
Perspectives on Security

Butler Lampson

Microsoft Research

Symposium on Operating Systems Principles

October 4, 2015

How did we get here?

 In the beginning, security was by physical isolation (1950-1963)

 Easy: You bring your data, control the machine, take everything away

 Still do this today with VMs and crypto (+ enclaves if VM host is untrusted)

 Timesharing brought the basic dilemma of security: (1963-1982)

Isolation vs. sharing
 Hard: Each user wants a private machine, isolated from others

 but users want to share data, programs and resources

 Since then, things have steadily gotten worse (1982-2015)

 Less isolation, more sharing, no central management

 More valuable stuff in the computers

 Continued misguided search for perfection (following the NSA’s lead)
4 October 2015 2Lampson: Perspectives on security

Wisdom

 If you want security, you must be prepared for inconvenience.

—General B.W. Chidlaw, 12 December 1954

 When it comes to security, a change is unlikely to be an improvement.

—Doug McIlroy, ~1988

 The price of reliability is the pursuit of the utmost simplicity.

It is a price which the very rich find most hard to pay.

—Tony Hoare, 1980 (cf. Matthew 19:24)

 But who will watch the watchers? She’ll begin with them and buy their silence.

—Juvenal, sixth satire, ~100

3 October 2015 3Lampson: Perspectives on security

What we know how to do

 Secure something simple very well

 Protect complexity by isolation and sanitization

 Stage security theatre

What we don’t know how to do
 Make something complex secure

 Make something big secure if it’s not isolated

 Keep something secure when it changes

 Get users to make judgments about security

 Understand privacy—fortunately not an SOSP topic

3 October 2015 4Lampson: Perspectives on security

Themes

 Goals: Secrecy (confidentiality), integrity, availability (CIA: Ware 1970)

 Gold standard: Authentication, authorization, auditing (S&S 1975)

 Principals: People, machines, programs, … (Dennis 1966, DEC 1991)

 Groups/roles: make policy manageable (Multics 1968, NIST 1992)

3 October 2015 5

Oppositions
Winner Loser

Convenience vs. Security

Sharing vs. Isolation

Bug fixes vs. Correctness

Policy/mechanisms vs. Assurance

Access control vs. Information flow
Lampson: Perspectives on security

(in deployment,

not good vs. bad)

Timeline

Themes Systems

1960s
Timesharing; ACLs; access control matrix;

VMs; passwords; capabilities; domains; gates

CTSS; Multics; CP/CMS; Cal TSS;

Adept-50; Plessey 250

1970s
TS; LANs/Internet (e/e security); public key;
multi-level sec.; ADTs/objects; least privilege;
Trojans; isolation by crypto; amplification; undecidability

Unix; VMS; VM/370; IBM RACF;

Clu; Hydra; Cambridge CAP

1980s
Workstations; client/server; Orange Book;

global authentication; Clark and Wilson

A1 VMS; SecureID; Morris worm;

IX

1990s
PCs; Web; sandboxes; Java security;
crypto export; decentralized information flow;

Common Criteria; biometrics; RBAC; BAN; SFI; SET

Browsers; SSL; NT; Linux; PGP;

Taos

2000s Web; JavaScript; buffer overflows; DDoS TPM; LSM; SELinux; seL4; HiStar

2010s Web; big data; enclaves; homomorphic crypto Singularity; CryptDB; Ironclad ...
3 October 2015 6Lampson: Perspectives on security

Foundation: Isolation

 A host isolates an execution environment
 The basis for any security. Must trust the host

 Many ways to do it (and many bugs):

3 October 2015 7

Mechanism Host

Java/JavaScript sandboxing JVM/JS engine Java 1995

Modules/objects language/runtime Clu 1974

Software fault isolation process Wahbe et al 1993

Processes OS CTSS 1962

Virtual machines hypervisor CP/40 1966

Limited comm (wires or crypto) network DESNC 1985

Air gaps: physical separation physics 1950; Tempest ~1955
Lampson: Perspectives on security

Safe Sharing: Access Control

1. Isolation boundary limits attacks to channels (no bugs)

2. Access Control for channel traffic

3. Policy sets the rules

Object /
Resource

Guard /
Reference

monitor

RequestSubject /

Principal

Authorization

Audit
log

Authentication

1. Isolation boundary

2. Access control
Policy

3. Policy
Host (CLR, kernel, hardware, VMM, ...)

3 October 2015 8

Anderson

report 1972

Lampson: Perspectives on security

Access Control: The Gold Standard

 Authenticate principals: Who made a request?

 People, but also channels, servers, programs

(encryption implements channels, so the key is a principal)

 Authorize access: Who is trusted with a resource?

 Group principals or resources, to simplify management

▬ Can define a group by a property,

e.g. “type-safe” or “safe for scripting”

 Audit requests: Who did what when?

3 October 2015

9Lampson: Perspectives on security

Policy: What sharing is allowed?

 The guard evaluates a function: permissions = policy(subject, object)
 If functions are too mathematical, call it an access matrix (Lampson 1971)

 Permissions kept at the object are ACLs; at the subject, capabilities
 Capabilities work for short term policy

▬ File descriptors/handles in OS; objects in languages (Unix/Windows; Java, C#)

 ACLs work for long-term policy; tell you who can access the resource
▬ Groups of subjects and objects keep this manageable (Multics 1968)

3 October 2015 10

Subject/principal Object/resource

File foo Database payroll

Alice read, write write paychecks

Bob read -

Lampson: Perspectives on security

Keeping Secrets: Information Flow Control

0. Labels on information
1. Isolation boundary limits flows to channels
2. Flow control based on labels
3. Policy says what flows are allowed

Guard /
Ref mon

Data

+ Label
Subject /
Principal

0. Labels

Authorization Authentication

Audit
log

Policy
1. Isolation boundary

2. Flow control

3. Policy

Send

3 October 2015 11

Adept-50 1969

Orange Book 1985

Compare access control

Lampson: Perspectives on security

Information Flow Control

 Invented to model military classification (Adept-50 1969)

 Label every datum: top secret/nuclear ≥ top secret ≥ secret
▬ Labels form a lattice, and propagate: If d1 is input to d2, then d2’s label is ≥ d1’s

 Enforce with access control: label subjects, containers (Bell/LaPadula 1973)

▬ No read up, write down; can be dynamic or static (Adept-50; Denning 1976)

 Decentralized flow control (Myers and Liskov 1998)

 Anyone can invent labels. If you own a label, you can declassify it
▬ Can do this in a language or in an OS (Jflow 1999; HiStar 2006)

 So far, none of this has been practical

 And then there are covert (side) channels: timing, radiation, power ...

 Abstractions don’t keep secrets (Tempest 1955, Lampson 1972)

3 October 2015 12Lampson: Perspectives on security

Who controls policy? DAC, MAC, RBAC

 How to decide:

 Is the user or the program malicious? Insiders, Trojan horses

 Is the user competent? Policy can be tricky

 Is the user motivated? Security gets in the way of work and play

 Discretionary access control (DAC) : the object’s owner (CTSS 1963)

 Mandatory access control (MAC) : an administrator (1969; 1985)

 MAC ≠ flow control

 Role based access control (RBAC): the app designer (NIST 1992)

 Administrator just populates the roles

3 October 2015 13Lampson: Perspectives on security

Distributed Systems: Cryptography

 Communicate, so need secure channels

 Host, secure wire, …, but usually cryptography: General, end to end

 Basic crypto functionality: mathematical magic that implements:

 Sign with K-1/ verify with K : integrity

 Seal with K / unseal with K-1: secrecy

 This gives you an end-to-end secure channel

 Public key crypto: K ≠ K-1; I can sign, anyone can verify (RSA 1977)

 Homomorphic crypto: compute on encrypted data (Gentry 2009)

 This is too slow, but you can simulate it (CryptDB 2011)

 Zero knowledge and verifiable computation (Pinocchio 2013)

3 October 2015 14

You can only do it
if you know the key

Lampson: Perspectives on security

Distributed Systems: Understanding Trust

 Decentralized, so have to reason about trust, justifying by proofs

 Principals: people, machines, programs, services, protocols, …

 Accountability: principal says statement
 Alice says read from file Foo

 Trust: principal A speaks for principal B
 Alice says Bob@microsoft speaks for Alice
 Microsoft says Key63129 speaks for Bob@microsoft
 Key63129 says read from file Foo

 file Foo says Alice speaks for file Foo ACL entry

 So Foo says read from file Foo
▬ End to end reasoning

3 October 2015 15

DEC 1989, 1991

Lampson: Perspectives on security

Does it actually work? Assurance (Correctness)

 Keep it simple—Trusted Computing Base (TCB) (Rushby 1981)

 One way is a security kernel: apps are not in the TCB. Works for sharing hardware

 Ideally, you verify: prove that a system satisfies its security spec
 This means that every behavior of the system is allowed by the spec

▬ Not the same as proving that it does everything in the manual

 Today in seL4, Ironclad, … First tried in Gypsy (late 1970s)

 What if the spec is wrong? Keep it simple

 Usually verifying is too hard, so you certify instead
 Through some “independent” agency. Alas, process trumps substance

▬ First by DoD for Orange Book, later international Common Criteria (1985, 1999)

 Or you can verify some properties: isolation, memory/type safety

 Or you can apply bandaids
3 October 2015 16Lampson: Perspectives on security

Bandaids for Bugs (Defense in Depth)

 No guarantees, but at least the bad guy has to work harder
 Firewalls to keep intruders out, look for suspicious traffic (DEC 1988)

 Signature hacks to detect malware (~1990)

 Memory safety hacks to catch writes outside array bounds (Phrack 1996)

 Intrusion detection hacks to look for anomalous behavior (SRI 1986)

 Control Flow Integrity to block jumps not in the normal flow (MSR 2005)

 Taint tracking to keep unsanitized input away from execution (CMU 2005)

 Process to enforce use of the tools (MS SDL 2004)

 “I don’t have to outrun the bear; I just have to outrun you.”
 These are not bad things, but they are hacks

3 October 2015 17Lampson: Perspectives on security

What about my system? Configuration (Policy)

 If the code is correct, the configuration may still be wrong

 You write the code once, but every system has its own configuration

 It’s boring, and it changes. So either it’s small, or it’s wrong.

▬ But it’s not small; there’s always another feature, another plausible scenario

 There are 12 levels of indirection in Windows printing, each with its own security

 And configuration is usually done by amateurs

 With MAC and RBAC at least it’s done by pros

 Conflict: want fine grained policy, but can only manage coarse grain

 Solution (never adopted): Lower aspirations, budget for complexity

3 October 2015 18Lampson: Perspectives on security

What has worked? What hasn’t?

Worked

 VMs

 SSL

 Passwords

 Safe languages

 Firewalls

 Process—SDL

Failed

 “Secure systems”

 Capabilities (except short term)

 Metrics for security

 MLS/Orange book

 User education

 Intrusion detection

3 October 2015 19

Worked ~ gotten wide adoption

Lampson: Perspectives on security

Why don’t we have “real” security?

 A. People don’t buy it

 Danger is small, so it’s OK to buy features instead

 Security is expensive
▬ Configuring security is a lot of work

▬ Secure systems do less because they’re older

 Security is a pain
▬ It stops you from doing things

▬ Users have to authenticate themselves

 Goals are unrealistic, ignoring technical feasibility and user behavior

 B. Systems are complicated, so they have bugs

 Especially the configuration

3 October 2015 20Lampson: Perspectives on security

What next?

 Lower aspirations. In the real world, good security is a bank vault
▬ Hardly any computer systems have anything like this

▬ We only know how to make simple things secure

 Access control doesn’t work—40 years of experience says so

 Basic problem: its job is to say “No”
▬ This stops people from doing their work, and then they relax the access control

▬ usually too much, but no one notices until there’s a disaster

 Retroactive security: focus on things that actually happened

 rather than all the many things that might happen

 Real world security is retroactive
▬ Burglars are stopped by fear of jail, not by locks

▬ The financial system’s security depends on undo, not on vaults
3 October 2015 21Lampson: Perspectives on security

Biertan fortified church, Romania

Jail Lock

