
HANDLING DIFFICULT FAULTS IN OPERATING SYSTEMS

R.M. Needham

Computer Laboratory
University of Cambridge

Cambridge, England

It is commonplace to build facilities into
operating systems to handle faults which occur in
user-level programs. These facilities are often
inadequate for their task; some faults or inci-
dents are regarded as so bad that the user cannot
be allowed to act on them and this makes it diffi-
cult or impossible to write subsystems which give
proper diagnostics in all cases, or which are ade-
quately secure, or which are adequately robust.
This paper looks into why there is a need for
very complete facilities and why there is a prob-
lem about providing them I and proposes an outline
structure which could be used.

A prime requirement is for all occurrences
which happen during the life of a process and
which affect it to be capable of being acted upon
within the process. This is clearly in some con-
flict with the overriding need that programs
function solely under the iurisdiction of the
operating system or at any rate of some superior,
and that this superior may arbitrarily terminate
or abolish them. Since such action must be pro-
voked by something, one has on the face of it
introduced a class of incident with which programs
ore not allowed to cope internally. Various de-
vices may be used to mitigate the effects of this
contradiction, but, rather than discussing them
at once, it is preferable to consider why the
initial principle was set up at all.

The basic reasons are diagnostics, security,
and robustness. Taking diagnostics first, only
if all occurrences can be arranged to cause, even
briefly, control to pass through user supplied
code can the user print out the diagnostics he
wonts rather than the ones someone else wonts.
This is not a matter of the facilities provided
in any particular programming, language (on in-
teresting but different topic) but goes to the
root of system construction. The picturesque
way to put the requirement is that we wont to have
a subsystem for use by Finns which puts out com-
plete diagnostics exclusively in Finnish without
having to put a Finnish option in any central
system tables. Any incident which puts out
English or anything else counts as undiagnosed.
There is no problem except for the class of in-
cident which sometimes cannot be dealt with by
the user - e.g. system shutdown or operator in-
tervention. These must, however, be dealt with
properly, i.e. in Finnish. This desire for
'complete encapsulation' is quite different from
what is done in systems where the handling of
faults is dealt with in a unified scheme of levels
through which faults ore passed back in virtue of
a standard unified calling sequence and similar
apparatus. In this approach we con have a stan-
dard piece of program which is entered by the
system after on (untrapped) failure together with
data about what happened where. By making as-
sumptions about the general shape of programs i t
is then possib le to construct a sensib le diagnos-
t i c . A s a t i s f a c t o r y iob can be done th i s way,
together wi th a system of l eve l s so that ce r ta in

faults may only be handled at or above appro-
priate levels, which gives reasonable information
about incidents in programs which obey the stan-
dard conventions. It will not, however, provide
a proper solution for our hypothetical Finns,
because only those incidents could be properly
dealt with which one was permitted to handle at
the level at which the program ran. We can thus
see more clearly the nature of the problem: one
general principle says that all diagnostic output
should be produced by the user program in formats
of the user's choice7 the other says that manage-
ment of a system is only possible if o particular
process or iob can be inexorably driven out,
which is essentially why we forbid some incidents
to be trapped or ignored. Whenever o decision is
made that certain kinds of fault con never be
dealt with internally to a user program but must
be passed 'upwards' to some standard part of the
system, the consequence is a loss of flexibility
which is clear but often overlooked.

Security of information is also involved in
this question of dealing with faults internally.
If all faults can be dealt with internally, one
can rely on the program itself to leave matters
in a tidy state no matter what happens. A pro-
gram whose task is to update or read a sensitive
file must ensure that as far as humanly possible
it always leaves consistent information, closes
the file, leaves no confidential rubbish about in
core or registers - even if the user quits in the
middle of it, the console plug is pulled out, the
multiplexer breaks, the channel breaks, the user's
time budget runs out, or the machine-room operator
capriciously terminates the user. Once again, if
we are prepared to force all programs into o Pro-
crustean bed of convention, external treatments
may appear to do the iob. But to do this is
often both over-restrictive and over-drastic.
This security aspect most commonly concerns users
updating, by a program for the purpose, data which
they are not allowed to read - a very standard
situation which is often forgotten or not feasible
without special privileges.

Finally, there is the question of robustness.
One often makes packages do things for user pro-
grams on request - handle disc transfers, for
example. These obviously need to handle errors
internally, and it is invariably arranged that
they can. What is not always dealt with, and in
some systems cannot be, is the possibility that
the package itself may be catastrophically wrong.
Taking a disc transfer package as an example, it
will arrange internally to deal with transient
checksum failures by trying again. A common
class of (software) mistake in programs like this
is that they deal correctly with some hardware
faults s but rarer hardware error states hove
never been properly exercised. When the rare
event happens the package falls down in a heap,
looping or violating its memory bounds or other-
wise misbehaving. To the user who called the
package it should, nevertheless, appear tidy.
That is to soy, the user should receive a message

SS

saying 'your requested transfer cannot be done'
w i t h as good grace as i f i t had been a v u l g a r
checksum f a i l u r e . Th is can o n l y be ach ieved i f ,
as w e l l as many o t h e r f e a t u r e s , t h e r e i s e x c e l l e n t
i n t e r n a l f a u l t h a n d l i n g .

A l l o f these cases are example o f how we
need not j u s t to know t h a t t h e r e i s some agency
to which we can pass the t r o u b l e - but to be ab le
to cope w i t h i t on the spot no m a t t e r what i t i s .

The ma io r p iece o f mechanism should recon-
c i l e , o r go some way to r e c o n c i l i n g , the c o n f l i c t
which occurs between the d e s i r e to t r e a t i n c i -
dents i n t e r n a l l y to programs and the p r a c t i c a l
n e c e s s i t y o f m a i n t a i n i n g s u p e r v i s o r c o n t r o l . I t
w i l l be seen t h a t the same dev ice can be pressed
i n t o s e r v i c e f o r some o f the o t h e r needs as w e l l .

A s imp le mechanism

A s imp le approach to t h i s i s to a r range t h a t
a l l events may be t rapped by the user program,
u ~ t h a t some o f them cause o t h e r a c t i o n s as w e l l .
An example o f t h i s i s f u r n i s h e d by the o d d l y -
named ' p r i v n t e m o n i t o r ' f a c i l i t y i n the A t l a s 2
s u p e r v i s o r . Th is amounts to s e t t i n g a t r a p
address f o r a l l o t h e r w i s e un t rapped i n c i d e n t s ,
i n c l u d i n g t h e e which one i s not o r d i n a r i l y p e r -
mit%ed to trap. On the occurrence of something
which sends control to this address, note is
taken by the system of the event. The conse-
quence of this is twofold:

(a) it is not allowed to happen again -
instant termination will occur instead

(b) the CPU time remaining for the process
before termination is limited to a
small amount - in practice 5 seconds.

This gives the moribund operation time to set its
affairs in order and ensure that i% expires
decently. An example is the QUEUEJOB command,
whose task is to append the description of a
user's iob to a file of these things for later
running at the discretion of a system operator.
The file itself is sensitive - because it may
contain users' passwords which get quoted auto-
ma%ically when the iobs are run. I% is the task
of QUEUEJOB's private monitor sequence to ensure
that the file is closed and left in a tidy state
and that, for example, no embarrassing infor-
mation is left available to the ingenious user
who quits in the middle of it. The private moni-
%or sequence looks after these things, and system
integrity is assured by the knowledge that after
a disastrous occurrence the process is certainly
on the way out and will terminate before long.

The method described is limited in generali-
ty (though it certainly allows one %o write
systems which say 'STOPPED BY OPERATOR' in
Finnish) and one would like to have a method of
achieving the same kind of result in more modern
systems which do not have the same rigid two-
level structure. We need arrangements which
will send a process monotonically towards ter-
mination or some other standard state, even if it
does not get there instantly, while letting it
apply its own actions a% every stage. This is a
strong requirement. The structure of levels
through which we proceed monotonically must be
known to the system as a whole. Only then can
some remedial or tidying action be permitted at
each level while nevertheless ensuring that
disaster is reported to higher levels with un-
diminished force. I do not know of any general
systems in which all those requirements are pro-
perly satisfied; it is easy to arrange for in-
ternal tidying at one level only or %o arrange
t h a t severe i n c i d e n t s are passed a l l the way back
%o a h igh enough l e v e l w i t h no o p p o r t u n i t y f o r

intervention on the way.

A more general mechanism

The following outline system achieves many
of the desired aims, but would probably need hard-
ware help for efficiency.

Each process has at all times at least one
'catastrophe address' which we will call CA. Note
that CA is not necessarily concerned at all with
the handling of 'ordinary' exception conditions.
This is updated (by system call) in either of two
ways - by replacing the current value or by
stacking a new one on top of it. The stack must
be held in space which is ordinarily inaccessible
to the process. If a catastrophic incident
occurs the following actions take place:

(a) the process's time allowance is set
to a period t;

(b) the process's sequence control is
reset to CA;

(c) the current CA on the stack is marked
as 'used up';

(d) a marker is set which forbids any
further use of the calls updating CA;

(e) the process is resumed.
The process continues after re-entry at CA,

and continues until one of three things happens:
(a) it issues a system call saying 'end

catastrophe program'

t h e r e i s ano the r c a t a s t r o p h e .
In many o f these cases, the t o p member o f the
s tack i s d e l e t e d , and the system behaves as i f
the c a t a s t r o p h e was new.

The process thus has an o p p o r t u n i t y , a t any
l e v e l , to t e r m i n a t e t i d i l y , w i t h o u t hav ing the
opportunity to ignore the incident. It does
not have full generality - because it is heavily
constrained to an arbitrary time t at each stage,
and it is not permitted to take precautions
against new disasters. But at any rate it can
do something, and if the parameters ore properly
set it can do something useful. The following
points are basic %o ±his, and probably %o any,
solution:

(a) the system must know that a
catastrophe has occurred and thus
that a process is moribund;

(b) there must be a connection between
the actions which occur on exit from
a catastrophe program and the re-
instatemen% of the appropriate en-
vironment for the new CA. They
must be effectively simultaneous.

The more general mechanism iust described
has not been implemented though the more res-
%ricted 'private monitor' system has been in use
for some years. It is found an indispensable
aid %o good diagnostics and to security. Neither
approach places any unusual strain on programming
language systems, provided that they have some
apparatus for dealing with (ordinary) exception
conditions. If they do not, they need not be
considered further in system contexts. The
reason for the lack of strain is that the extra
operations required are all part of the enclosing
operating system or superior process to which
they are iust ordinary program. The extra work
required at run-time occurs in the mechanism
whereby the incident is made known to the affec-
ted program, not in the way the affected program
reacts. If one wanted to be ideally fancy about
it, it would be possible to reserve o name in the
language for the kind of incident we are dis-
cussing, perhaps 'CATASTROPHE', recognise special-
ly the setting of a condition for i%, and compile

$6

extra system c a l l s . This, however, is decora t ive
ra ther than fundamental. Since the programmer
dea l ing wi th catastrophes must know what he is
about, i% is perhaps undesirable as we l l as
unnecessary to bury a l l the works in the language.

The ob iec t of a l l t h i s mechanism is to
arrange tha t , whatever happens to terminate or
impede a process, the var ious procedures invo lved
can set t h e i r own houses in order one by one. Is
i t in fac t worthwhi le to go to a l l these con-
t o r t i ons? Surely the answer is yes, p a r t i c u l a r l y
in complicated systems i nvo l v i ng the i n t e g r i t y of
a great deal o f data. Present methods are ade-
quate in simple cases, but can e a s i l y be over-
taken when th ings get more complex. This is one
o f the reasons why complex systems wi th a high
i n t e g r i t y requirement tend to be implemented on
dedicated equipment. I t may be unusual fo r
operators to in tervene to k i l l a process, or fo r
communication equipment suddenly to f a i l com-
p l e t e l y , and so on, but i% is very important
indeed fo r the r i g h t th ing to happen i f they do.
The time has gone by when one could r e l y on
system programmes sor t ing out messes wi th tweezers
and scalpe l - the chaos should never be al lowed
to a r i se , and only f a u l t - h a n d l i n g systems of the
degree o f complexi ty discussed can cope proper ly .

57

