
A Client-Based Transaction System
to Maintain Data Integrity

William H. Paxton
Xerox Palo Alto Research Center

Abstract

This paper describes a technique for maintaining data
integrity that can be implemented using capabilities typically
found in existing file systems. Integrity is a property of a
total collection of data. It cannot be maintained simply by
using reliable primitives for reading and writing single
units -- the relations between the units are important also.
The technique suggested in this paper ensures that data
integrity will not be lost as a result of simultaneous access
or as a result of crashes at inopportune times. The
approach is attractive because of its relative simplicity and
its modest demands on the underlying file system. The
paper gives a detailed description of how consistent, atomic
transactions can be implemented by client processes
communicating with one or more f i le server computers. The
discussion covers file structure, basic client operations, crash
rccovery, and includes an informal correctness proof.

1. Introduction

This paper describes a technique for maintaining data integrity that
can be implemented using capabilities typically found in existing file
systems. Integrity is a property of a total collection of data. It
cannot be maintained simply by using rcliable primitives for reading
and wriling single units -- the relations between the units are
important also. The technique described below ensures that data
integrity will not be lost as a result of simultaneous access or as a
result of crashes at inopportune times.

The environment we have in mind is a collection of computers
capable of sending messages to each other over a high bandwidth
network [1]. One or more of these computers act as .file servers --

they are a shared repository of data for the other machines which are
called clients. The client machines issue read or write commands in
the form of messages to the particular file server holding the
addressed information. The client gets back a response from the
server after the command is completed. The response is a message
containing the requested information in the case of a read or an
acknowledgement in the case of a write.

P e r m i s s i o n to c o p y w i t h o u t fee all o r pa r t o f th i s m a t e r i a l is
g r a n t e d p r o v i d e d t h a t t he cop ies a re no t m a d e o r d i s t r i b u t e d
for d i rect c o m m e r c i a l a d v a n t a g e , the A C M c o p y r i g h t no t i ce
a n d the title o f the p u b l i c a t i o n a n d its da t e a p p e a r , a n d no t i ce
is g iven t h a t c o p y i n g is by p e r m i s s i o n o f the A s s o c i a t i o n for
C o m p u t i n g M a c h i n e r y . T o c o p y o the rwise , o r to r epub l i sh ,
r equ i re s a fee a n d / o r specif ic p e r m i s s i o n .

© 1979 A C M 0 - 8 9 7 9 1 - 0 0 9 - 5 / 7 9 / 1 2 0 0 / 0 0 1 8 $00.75

A transaction is a sequence of reads and writes by some client.
Accesses may be made to several files located on different selwers.
From the standpoint of maintaining data integrity, it is important
that the system for carrying out transactions have the following two

properties.

1. The consistency property: although many clients may be
performing transactions simultaneously, each will get a
consistent view of the shared data as if the transactions
were being executed one at a time.

2. The atomic property: for each transaction, either all of
the writes will be executed or none of them will, inde-
pendent of crashes in servers or clients.

There are two main approaches to building a transaction system that
hzts these properties. The first makes the file servers responsible for
ensuring that transactions are consistent and atomic. Designs for
such systems have been described by Gray [2], Lampson and Sturgis
[3], Israel, Mitchell, and Sturgis [4], and others. The alternative
method is described in this paper; it puts the burden on the clients
rather than the servers.

qqae client-based approach is an attractive option because o f its
relative simplicity and its modest demands on the file servers. It is
similar to the Lampson and Sturgis single server algorithm and is
significantly less complicated than thcir multiserver algorithm in
which the transaction state is distributed over many machines. This
simplicity makes the client-based approach relatively easy to
implement -- an early version of the method described in this paper
wcllt through two cycles of design, irnplementation, and debugging in

al)oul two work-m~nHhs and is now in regular use as part of an

experimental office information system.

The following sections describe the client-based approach to
providing transactions that are consistent and atomic. Section 2
discusses the requirements for the file servers and presents the two
types of transaction files. Section 3 outlines the basic actions that are
available to clients for carrying out transactions. Crash recovery,
which is needed to complete interrupted transactions, is covered in
section 4. A proof that the system does actually implement con-
sistent and atomic transactions is sketched in section 5. Some loose
ends concerning large data files and file creation and deletion are
discussed in section 6. Section 7 suggests some possible extensions.

"18

2. File Servers and Transaction Files

The discussion .of the system begins with an overview of the
capabilities required in the file servers and the structure of the two
types of transaction files.

Server Capabilities

One of the merits of a client-based approach is the simplicity of its
requirements which make it possible for typical existing tile systems
to support the transaction machinery. The server's primary role in
transactions is just to provide sector-at-a-time random access to its
files. In addition, the server allows a client to gain sole access to a
tile by locking it. The key which is returned to the client must be
supplied in all subsequent accesses until the file is unlocked. If a
locked file is not accessed for a period of time, the server
automatically releases the lock so that a crashed client will not leave
files permanently unavailable.

These are the basic file server capabilities needed for a client-based

transaction system: sector at a time random access, file locks, and
automatic unlocking after prolonged inactivity. For more infor-
mation about a file server which satisfies these requirements and was

used in an early implementation of our method, see a companion
paper by Swinehart, McDaniel, and Boggs [5].

Transaction Files

Transactior~s inw)lve two distinct types of files: Data Files which hold

the infi)rmation operated on by transactions, and Intentions Files
which conlain records about dala files changed by a transaction and

are used in crash recovery. The transaction system implements both
types with standard files provided by the servers; there is nothing
special about them as far as the servers are concerned.

Data files are structured by the transaction system so that a single
write will convert them to a new version that may have many sectors
changed. This is accomplished by providing a level of mapping from
logical sector numbers used to address the data to real sector
numbers as understood by the tile servers. The first real sector of
each data file is a header which contains a sector map indicating
where in the tile the various logical sectors are stored. By changing
the sector map, the mapping from logical sector numbers to real
sector numbers can be changed for the entire file. The transaction

system directs writes to unused real sectors, so until the header is
rewritten, no old data is lost.

In addition to the sector map, the header contains a free-list of
unused real sector numbers and a record indicating the transaction, if
any, in which this file is currently involved. A simple compactor
process can periodically run as a client to relocate logical sectors to
unused locations at the front of the file, update the sector map and
free-list, and then truncate the file to reclaim storage.

Intentions files contain a state variable, a transaction number, a list
of changes, and a sequence of headers. The transaction state
alternates among STARTED, COMMITTED, and COMPLETED. While the

state is STARTED, the transaction can be aborted with no significant
eft~ct on the data files; once the state becomes COMMI'TI'ED, all of

the writes will eventually be done at which time the slate will change
[o f'OMPI.ETEI). The transaction nuuther is incremented during the

completion of a transaction and, along with the state w~riable, has an

important role in crash recovery. The list of changes htdds ktenti-
tiers for data files that have been modified in the transaction and
pointers to copies of their new headers which are saved in the re-
mainder of the intentions file.

3. Client Actions

The basic client actions are BEGIN TRANSACTION, OPEN, READ,
WRITE, ABORT TRANSACTION, and END TRANSACTION. The effects
of these operations are described below. To simplify the descrip-
tions, we assume that the client has a permanently allocated inten-
tions file and we allow the client to have only one transaction in
progress at a time. These restrictions can be removed by having
BEGIN TRANSACTION allocate an intentions file and return a
Transaction Identifier which would be passed as an additional
argument to all the other routines.

BEGIN TRANSACTION

This routine is called at the beginning of each transaction to change
the state to STARTED. The following routines signal an error if they

are called in any other state.

Oe~'N

OPEN receives a file identifier and returns a handle for use in
subsequent accesses. The identifier includes data indicating where

the file is located, so the lbllowing operations can communicate with
the appropriate server. OPEN locks the file, saves the key, and reads

the header. If the header indicates that the file is involved in

another trans'lction, a crash must have previously occurred pre-
venting the completion of that transaction, so recovery is done in a
manner described below and the header is then reread.

Note that the header is not written at this time; it is modified only in
END TRANSACTION, and then only if there have been WRITE'S to the
file.

RE.49

The arguments to READ are a file handle, a logical sector number,
and a buffer to receive the data. A local copy of the header sector
map is used to convert from logical to real sector number, and the
data is transferred from the file server to the buffer.

If the file lock has been broken (i.e., the file server has released the

lock for some reason such as client inactivity), all files opened for
this transaction are unlocked, the state changes to COMPLETED, and
an error code signifying Transaction Aborted is returned. The
transaction system makes no assumptions about how a client program
will deal with such aborts. In typical usage, they will probably be
rare and the client can simply treat them like a software error
requiring a program restart.

WRITE

WRrFE receives as arguments a file handle, a logical sector number,

and a buffer containing the dala to be written. It first uses the local

copy of the file free-list to allocate an unused real sector. Then, the
local copy of the file sector map is checked to see if the logical sector
being written already exists. If so, its real sector number is recorded
in a separate list to be merged with the header free-list during the

"19

completion of the transaction. Finally, the local copy of the sector
map is updated to indicate the new mapping, and the buffer is
transferred to the file server. As in READ, the transaction is aborted
if the file lock has been broken.

Notice that all of the useful information from before the transaction
is left untouched, Only local copies of headers are changed, and
writes go to unused real sectors. The addition of sector numbers to
the header free-list is delayed until END TRANSACTION SO that
subsequent writes during this transaction will not use them.

ABORT TRANSACTION

All files opened for this transaction are unlocked and the state of the
transaction is changed to COMPLETED.

END TRANSACTION

There are three cases to consider for END TRANSACTION depending
on whether zero, one, or more than one file was written. In all
cases, the transaction is immediately aborted if a broken lock is
discovered before the state becomes COMMITTED.

If no files were changed, END TRANSACTION simply unlocks all the

files that were opened, changes the state to COMPLETED, and re.turns.

If a single file was modified, then after the read-only files are

successfully unlocked (i.e., their locks were not found to be broken),

the modificd file has its header written and its lock released. In both
this case and the previous one, the intentions file is not required and

no accesses are made to it.

If multiple files were written, END TRANSACTION must leave around
enough information so that if it crashes after committing to make the
changes someone else will be able to complete them. The intentions
file is the place for this information. The sequence of steps is as
follows:

1. Unlock all of the read-only files.

2. Lock the intentions file. (This is the first action
involving the intentions file for this transaction; up to
this point all the activity has been with the data files.)

3. Mark each modified file as being changed in this
transaction by placing in its header the new transaction
number and the identifier for the intentions file.

4. Write copies of the new headers to the intentions file.
The header free-lists are first updated to include the real
sectors which are now unused.

5. Write the list of changes to the intentions file with the
transaction number updated and the state variable set to
COMMITTED. There is now a committment to com-
pleting the transaction rather than aborting it. If a
broken lock is discovered after this point, crash recovery
will be invoked to finish the transaction.

6. Write the new headers to the data files saying that they
are not involved in any transaction. Unlock each file
after writing its header.

7. Write the intentions file header with the state variable
set to COMPLffI'ED, and then unlock it.

that the state recorded in the intentions file is either

The STARTED state is not recorded

Note

COMMITTED or COMPLETED.

since the intentions file information is solely for crash recovery, and
the recovery mechanism does not need to distiuguish between
STARTED and COMPLETED -- it is only invoked for a transaction that
was left in the COMMI'Iq'ED state.

At this point it is possible to summarize the overhead for the
transaction mechanism in terms of extra interactions with the file
servers in addition to the data accesses. For a transaction with N
files opened and M of them modified (M greater than 1), there is an
extra lock and unlock for the intentions file, N extra reads to get the
data file headers, and 3M+2 extra writes. The writes, in the order

that they occur, are to mark each of the M files as in the transaction
(step 3), to write the M headers to the intentions file (step 4), to write
the list of changes and set the intentions file state variable to
COMMITTED (step 5), to write the M headers to the data files (step 6) ,
and to reset the intentions state to COMPLETED (step 7). Large data
files will require additional reads and writes for extra header
information -- see Section 6 for details.

4. Crash Recover),

In a client-based system, crash recovery for transactiot~s is done "on
demand" rather than immediately after restarting. The recovery

procedure is triggered when a file that was involved in an interrupted

transaction is next accessed. There are two indications that a crash

has previously occurred: an unlocked data file may claim to be

involved in a transaction, or the state variable of an unlocked
intentions file may be COMMI'Iq'ED rather than COMPLETED. The

former case is dealt with by recovery code in OPFN; the latter is

handled by finishing the transaction in a manner described below.

Recovery in OPEN

Recall that OPEN locks each data file involved in a transaction and
reads its header before any READ or WRITE access to that file is
made. Thus, the READ and WRITE operations are guaranteed to
come after any crash recovery performed by OPEN.

When OPEN finds a data file claiming to be in a transaction, it first
checks whether the header points to an intentions file that is
currently in use by this client. If so, the crash must have happened
after marking the header in step 3 of END TRANSACTION and before
the intentions state could be set to COMMI'I'rED in step 5. Otherwise,
if the state had become COMMI'I'rED, the transaction would have
been completed when the intentions file was first reacquired.
Therefore, the previous transaction was never COMMI'I"rED, and the
file currently being opened can simply be marked as not in a
transaction.

If the data file being opened names an intentions file other than one

currently in use by this client, OPEN now attempts to lock that other
intentions file, waiting if necessary until it can acquire the lock.
OPEN cannot simply assume that this data file is okay on the basis of

someone else having locked the intentions -- the client who has the
intentions locked may be currently waiting to get at this file in order
to complete the transaction! To resolve this potential conflict, OPEN

unlocks the data file while it is waiting to lock the intentions file.
After acquiring a lock for the intentions file, OPEN relocks the data
file and rereads its header to see that file file still claims to be in the
transaction. (There is unfortunately still a potential for deadlock here, since the
client who has the other intentions locked may be w~liting in exactly the same place
in OPEN trying to lock our intentions file. It is a very unlikely situation, but not
an inlpossible ont.)

20

After locking the intentions file, OPEN checks to see that the
intentions state variable is set to COMMITTED, that the data file is
referenced in the intentions change list, and that the transaction
number in the intentions is the same as that in the data file header.
If these conditions are not all met, the original transaction was never
COMMI'I'FED, SO the data file is marked as not in a transaction and
the intentions file is unlocked. If all of the conditions are met. OPEN
causes the transaction to be completed according to the following
procedure.

Finishing a Transaction

To complete an interrupted transaction (i.e., one that was
COMMITTED but not COMPLETED), it is necessary to process each data
file listed in the intentions change list. The operation for each one
begins by acquiring a lock, waiting if necessary for someone else to
unlock the file. It would be an error to skip a locked file, since it
might be locked by a client who is trying to get at our intentions file
to complete the same transaction. If so, that client will soon unlock

tile data file so that we can get it. Note that here we do not unlock
the intentions file while waiting to get a data file, whereas in OPEN
we do unlock a data file while trying to get its intentions. Tl!is

asymmetry serves to resolve potential deadlocks regarding respon-
siblity for recovering from a particular crash -- everyone defers to the
client who has the intentions file locked.

After locking the data file, we read its header and check to see
whether it still claims to be involved in this transaction -- in other

words, whether it contains this intentions file identifier and this
Iransaction number. If not, we can simply unlock it since it must

have been cotnpleted already, either in the original transaction or in

a previous crash recovery attempt. Otherwise, we write the new
header for the data file from the intentions, unlock it, and go to the
next file listed in the change list.

5. Sketch of Correctness Proof

There are two main properties to be considered regarding the
correctness of an implementation of transactions: the atomic property
and the consistency property. Recall from the Introduction that the
atomic property is satisfied if either all the writes take place or none
of them do, while consistency is achieved if clients get a view of the
data base such as would happen if the transactions for all the clients
occurred sequentially rather than overlapped. Consistency will be
considered first.

Consistency Property

It has been shown (see Eswaran, et al., [6]) that transactions will be
consistent if they are well-formed and two-phase. A transaction is
well-formcd if it locks each file before accessing it and ultimately
unlocks them all. Two-phase transactions begin with an initial phase
during which all locks are acquired followed by a final phase in
which all locks ,are released. No locks are released during file initial
phase, and none are acquired during the final phase.

As an example to clarify why well-formed transactions must
also be two-phase if they are to be consistent, suppose there
is a directory file containing identifiers of mailbox liles for a

set of clients, and Client 1 wants to send some mail to
Client 2. To do thi';, Client 1 locks the directory, reads it to
find the mailbox identifier for Client 2, locks the mailbox,

and puts new mail in it. Client 2 however has decided to
trade in his old mailbox for a shiny new one at just this
moment! To do this, he locks the directory, locks his old
mailbox, takes out any mail that is there, and changes the

directory to point to his new mailbox.

If these transactions are not two-phase, there is a danger of
inconsistency. If Client 1 unlocks the directory before
locking the mailbox, Client 2 can squeeze in to perform his
transaction and leave Client 1 sending mail to an obsolete
destination. There is no danger of inconsistency if the
transactions are two-phase: if Client 1 locks the directory
first, he will send his mail to the old mailbox and Client 2
will pick it up before changing to the new one; if Client 2
locks the directory first, he will change it before Client 1
reads it, and Client 1 will put his mail in the new mailbox.
(Thanks to Howard Sturgis for this example.)

Transactions that are not committed do not change any significant
data and hence do not effect consistency. If a transaction is
committed, it is eventually completed, either normally or by crash
recovery. Crash recovery does not endanger consistency since no

READ or WRrI'E accesses to involved data files are allowed until the
interrupted transaction is either completed or aborted. Finally, if a
lock is broken, the transaction is either aborted or completed by

crash recovery depending on whether or not it had been committed.
Thus, to demonstrate consistency, it suffices to show that any
transaction that is completed normally is well-formed and two-phase.

Wcll-fonnedness is clear since OPEN locks the files, READ and
WIt.I'I'L,' accesses only come after OPF.N, and END TRANSACI'ION
unlocks the files. The transactions that complete normally are two-

phase since all locks are acquired before END TRANSACTION and
released during it.

Atomic Property

To prove that transactions satisfy the atomic property, it is necessary
to show that even after a crash at any time during a transaction or
during an attempted crash recovery we can still eventually make all
of the changes or none of them. If the crash occurs before END
TRANSACTION is called, none of the file headers will have been
modified, so none of the writes will be apparent. If the crash occurs
during END TRANSACTION, we must to consider the exact type of
transaction and_ its stage of completion at the time of the crash,

If no files were written during the transaction, tile crash simply
interrupted the unlocking operation which will complete
automatically when the servers cause the locks to time out. I f a
single file was written in the transaction, then in case the crash
occurs before writing its header, no change is visible; otherwise, the

crash occurs after writing the header, so the transaction is complete
as soon as the lock times out -- no extra recovery is needed.

In a transaction that has modified more than one file, there are three
possibilities to consider: crashing before setting the intentions state
variable to COMMITTED, crashing after setting the state to COM-
MITRED but before setting it to COMPLETED, and crashing after

setting it to COMPLETED. Crashes prior to changing the state to

COMMI'ITED will result in the transaction being aborted with no
significant dmnge to the data files; crashes aRer that point will result
in completing the transaction.

21

If the crash occurs before setting the state to COMMITTED, we may
have left data files claiming to be involved in the transaction. The

next time a client tries to OPEN one of those files, the crash recovery
procedure will discover that the transaction was aborted since the
transaction number will be different, the data file will not be listed in
the intentions change list, or the intentions state will not be
COMMITTED.

If the crash occurs after setting the state to COMMITFED but before
setting it to COMPLETED, the crash recovery code will take over the
next time a client tries to access a data file that still claims to be in
this transaction or when this intentions file is next used. In either
case, data file headers that were not previously written will be

updated at this time from the copies saved in the intentions file,

I f the crash occurs after setting the state to COMPLETED, all of the
important work has been completed -- the intentions lock will time
out automatically and there will be no need for crash recovery,

The proof is completed by noticing that a crash while attempting to

do crash recovery has the same effect as a one in END TRANSACTION
after setting the intentions state to COMMITFED. The necessary

information is still around in the intentions file for someone else to
use later to complete the transaction•

6. Some Loose Ends

The discussion up to this point has left out some details in the

interest o f simplicity. In particular, we have ignored creating and
deleting files, and we have not shown how to deal with data files
whose header information is too large to fit in a single sector.

Creating and Deleting Files

Files are created by a special call to OPEN. If the creating
transaction is aborted, it would be nice if the file would automatically
disappear. This can be made to happen by running a client "garbage
collector" process which looks for transaction data files whose header
indicates that their creation has been interrupted. OPEN sets such a
flag in the header when it creates the file, and END TRANSACTION
resets it.

DELETE is another action available to clients during a transaction.
When this routine is called, it makes an entry in the transaction
change list telling END TRANSACTION to delete the file. This
information is written to the intentions file as part of the change list,
mad the delete is done only after setting the intentions state to
COMMI'Iq'ED. This ensures that the file will not be deleted if the

transaction is aborted. The crash recovery procedure checks to make
sure the file has really been deleted. (If file identifiers were reused,
a slightly more complex scheme would be necessary to avoid

incorrectly deleting a new file -- the file to be deleted would have its
header re-:irked saying that it is involved in this transaction in the
same way modified files are marked. Crash recovery would not redo
a delete unless the file still claimed to be in this transaction.)

Multisector Headers

For large data files, a single sector is not big enough to hold all of
the header information. It would be too wasteful to preallocate the
maximum number of header sectors that might ever be needed, so

the hc:tdcr information is structured to allow expansion.

The fiist real sector of a data file holds the initial part of the sector
map and free-list. When necessary, it also contains a pointer to a
tree of extension sectors. The first sector alone is adequate to hold
header data for files of up to 220 logical sectors of 512 bytes each.
As a file grows beyond that size, header extensions are added up to a
maximum of 145 extra sectors for the biggest possible data file which
can contain over 32,000 logical sectors. (The maximum size is set by
the use of 16 bit real sector numbers and the potential need for two
real sectors for each logical one during a complete rewrite of the
file.)

In END TRANSAf]rlON, modified extra header sectors are written to
unused file locations and the pointers to them are updated. It is still
the case that only the header information for the first real sector
needs to be saved in the intentions file since it contains the root
pointer to the extensions.

7. Discussion

We have described a client-based approach for carrying out

consistent, atomic transactions in an environment with multiple
clients and servers. The method makes relatively simple demands on
the servers, so it should be possible to use it with many existing file
systems. Moreover, since servers are essentially passive in this
scheme, treating transactions that involve multiple servers is no more

difficult than the single server case -- file identifiers include location
information and clients simply send their messages to the appropriate
server.

The system as described above can be extended in various ways.

Two important possibilities concern allowing muhiple readers and

providing recovery from media failures. With a single type of lock,
read-only access to a data file excludes other readers. However, if
the file server has separate read and write locks, it is straightforward
to modify the transaction machinery to take advantage of them to

• allow multiple simultaneous readers. No major changes are
necessary since the transaction procedures do not modify even the
header of read-only files -- such files are simply locked by OPEN,
read by READ, and unlocked by END TRANSACTION.

Providing for recovery after a media failure such as a server disk
crash can be handled by keeping a change log. It is assumed that the
file server can be restored to a recent previous state by means of
some kind of dump mechanism. The change log for the server holds
a sequential history of writes, file creations, and file deletions since
the last dump. The log could be kept on tape by the server itsel~ on
another server, or on a log server. After a file server failure that has
resulted in loss of stored data, the log would be used to redo all of
the recorded actions. The transaction machinery would log all of its

write, create, and delete actions, so recovery after media failures
would become no different than recovery after a server crash not '
involving loss of data. Note that fl~e change log does not need to
hold any information regarding the beginning or end of transactions
or even the identity of fire transaction for which an action is
performed; this is because the normal transzmtion crash recovery will
take care of cases in which a transaction was in progress when the
server crash occurred. Thus, other clients who are not using the
transaction machinery can still make use of the change log facility to
protect themselves against media failures.

22

Acknowledgments

The paper by Buffer Lampson and Howard Sturgis [3] provided the
initial inspiration for this work. Conversations with them and with
Peter Deutsch were also valuable sources of ideas. Tom Boynton
implemented a version of the system and helped to debug my
thinking about it. Jay Israel and the referees made valuable
comments on an earlier version of this paper. Jim Gray pointed out
some oversimplifications in the correctness proof, directed my
attention to the problem of media failures, and tactfully made me
more aware of the roots of this work in data base operating systems.

References

1. R. M. Metcalfe and D. R. Boggs. Ethernet: distributed packet
switching for local computer networks, CACM 19 (July 1976) pp. 395-
404.

2. J. N. Gray. "Notes on data base operating systems," in Operating
Systems, An Advanced Course, American Elsevier, 1978.

3. Butler Lampson and Howard Sturgis. Crash Recovery in A
Distributed Data Storage System. unpuplished paper, Xerox Palo Alto
Research Center, t977; revised version to appear in CACM.

4. Jay E. Israel, James G. Mitchell, and Howard E. Sturgis.
Separating Data From Function in a Distributed File System. in tile
Proc. of Second International Colloq. on Operating Systems, IRIA,
October 1978.

5. D. C. Swinehart, G. A. McDaniel, and D. R. Boggs. WFS: A
Simple Centralized File System for a Distributed Environment,
unpuplished paper, Xerox Palo Alto Research Center, 1979.

6. K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. The
Notions of Consistency and Predicate Locks in a Database System.
CACM, Nov 1976, Vol 19, Num 11, pp. 624-633.

23

