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Abstract 

This paper describes a technique for maintaining data 
integrity that can be implemented using capabilities typically 
found in existing file systems. Integrity is a property of a 
total collection of data. It cannot be maintained simply by 
using reliable primitives for reading and writing single 
units -- the relations between the units are important also. 
The technique suggested in this paper ensures that data 
integrity will not be lost as a result of simultaneous access 
or as a result of  crashes at inopportune times. The 
approach is attractive because of its relative simplicity and 
its modest demands on the underlying file system. The 
paper gives a detailed description of how consistent, atomic 
transactions can be implemented by client processes 
communicating with one or more f i le  server computers. The 
discussion covers file structure, basic client operations, crash 
rccovery, and includes an informal correctness proof. 

1. Introduction 

This paper describes a technique for maintaining data integrity that 
can be implemented using capabilities typically found in existing file 
systems. Integrity is a property of a total collection of  data. It 
cannot be maintained simply by using rcliable primitives for reading 
and wriling single units -- the relations between the units are 
important also. The technique described below ensures that data 
integrity will not be lost as a result of  simultaneous access or as a 
result of  crashes at inopportune times. 

The environment we have in mind is a collection of computers 
capable of sending messages to each other over a high bandwidth 
network [1]. One or more of these computers act as .file servers -- 

they are a shared repository of data for the other machines which are 
called clients. The  client machines issue read or write commands in 
the form of messages to the particular file server holding the 
addressed information. The client gets back a response from the 
server after the command is completed. The response is a message 
containing the requested information in the case of a read or an 
acknowledgement in the case of a write. 

P e r m i s s i o n  to c o p y  w i t h o u t  fee all o r  pa r t  o f  th i s  m a t e r i a l  is 
g r a n t e d  p r o v i d e d  t h a t  t he  cop ies  a re  no t  m a d e  o r  d i s t r i b u t e d  
for  d i rect  c o m m e r c i a l  a d v a n t a g e ,  the  A C M  c o p y r i g h t  no t i ce  
a n d  the  title o f  the  p u b l i c a t i o n  a n d  its da t e  a p p e a r ,  a n d  no t i ce  
is g iven  t h a t  c o p y i n g  is by p e r m i s s i o n  o f  the  A s s o c i a t i o n  for  
C o m p u t i n g  M a c h i n e r y .  T o  c o p y  o the rwise ,  o r  to  r epub l i sh ,  
r equ i re s  a fee a n d / o r  specif ic  p e r m i s s i o n .  
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A transaction is a sequence of reads and writes by some client. 
Accesses may be made to several files located on different selwers. 
From the standpoint of  maintaining data integrity, it is important 
that the system for carrying out transactions have the following two 

properties. 

1. The  consistency property: although many clients may be 
performing transactions simultaneously, each will get a 
consistent view of the shared data as if the transactions 
were being executed one at a time. 

2. The  atomic property: for each transaction, either all of  
the writes will be executed or none of them will, inde- 
pendent of  crashes in servers or clients. 

There are two main approaches to building a transaction system that 
hzts these properties. The first makes the file servers responsible for 
ensuring that transactions are consistent and atomic. Designs for 
such systems have been described by Gray [2], Lampson and Sturgis 
[3], Israel, Mitchell, and Sturgis [4], and others. The alternative 
method is described in this paper; it puts the burden on the clients 
rather than the servers. 

qqae client-based approach is an attractive option because o f  its 
relative simplicity and its modest demands on the file servers. It is 
similar to the Lampson and Sturgis single server algorithm and is 
significantly less complicated than thcir multiserver algorithm in 
which the transaction state is distributed over many machines. This 
simplicity makes the client-based approach relatively easy to 
implement -- an early version of the method described in this paper 
wcllt through two cycles of design, irnplementation, and debugging in 

al)oul two work-m~nHhs and is now in regular use as part of  an 

experimental office information system. 

The following sections describe the client-based approach to 
providing transactions that are consistent and atomic. Section 2 
discusses the requirements for the file servers and presents the two 
types of transaction files. Section 3 outlines the basic actions that are 
available to clients for carrying out transactions. Crash recovery, 
which is needed to complete interrupted transactions, is covered in 
section 4. A proof that the system does actually implement con- 
sistent and atomic transactions is sketched in section 5. Some loose 
ends concerning large data files and file creation and deletion are 
discussed in section 6. Section 7 suggests some possible extensions. 
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2. File Servers and Transaction Files 

The discussion .of the system begins with an overview of the 
capabilities required in the file servers and the structure of the two 
types of transaction files. 

Server Capabilities 

One of the merits of a client-based approach is the simplicity of its 
requirements which make it possible for typical existing tile systems 
to support the transaction machinery. The server's primary role in 
transactions is just to provide sector-at-a-time random access to its 
files. In addition, the server allows a client to gain sole access to a 
tile by locking it. The key which is returned to the client must be 
supplied in all subsequent accesses until the file is unlocked. If a 
locked file is not accessed for a period of time, the server 
automatically releases the lock so that a crashed client will not leave 
files permanently unavailable. 

These are the basic file server capabilities needed for a client-based 

transaction system: sector at a time random access, file locks, and 
automatic unlocking after prolonged inactivity. For more infor- 
mation about a file server which satisfies these requirements and was 

used in an early implementation of our method, see a companion 
paper by Swinehart, McDaniel, and Boggs [5]. 

Transaction Files 

Transactior~s inw)lve two distinct types of files: Data Files which hold 

the infi)rmation operated on by transactions, and Intentions Files 
which conlain records about dala files changed by a transaction and 

are used in crash recovery. The transaction system implements both 
types with standard files provided by the servers; there is nothing 
special about them as far as the servers are concerned. 

Data files are structured by the transaction system so that a single 
write will convert them to a new version that may have many sectors 
changed. This is accomplished by providing a level of mapping from 
logical sector numbers used to address the data to real sector 
numbers as understood by the tile servers. The first real sector of 
each data file is a header which contains a sector map indicating 
where in the tile the various logical sectors are stored. By changing 
the sector map, the mapping from logical sector numbers to real 
sector numbers can be changed for the entire file. The transaction 

system directs writes to unused real sectors, so until the header is 
rewritten, no old data is lost. 

In addition to the sector map, the header contains a free-list of 
unused real sector numbers and a record indicating the transaction, if 
any, in which this file is currently involved. A simple compactor 
process can periodically run as a client to relocate logical sectors to 
unused locations at the front of the file, update the sector map and 
free-list, and then truncate the file to reclaim storage. 

Intentions files contain a state variable, a transaction number, a list 
of changes, and a sequence of headers. The transaction state 
alternates among STARTED, COMMITTED, and COMPLETED. While the 

state is STARTED, the transaction can be aborted with no significant 
eft~ct on the data files; once the state becomes COMMI'TI'ED, all of 

the writes will eventually be done at which time the slate will change 
[o f'OMPI.ETEI). The transaction nuuther is incremented during the 

completion of a transaction and, along with the state w~riable, has an 

important role in crash recovery. The list of changes htdds ktenti- 
tiers for data files that have been modified in the transaction and 
pointers to copies of their new headers which are saved in the re- 
mainder of the intentions file. 

3. Client Actions 

The basic client actions are BEGIN TRANSACTION, OPEN, READ, 
WRITE, ABORT TRANSACTION, and END TRANSACTION. The effects 
of these operations are described below. To simplify the descrip- 
tions, we assume that the client has a permanently allocated inten- 
tions file and we allow the client to have only one transaction in 
progress at a time. These restrictions can be removed by having 
BEGIN TRANSACTION allocate an intentions file and return a 
Transaction Identifier which would be passed as an additional 
argument to all the other routines. 

BEGIN TRANSACTION 

This routine is called at the beginning of each transaction to change 
the state to STARTED. The following routines signal an error if they 

are called in any other state. 

Oe~'N 

OPEN receives a file identifier and returns a handle for use in 
subsequent accesses. The identifier includes data indicating where 

the file is located, so the lbllowing operations can communicate with 
the appropriate server. OPEN locks the file, saves the key, and reads 

the header. If the header indicates that the file is involved in 

another trans'lction, a crash must have previously occurred pre- 
venting the completion of that transaction, so recovery is done in a 
manner described below and the header is then reread. 

Note that the header is not written at this time; it is modified only in 
END TRANSACTION, and then only if there have been WRITE'S to the 
file. 

RE.49 

The arguments to READ are a file handle, a logical sector number, 
and a buffer to receive the data. A local copy of the header sector 
map is used to convert from logical to real sector number, and the 
data is transferred from the file server to the buffer. 

If the file lock has been broken (i.e., the file server has released the 

lock for some reason such as client inactivity), all files opened for 
this transaction are unlocked, the state changes to COMPLETED, and 
an error code signifying Transaction Aborted is returned. The 
transaction system makes no assumptions about how a client program 
will deal with such aborts. In typical usage, they will probably be 
rare and the client can simply treat them like a software error 
requiring a program restart. 

WRITE 

WRrFE receives as arguments a file handle, a logical sector number, 

and a buffer containing the dala to be written. It first uses the local 

copy of the file free-list to allocate an unused real sector. Then, the 
local copy of the file sector map is checked to see if the logical sector 
being written already exists. If so, its real sector number is recorded 
in a separate list to be merged with the header free-list during the 
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completion of the transaction. Finally, the local copy of the sector 
map is updated to indicate the new mapping, and the buffer is 
transferred to the file server. As in READ, the transaction is aborted 
if the file lock has been broken. 

Notice that all of the useful information from before the transaction 
is left untouched, Only local copies of headers are changed, and 
writes go to unused real sectors. The addition of sector numbers to 
the header free-list is delayed until END TRANSACTION SO that 
subsequent writes during this transaction will not use them. 

ABORT TRANSACTION 

All files opened for this transaction are unlocked and the state of the 
transaction is changed to COMPLETED. 

END TRANSACTION 

There are three cases to consider for END TRANSACTION depending 
on whether zero, one, or more than one file was written. In all 
cases, the transaction is immediately aborted if a broken lock is 
discovered before the state becomes COMMITTED. 

If no files were changed, END TRANSACTION simply unlocks all the 

files that were opened, changes the state to COMPLETED, and re.turns. 

If a single file was modified, then after the read-only files are 

successfully unlocked (i.e., their locks were not found to be broken), 

the modificd file has its header written and its lock released. In both 
this case and the previous one, the intentions file is not required and 

no accesses are made to it. 

If  multiple files were written, END TRANSACTION must leave around 
enough information so that if it crashes after committing to make the 
changes someone else will be able to complete them. The intentions 
file is the place for this information. The sequence of steps is as 
follows: 

1. Unlock all of the read-only files. 

2. Lock the intentions file. (This is the first action 
involving the intentions file for this transaction; up to 
this point all the activity has been with the data files.) 

3. Mark each modified file as being changed in this 
transaction by placing in its header the new transaction 
number and the identifier for the intentions file. 

4. Write copies of the new headers to the intentions file. 
The header free-lists are first updated to include the real 
sectors which are now unused. 

5. Write the list of changes to the intentions file with the 
transaction number updated and the state variable set to 
COMMITTED. There is now a committment to com- 
pleting the transaction rather than aborting it. If a 
broken lock is discovered after this point, crash recovery 
will be invoked to finish the transaction. 

6. Write the new headers to the data files saying that they 
are not involved in any transaction. Unlock each file 
after writing its header. 

7. Write the intentions file header with the state variable 
set to COMPLffI'ED, and then unlock it. 

that the state recorded in the intentions file is either 

The STARTED state is not recorded 

Note 

COMMITTED or COMPLETED. 

since the intentions file information is solely for crash recovery, and 
the recovery mechanism does not need to distiuguish between 
STARTED and COMPLETED -- it is only invoked for a transaction that 
was left in the COMMI'Iq'ED state. 

At this point it is possible to summarize the overhead for the 
transaction mechanism in terms of extra interactions with the file 
servers in addition to the data accesses. For a transaction with N 
files opened and M of them modified (M greater than 1), there is an 
extra lock and unlock for the intentions file, N extra reads to get the 
data file headers, and 3M+2 extra writes. The writes, in the order 

that they occur, are to mark each of the M files as in the transaction 
(step 3), to write the M headers to the intentions file (step 4), to write 
the list of changes and set the intentions file state variable to 
COMMITTED (step 5), to write the M headers to the data files (step 6) ,  
and to reset the intentions state to COMPLETED (step 7). Large data 
files will require additional reads and writes for extra header 
information -- see Section 6 for details. 

4. Crash Recover), 

In a client-based system, crash recovery for transactiot~s is done "on 
demand" rather than immediately after restarting. The recovery 

procedure is triggered when a file that was involved in an interrupted 

transaction is next accessed. There are two indications that a crash 

has previously occurred: an unlocked data file may claim to be 

involved in a transaction, or the state variable of an unlocked 
intentions file may be COMMI'Iq'ED rather than COMPLETED. The 

former case is dealt with by recovery code in OPFN; the latter is 

handled by finishing the transaction in a manner described below. 

Recovery in OPEN 

Recall that OPEN locks each data file involved in a transaction and 
reads its header before any READ or WRITE access to that file is 
made. Thus, the READ and WRITE operations are guaranteed to  
come after any crash recovery performed by OPEN. 

When OPEN finds a data file claiming to be in a transaction, it first 
checks whether the header points to an intentions file that is 
currently in use by this client. If  so, the crash must have happened 
after marking the header in step 3 of END TRANSACTION and before 
the intentions state could be set to COMMI'I'rED in step 5. Otherwise, 
if the state had become COMMI'I'rED, the transaction would have 
been completed when the intentions file was first reacquired. 
Therefore, the previous transaction was never COMMI'I"rED, and the 
file currently being opened can simply be marked as not in a 
transaction. 

If the data file being opened names an intentions file other than one 

currently in use by this client, OPEN now attempts to lock that other 
intentions file, waiting if necessary until it can acquire the lock. 
OPEN cannot simply assume that this data file is okay on the basis of 

someone else having locked the intentions -- the client who has the 
intentions locked may be currently waiting to get at this file in order 
to complete the transaction! To resolve this potential conflict, OPEN 

unlocks the data file while it is waiting to lock the intentions file. 
After acquiring a lock for the intentions file, OPEN relocks the data 
file and rereads its header to see that file file still claims to be in the 
transaction. (There is unfortunately still a potential for deadlock here, since the 
client who has the other intentions locked may be w~liting in exactly the same place 
in OPEN trying to lock our intentions file. It is a very unlikely situation, but not 
an inlpossible ont.) 
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After locking the intentions file, OPEN checks to see that the 
intentions state variable is set to COMMITTED, that the data file is 
referenced in the intentions change list, and that the transaction 
number in the intentions is the same as that in the data file header. 
If  these conditions are not all met, the original transaction was never 
COMMI'I'FED, SO the data file is marked as not in a transaction and 
the intentions file is unlocked. If all of the conditions are met. OPEN 
causes the transaction to be completed according to the following 
procedure. 

Finishing a Transaction 

To complete an interrupted transaction (i.e., one that was 
COMMITTED but not COMPLETED), it is necessary to process each data 
file listed in the intentions change list. The operation for each one 
begins by acquiring a lock, waiting if necessary for someone else to 
unlock the file. It would be an error to skip a locked file, since it 
might be locked by a client who is trying to get at our intentions file 
to complete the same transaction. If so, that client will soon unlock 

tile data file so that we can get it. Note that here we do not unlock 
the intentions file while waiting to get a data file, whereas in OPEN 
we do unlock a data file while trying to get its intentions. Tl!is 

asymmetry serves to resolve potential deadlocks regarding respon- 
siblity for recovering from a particular crash -- everyone defers to the 
client who has the intentions file locked. 

After locking the data file, we read its header and check to see 
whether it still claims to be involved in this transaction -- in other 

words, whether it contains this intentions file identifier and this 
Iransaction number. If not, we can simply unlock it since it must 

have been cotnpleted already, either in the original transaction or in 

a previous crash recovery attempt. Otherwise, we write the new 
header for the data file from the intentions, unlock it, and go to the 
next file listed in the change list. 

5. Sketch of Correctness Proof 

There are two main properties to be considered regarding the 
correctness of an implementation of transactions: the atomic property 
and the consistency property. Recall from the Introduction that the 
atomic property is satisfied if either all the writes take place or none 
of them do, while consistency is achieved if clients get a view of the 
data base such as would happen if the transactions for all the clients 
occurred sequentially rather than overlapped. Consistency will be 
considered first. 

Consistency Property 

It has been shown (see Eswaran, et al., [6]) that transactions will be 
consistent if they are well-formed and two-phase. A transaction is 
well-formcd if it locks each file before accessing it and ultimately 
unlocks them all. Two-phase transactions begin with an initial phase 
during which all locks are acquired followed by a final phase in 
which all locks ,are released. No locks are released during file initial 
phase, and none are acquired during the final phase. 

As an example to clarify why well-formed transactions must 
also be two-phase if they are to be consistent, suppose there 
is a directory file containing identifiers of mailbox liles for a 

set of clients, and Client 1 wants to send some mail to 
Client 2. To do thi';, Client 1 locks the directory, reads it to 
find the mailbox identifier for Client 2, locks the mailbox, 

and puts new mail in it. Client 2 however has decided to 
trade in his old mailbox for a shiny new one at just this 
moment! To do this, he locks the directory, locks his old 
mailbox, takes out any mail that is there, and changes the 

directory to point to his new mailbox. 

If these transactions are not two-phase, there is a danger of 
inconsistency. If Client 1 unlocks the directory before 
locking the mailbox, Client 2 can squeeze in to perform his 
transaction and leave Client 1 sending mail to an obsolete 
destination. There is no danger of inconsistency if the 
transactions are two-phase: if Client 1 locks the directory 
first, he will send his mail to the old mailbox and Client 2 
will pick it up before changing to the new one; if Client 2 
locks the directory first, he will change it before Client 1 
reads it, and Client 1 will put his mail in the new mailbox. 
(Thanks to Howard Sturgis for this example.) 

Transactions that are not committed do not change any significant 
data and hence do not effect consistency. If  a transaction is 
committed, it is eventually completed, either normally or by crash 
recovery. Crash recovery does not endanger consistency since no 

READ or WRrI'E accesses to involved data files are allowed until the 
interrupted transaction is either completed or aborted. Finally, if a 
lock is broken, the transaction is either aborted or completed by 

crash recovery depending on whether or not it had been committed. 
Thus, to demonstrate consistency, it suffices to show that any 
transaction that is completed normally is well-formed and two-phase. 

Wcll-fonnedness is clear since OPEN locks the files, READ and 
WIt.I'I'L,' accesses only come after OPF.N, and END TRANSACI'ION 
unlocks the files. The transactions that complete normally are two- 

phase since all locks are acquired before END TRANSACTION and 
released during it. 

Atomic Property 

To prove that transactions satisfy the atomic property, it is necessary 
to show that even after a crash at any time during a transaction or 
during an attempted crash recovery we can still eventually make all 
of the changes or none of them. If the crash occurs before END 
TRANSACTION is called, none of the file headers will have been 
modified, so none of the writes will be apparent. If  the crash occurs 
during END TRANSACTION, we must to consider the exact type of 
transaction and_ its stage of completion at the time of the crash, 

If no files were written during the transaction, tile crash simply 
interrupted the unlocking operation which will complete 
automatically when the servers cause the locks to time out. I f  a 
single file was written in the transaction, then in case the crash 
occurs before writing its header, no change is visible; otherwise, the 

crash occurs after writing the header, so the transaction is complete 
as soon as the lock times out -- no extra recovery is needed. 

In a transaction that has modified more than one file, there are three 
possibilities to consider: crashing before setting the intentions state 
variable to COMMITTED, crashing after setting the state to COM- 
MITRED but before setting it to COMPLETED, and crashing after 

setting it to COMPLETED. Crashes prior to changing the state to 

COMMI'ITED will result in the transaction being aborted with no 
significant dmnge to the data files; crashes aRer that point will result 
in completing the transaction. 
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If the crash occurs before setting the state to COMMITTED, we may 
have left data files claiming to be involved in the transaction. The 

next time a client tries to OPEN one of those files, the crash recovery 
procedure will discover that the transaction was aborted since the 
transaction number will be different, the data file will not be listed in 
the intentions change list, or the intentions state will not be 
COMMITTED. 

If  the crash occurs after setting the state to COMMITFED but before 
setting it to COMPLETED, the crash recovery code will take over the 
next time a client tries to access a data file that still claims to be in 
this transaction or when this intentions file is next used. In either 
case, data file headers that were not previously written will be 

updated at this time from the copies saved in the intentions file, 

I f  the crash occurs after setting the state to COMPLETED, all of the 
important work has been completed -- the intentions lock will time 
out automatically and there will be no need for crash recovery, 

The proof is completed by noticing that a crash while attempting to 

do crash recovery has the same effect as a one in END TRANSACTION 
after setting the intentions state to COMMITFED. The necessary 

information is still around in the intentions file for someone else to 
use later to complete the transaction• 

6. Some Loose Ends 

The discussion up to this point has left out some details in the 

interest o f  simplicity. In particular, we have ignored creating and 
deleting files, and we have not shown how to deal with data files 
whose header information is too large to fit in a single sector. 

Creating and Deleting Files 

Files are created by a special call to OPEN. If the creating 
transaction is aborted, it would be nice if the file would automatically 
disappear. This can be made to happen by running a client "garbage 
collector" process which looks for transaction data files whose header 
indicates that their creation has been interrupted. OPEN sets such a 
flag in the header when it creates the file, and END TRANSACTION 
resets it. 

DELETE is another action available to clients during a transaction. 
When this routine is called, it makes an entry in the transaction 
change list telling END TRANSACTION to delete the file. This 
information is written to the intentions file as part of the change list, 
mad the delete is done only after setting the intentions state to 
COMMI'Iq'ED. This ensures that the file will not be deleted if the 

transaction is aborted. The crash recovery procedure checks to make 
sure the file has really been deleted. (If file identifiers were reused, 
a slightly more complex scheme would be necessary to avoid 

incorrectly deleting a new file -- the file to be deleted would have its 
header re-:irked saying that it is involved in this transaction in the 
same way modified files are marked. Crash recovery would not redo 
a delete unless the file still claimed to be in this transaction.) 

Multisector Headers 

For large data files, a single sector is not big enough to hold all of 
the header information. It would be too wasteful to preallocate the 
maximum number of header sectors that might ever be needed, so 

the hc:tdcr information is structured to allow expansion. 

The fiist real sector of a data file holds the initial part of the sector 
map and free-list. When necessary, it also contains a pointer to a 
tree of extension sectors. The first sector alone is adequate to hold 
header data for files of up to 220 logical sectors of 512 bytes each. 
As a file grows beyond that size, header extensions are added up to a 
maximum of 145 extra sectors for the biggest possible data file which 
can contain over 32,000 logical sectors. (The maximum size is set by 
the use of 16 bit real sector numbers and the potential need for two 
real sectors for each logical one during a complete rewrite of the 
file.) 

In END TRANSAf]rlON, modified extra header sectors are written to 
unused file locations and the pointers to them are updated. It is still 
the case that only the header information for the first real sector 
needs to be saved in the intentions file since it contains the root 
pointer to the extensions. 

7. Discussion 

We have described a client-based approach for carrying out 

consistent, atomic transactions in an environment with multiple 
clients and servers. The method makes relatively simple demands on 
the servers, so it should be possible to use it with many existing file 
systems. Moreover, since servers are essentially passive in this 
scheme, treating transactions that involve multiple servers is no more 

difficult than the single server case -- file identifiers include location 
information and clients simply send their messages to the appropriate 
server. 

The system as described above can be extended in various ways. 

Two important possibilities concern allowing muhiple readers and 

providing recovery from media failures. With a single type of lock, 
read-only access to a data file excludes other readers. However, if 
the file server has separate read and write locks, it is straightforward 
to modify the transaction machinery to take advantage of them to 

• allow multiple simultaneous readers. No major changes are 
necessary since the transaction procedures do not modify even the 
header of read-only files -- such files are simply locked by OPEN, 
read by READ, and unlocked by END TRANSACTION. 

Providing for recovery after a media failure such as a server disk 
crash can be handled by keeping a change log. It is assumed that the 
file server can be restored to a recent previous state by means of 
some kind of dump mechanism. The change log for the server holds 
a sequential history of writes, file creations, and file deletions since 
the last dump. The log could be kept on tape by the server itsel~ on 
another server, or on a log server. After a file server failure that has 
resulted in loss of stored data, the log would be used to redo all of 
the recorded actions. The transaction machinery would log all of its 

write, create, and delete actions, so recovery after media failures 
would become no different than recovery after a server crash not '  
involving loss of data. Note that fl~e change log does not need to 
hold any information regarding the beginning or end of transactions 
or even the identity of fire transaction for which an action is 
performed; this is because the normal transzmtion crash recovery will 
take care of cases in which a transaction was in progress when the 
server crash occurred. Thus, other clients who are not using the 
transaction machinery can still make use of the change log facility to 
protect themselves against media failures. 
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