Communication of the ACM If , 5
(May 1968).

Graham, R. and Denning, P., "Protection - Principles
and Practices", AFIPS Conference Proceedings 40,
SJCC 1972.

Heart, F. et. al., "A New Minicomputer/Multiprocessor
for the ARPA Network", Proceedings AFiPS National
Computer Conference 42, 1973.

Hoare, C. A. R., "Monitors: An Operating System
Structuring Concept", Communications of the ACM 17,
10 (October 1974).

Lampson, B. W., "Dynamic Protection Structures",
AFIPS Conference Proceedings, FJCC 1969.

Levin, R., Cohen, E., Corwin, W., Pollack, F., Wulf, W.,
"PolicY/Mechanism Separation in HYDRA", Proceedings
of the 5th Symposium on Operating System Principles,
Austin, Texas, Nov; 1975.

Lis74

Met71

New71

Par72a

Par72b

Par72c

Par72d

Wol74

Wu171

Wu174a

Wu174b

Wu175a

Liskov, B., A Note on CLU, Computation Structures
Group Memo 112, M]T Project MAC, Nov. 1974.

Metzelaar, P., Cost Estimation Graph, TRW Systems
Group, Redondo Beach, Calif., April 1971.

Newell, A. et. al., "The Kernel Approach to Building
Software Systems", Computer Science Research Review
1970-1971, Carnegie-Mellon University, September

1971.

Parnas, D., "A Technique for Software Module
Specification with Examples", Communications of the
ACM 15, 5 (May 1972).

Parnas, D., "On the Criteria to be Used in Decomposing
Systems into Modules", Communications of the ACM 15,
12 (December 1972).

Parnas, D., "Information Distribution Aspects of Design
Methodology", Proceedings of the IFIP Congress 1971,
Vol. 1, 1972.

Parnas, D. L., On the Response to Detected Errors in
Hierarchically Structured Systems, CSD Report,
Carnegie-Mellon University, 1972.

Wolverton, R., "The Cost of Developing Large Scale
Software", IEEE Transactions on Computers C-23, 6
(June 1974).

Wulf, W, et. al., "Bliss: A Language for Systems
Programming", Communications of the ACM 14, 12
(December 1971).

Wulf, W., et al., "HYDRA: The Kernel of a
Multiprocessor Operating System', Communications of
the ACM 17, 6 (1974).

Wulf, W., Alphard: Toward a Language to Support
Structured Programs, Carnegie-Mellon University
Technical Report, 1974.

Wulf, W. et. al., The Design of an Optimizing Compiler,
American-Elsevier Publishing Co.r New York, 1975.

131

