
The TRIPOS Filing Machine, a front end to a File Server

M. F. Richardson

R. M. Needham

Computer Laboratory, Cambridge University, England

Introduction

This paper discusses an experiment which sets out

to improve the performance of a number of single

user computers which rely on a general purpose file

server for their filing systems. The background is

described in detail in reference [I], but for

completeness it is necessary to say something about

it here.

The Cambridge Distributed Computing System

consists, at the time of writing, of between 50 and

60 machines of various types, connected by a digital

communications ring. On the ring, there are two file

servers [2], [3], which are general purpose (or

"universal" [4]) in the sense that they have no

commitment to a particular directory or access

control structure. This is done in order that they
may support several client systems, and so that new

systems may be added without difficulty. We speak of

a particular directory and access control structure

implemented over the file server as "a filing
system".

One of the filing systems supported is that used

by the TRIPOS operating system [5], [6], which was

originally developed for use with single user

minicomputers. At first, this system used local discs

directly connected to the machine. Subsequently,

TRIPOS was used as an operating system for a number

of computers which had no local discs at all, and

constituted, in the local terminology, the Processor

Bank. These machines are allocated to users as and

when they require them, and are accessed through
terminals which are themselves connected to the

ring. When a processor bank machine is allocated to a
user it is as much his as if it were a personal

machine in his office.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1983 A C M 0 - 8 9 7 9 1 - 1 1 5 - 6 / 8 3 / 0 1 0 / 0 1 2 0 $ 0 0 . 7 5

The initial means of providing filing facilities

to the processor bank machines was to arrange that,
in each of them, there was a copy of the code

necessary to implement the TRIPOS filing system as

an abstraction on the mechanism provided by the file

server. All instances of TRIPOS shared the same

filing system. Since the TRIPOS filing system as a

whole is an essentially hierarchical structure
originating at a single root directory, and leading

to users' directories and files, is was necessary to
use the file server's interlocking facilitie~ to

ensure orderly access. This arrangement worked

fairly well, but had certain drawbacks.

Perhaps the main drawback was that, in order to

avoid the need for excessive buffering in the client

machine, the data transfer requests made upon the

file server were usually for rather small amounts of
data, typically not exceeding 512 bytes. While the

file server is well capable of handling such

requests, it performs more efficiently if somewhat

larger requests can be made, in the order of 2K bytes
and upwards. A second drawback was that a large

amount of file server traffic was generated by

transferring to the client machine copies of the

considerable number of directories involved in
interpreting full path names. Since there is no means

whereby the occurrence of changes to a file server

object can be ascertained, other than by reading that

object, directories could not be cached in the client

machine. Because of the large number of piecemeal

transactions required, the file server became a
severe bottleneck when several machines were running

TRIPOS, and the response to users became
unsatisfactorarily slow. Finally, the TRIPOS filing

system code, and other fixed material, took up a
significant amount of space in the memory of the

processor bank machines.

The TRIPOS Filing Machine attempts to remove some

of these drawbacks. Its general function may be
described quite briefly. It is itself one of the

processor bank computers, but contains the only full
copy of the TRIPOS filing system code. The TRIPOS

system which is run in processor bank machines

allocated to users has the filing system code

120

replaced by stubs which make remote procedure calls

[7] on the filing machine. The filing machine acts
upon these requests, and makes use of the file server

as necessary. It is able to cache file server

material, to read ahead material which appears to be

being accessed in a sequential manner, and to

maintain a cached abstract of relevant parts of the

directory structure to permit rapid interpretation

of path names. It is able to manage interlocks in a

manner specifically suited to the TRIPOS filing
system, rather than by making use of the general

facilities provided by the file server. It can also

provide protection and accounting facilities which

could not otherwise be implemented securely.

It is our belief that the TRIPOS filing machine
is very successful in the reliable execution of its

tasks, and in improving the performance experienced
by the user. It currently supports up to around

fifteen concurrent users (the maximum number of

processor bank machines available to run TRIPOS).

The remainder of this paper discusses the design

considerations of the filing machine itself, and the

performance measurements which back up the good
impression of its working.

General Design Conslderatlons and P o s s i b i l i t i e s

The movement of the administration of the TRIPOS

filing system from the client machines to a

centralised server gives rise to two possible
developments which a r e not possible in the

(unprotected) client machines. First, the
availability of the entire memory of the Filing
Machine enables large amounts of data and other

information to be cached in memory for quick access.

Second, the client and filing machines can be

considered as separate protection domains, allowing

the provision of protection and accounting schemes
which could not otherwise be enforced. Most effort in

the development of the filing machine has been
directed towards the caching; recently, developments
in the latter direction have been made.

Since the TRIPOS file structure is held in data

files which are stored on the file server, the

caching which the filing machine provides need be no
more complicated than imaging parts of these files.

In practice, this is the major concern of the filing

machine. About 750K bytes of memory are available for

the cache, and are divided between those file server

files which represent TRIPOS files, and those which

represent TRIPOS directories. Data is cached in
fixed size blocks, the sizes of which are chosen to

be a reasonable compromise between efficiency of
data transfer to and from the file server, and

effective memory utilisation. Advantage is also

taken of knowledge of the way in which the file
server stores data on disc, so that transfers can be
aligned wlth file server disc blocks.

The availability of cache space makes practicable

substantial amounts of advance reading of data in
anticipation of requests from client machines. This

has proved generally very effective. If material has

been read in advance and turns out not to be

required, it can always be discarded. In the case of

write requests from the client, a policy decision is

needed as to when the material should actually be
written to the file server. It will be evident that

immediate write-through, synchronous with the
client's request, would be highly inefficient for the

client, and necessarily worse in performance than
the direct writing to the file server that occurred

in the system as it was before the filing machine

came into use. The choice made was to reply to the

client's write request as soon as the material is
known to be in the filing machine's cache, and to

transfer it to the file server asynchronously and in
economically reasonable pieces. This approach gives

rapid response to the client and minimises protocol

overhead. It is evidently necessary to give the

client some comprehensible guarantee about the fate

of his material. This is done by synchronising at the

time the file is closed: the filing machine does not

respond to the client's close call until all buffered

material has been written to and acknowledged by the
file server. This approach is practical and sensible

for two reasons. First, the filing machine does not

fail very often. Second, TRIPOS is a system in which

the notion of a file is important and in which

failure to write a file is likely to be followed by

regeneration of the (entire) file. It would not be a
practical approach in some other types of system, in

particular where the file server was supporting a
database rather than a conventional filing system.

By taking advantage of the known properties of
TRIPOS, synchronisation overheads can safely be very
much reduced.

It was mentioned earlier that the operation of
the TRIPOS filing system involves a substantial

amount of directory searching, both in the course of
interpreting long path names and in accessing some

of the more commonly used system directories. The

effective amount of cached information is increased

by holding an abstract of the directory structure,

which occupies less space than would be needed to

retain the same information in the data cache. This

is essentially a map of directories and their

entries.

The current implementation of the filing system
stub in the client machines provides a small amount

of local buffering. It was hoped that this would not

be needed, but it was found that without it, the

inherent delays in any request to the filing machine
caused some degradation of performance. If it is

desired to minimise the complexity and memory
requirements of the client stub, then this local

cache can be removed, without impairing the
functionality of the system.

121

The presence of a protection boundary, in the form

of the ring, between the client and the filing
machine makes it possible to have an effective
protection scheme in a way that was not possible

with the earlier ring-based TRIPOS system in which
each machine contained full file-system code. The
method adopted requires calls on the filing machine

to be validated, where appropriate, by an
accompanying token which is drawn (originally by the
filing machine) from a sufficiently large sparsely
occupied space that the token is effectively
unforgeable and may be used as a capability (it is

assumed that the communication network is secure so
that third parties cannot illegaly obtain the
tokens). The validity of these tokens can be

rigorously checked by the filing machine, which is
thus able to control the client's access to objects.

Specific, restricted access rights can be associated
with any token; this is not possible with the file
server, since the possession of its equivalent token

implies the right to read or write to that object.

The protection mechanism is based on that used by
the CAP computer [8], and uses capabilities rather
than access control lists. In practice, users have

full access to their own private files, but only
restricted access to other objects. By default, all
files and directories may be read by any user of the

system, but this can be restricted if required.

The protection of the filing machine from the

client also permits a simple accounting schemeto be
implemented. In this, an accounting "demon" is

started running in a processor bank machine once a
day (usually during the night when the load on the
system is smallest). This demon scans the entire

filing system, totalling the space used by each user,
and adjusting their file space accounts. The filing
machine inspects this account before allowing a user

to create any new objects, and prevents him from
doing so if he has exceeded his disc space quota. The

accounting demon also checks the file structure as
held on the file server for integrity and
consistency, so that any corruption can be detected

at an early stage, and hopefully be corrected before

it has a chance to spread.

Apart from caching and protection, there are two
other relevant points which should be made about the

TRIPOS filing machine system. First, since the filing
machine assumes that it is the only user of the
TRIPOS files on the file server, all interlocking

against conflicting client access may be performed
within the filing machine. Interlocking within the
filing macine is at least an order of magnitude

faster than obtaining an interlock in the
fileserver, since no network communication is
required. This results in a substantial improvement

in performance, particularly when searching trees of
directories and files for a particular object. In the
old system, there were two ring requests at each

directory level, as file server interlocks were

obtained and released; in the filing machine system,
there is just a single client request to locate the

object.

Second, the protocols used between the client and
filing ma~hines are designed specifically for the

TRIPOS system. Since messages can be lost in the
communications network, they are made sufficiently

reliable by a combination of serial identification
and idsmpotent definition. The protocols also permit

a client machine to request several filing machine
operations concurrently.

Implementation: Protocols

The protocols used between the client and the
filing machine follow the remote procedure call

paradigm. This may simply be described as an
alternating series of data exchanges between two

participants. Each participant knows how much data,
to expect from the other on each occasion, so there

is no notion of flow control, and each participant
knows that it will not receive another call until

the other has received the results of the last one.
(There are more elaborate ways of defining RPC, but

this will suffice for present purposes.) Rather than
using a general RPC implementation, we have chosen to
take advantage of the known properties of the
interaction between the filing machine and its

client in order to achieve simplicity. A client
request is acknowledged by the receipt of the

results of that request. When the recipient of a
general remote procedure call delivers its results,

these are acknowledged by the receipt of the next
call. Until the next call the results need to be
retained, in case they were lost in transmission,
causing the client eventually to repeat the call

that generated them. If the results are bulky it may
be inconvenient to hold on to them until the next

call (the delay until which is unknown) and some
complication may thus be needed in order to obtain

earlier acknowledgement in this case. In our
implementation it has been possible to define the
calls either so that they give results so small that

there is no embarrassment in holding on to them, or
so that the call is strictly repeatable with
identical results in which case there is no need to

retain them.

A client machine when first booted contacts the
filing machine and requests the initiation of a

session [9] and of a number of series within that
session. The session corresponds to the interval

between a client machine being bootloaded and its
crashing or being rebooted. A series corresponds to a

single train of procedure calls, so that the basic
RFC discipline in which the next call acknowledges

the last reply applies to the next call belonging to
a particular series in a particular session. A

122

specific call must accordingly contain the session

identifier, the series identifier, and the serial
number of the call within its series. The filing

machine checks the validity of session and series

and acts on the basis of the serial number in the

obvious ways.

There is one case in which the TRIPOS calls fit
uneasily into the RPC model - the client writing

data to a file. The badness of fit comes from the
unpredictable amount of material to be written.

Rather than set an arbitrary (and rather small)
maximum, we have arranged that the initial call is a

'request permission to send x bytes' and its repl,yis

a 'go ahead to send x bytes'. This is the method used,

for the same reason, by the underlying file server.

The filing machine retains knowledge that the data

has arrived until there is a new call in the series,
so if the acknowledgement of data receipt is lost

• and the whole transaction retried later then the
data itself need not be retransmitted (the client

receives a reply "data already received").

Sessions (not series) which are otherwise
inactive are kept alive by a periodic idle handshake

(initiated by the client). The filing machine uses
the reply to such handshakes in order to return some

miscellaneous status information, such as a current

'message of the day'. In the event of a session timing

out, all unwritten data is flushed from the cache,

and any outstanding interlocks for that session are

broken. A session is also cancelled if a client
machine which already has a session requests a new

one, on the assumption that the client has crashed
and has been rebooted. An improved arrangement might

be to have the Resource Manager [I] (the machine
which manages the allocation and deallocatlon of

processor bank machines) control the creation and

cancellation of sessions. When an instance of TRIPOS

is started, the resource manager would inform the

filing machine; when the client machine was returned

to the pool of free machines, or rebooted, the filing
machine would again be informed. The only

shortcoming would occur with client machines outside
the control of the Resource Manager.

Zmplememtatton: Caching Stratngles

The operations provided by the filing machine are
tailored to those required by client TRIPOS systems.

A single cllent-fillng machine request may
correspond to several filing machine-file server

requests. However, many of the latter requests are

eliminated, or can be performed asynchronously, by

use of the filing machine's caches, which are now

described.

The data cache is implemented as a number of

fixed-slze blocks, which are always aligned with
respect to the file server file on a boundary which

is a multiple of their own size. Since directories
are observed to be fairly small, and therefore
suggest a small block size, while for files a large

block size is desirable in order to reduce file

server protocol overheads, it was decided to use two

sizes of cache block: a small one for directories,

and a larger one for files. The exact sizes chosen

are based on the known implementation of the file

server and low-level ring protocols. Directory cache

blocks are 512 bytes long; these can be read or

written to the file server in a single request-reply

operation, and few directories will require more

than two such blocks. For files, the size is 2048

bytes; this is the main file server disc block size

(hence cache blocks align exactly with disc blocks),

and is also the maximum block size possible with the

basic ring level protocol. The filing machine would

still work with a ring or file server with different

characteristics, but might require some adjustment

in order to achieve best performance.

Cache blocks are held in both a hash table for

efficient access, and in a simple linear queue for

allocation and deallocation. Allocation and

deallocation are administered using a least-recently

used (LRU) mechanism, with blocks being moved to the

back of the queue whenever they are touched, and

being deallocated from the front. It is unlikely that
this scheme is optimal. Some trials were made with an

alternative which ordered cache blocks on the basis

of time-weighted use, but no convincing improvement

in cache hit rate was observed. Unfortunately, the

time involved in collecting significant statistics

is too great to permit frequent changes to the

algorithms. Simulation using data logged from real

operation would probably yield better information.

In day-to-day use, the data cache achieves around

a 90~ hlt rate for reading. By this we mean that in

only about one in ten cases is a required block of a

file server flle not present in the cache, so that a
request is held up awaiting the completion of a flle

server transaction. Since a particular client

transaction may require several blocks from a file,

the hit rate as seen by client requests may be

smaller. However, it is probable that misses are

grouped on some client transactions, rather than

being evenly distributed. There does not appear to be

a great change in this figure with load [figure I],
up to the peak recorded load of about 50000 cache

requests p e r hour. With increasing load

(corresponding to increased n%m~bers of clients), the

greater spread of objects accessed might be expected

to reduce the hit rate. However, a greater proportion
of all accesses would be to shared system objects,
increasing the hit rate to some extent.

The current system runs on a Motorola 68000 based

machine, wlth IM byte of memory. Of this, about 660K

bytes are allocated to the data cache. Some simple

simulation and logging of access was done, mainly in

123

order to investigate the possible gains to be made

by attaching a local disc, to act as a much extended
cache. However, using a very simple LRU mechanism

(applied to entire files rather than individual
cache buffers), it was found that the hit rate

improved little once the cache size reached around a
megabyte. This suggests that a local disc need not be

large, but should be fast. The conclusion was drawn

that it would be better to use more main memory, and

take advantage of its short access time.

The second part of the cache is the abstracted

directory structure. Although all the information

that is retained in the directory map could be held

within the data cache described above, memory space

can be more efficiently used if the relevant

information is extracted. This arises since the map

contains copies of individual directory entries,
while the data cache would have to hold the entire

enclosing block (or two blocks, if the entry

straddles a block boundary). The map consists of a

number of (directory,entryname) to (object)

mappings, and is used whenever a directory is

searched for an entry. Only if the entry is not found

is the data cache, and ultimately the data stored on

disc, used. In order to keep the map simple, it is not
used when a directory is to be updated, and the data

cache must then be used. Since the vast majority of

directory operations are searches, this does not

seriously degrade performance.

Map entries are maintained using an LRU algorithm

as for the data cache. Since the lifetime of a map

entry is believed to be much greater than that of a
cache block (indeed, entries for commonly used

system commands are likely to be permanant), there
seems little need to try more sophisticated

allocation mechanisms. In the current implemention
there is sufficient space to retain entries for 150

directories with a total of 500 entries. Directory

searching operations succeed in the directory map

about 65% of the time; of the remaining 35%, about
half are for entries which do not in any case exist.

These figures are observed with about 660K of memory

being used for the data cache and 64K for the

directory map.

Some consideration was given to the inclusion in

the map of 'this entry does not exist' mappings.

However, this was rejected on the following grounds.
~en TRIPOS is presented with a command, it first

searches the user's own directory, before trying the
system command directory. Thus, a large proportion of

the map failures are attempts to find system
commands in user directories. In the present scheme,

the map will contain at most a single entry for a
system command in the command directory. If 'does not

exist' mappings were introduced, then there would be
a large probability of an entry corresponding to

each current user, and the effective amount of
information contained in the map would be much

reduced.

For both the data cache and the directory map, the

filing machine is designed on the assumption that it

is the only machine which changes the contents of

the filing system. We do not regard this as being a

serious limitation; it would no doubt be possible to

design a distributed implementation of the service

the filing machine is designed to give.

~plementation: I n t e r l o c k s

In TRIFOS, interlocks perform two functions.

First, they provide a mechanism by which conflicting

access requests can be resolved. Secondly, the
representation of an interlock forms a token which

can be used to identify an object. For example, if a
client successfully requests that a file be opened

for output, an interlock on that file is established,

and the client is sent a copy of the associated

token. In order to have a subsequent write operation

performed, the token must be presented. The general

locking scheme is multiple-read, single-write.

In certain cases, an interlock may be used solely
as a token, and does not confer any particular access

rights, other than to guarantee that the object

cannot be deleted by another client. Such an

interlock is referred to as a void lock. This

situation arises in TRIPOS where a user has an

interlock on a directory which he may wish to search

and update at intervals (for example, his 'hom@

directory). If he were given a write interlock, then
no other client could even search the directory (as

this would require reading), while a read interlock
would prevent update of the directory by any client,

including himself. These are equivalent to noloek

reads implemented in LOCUS [10] at about the same

time as in the filing machine.

The filing machine implementation associates

three access bits with each interlock, for read,

write, and delete. A void interlock has none of these

set, and is converted to a read or read-write

interlock whenever searching or update is required

(and converted back afterwards). Interlocks within

the filing machine are also be divided into two

groups, those that have been given to clients, and

those which are purely internal. The former group may
last for an arbitrarily long time, while the latter

are transitory. If a request to the filing machine
causes a conflict with an external lock, the request

is rejected; if the conflict is with an internal

lock, then the request is queued until the lock is

removed, or changed to an external lock. As all

access to directories can be performed using

internal interlocks, conflicts over directories are
never seen by clients.

124

In the protection mechanism, interlocks also
carry protection information. This is particularly
important in the case of void interlocks on

directories. Here the protection information forms

the basis on which the maximum access permitted to

any object reached from the directory is calculated.
As an object is located by following its path name

from some directory, transient internal interlocks

are obtained on the directories encountered along

the path. At each stage, the access to a directory is
determined from the access available to the previous

directory, and the access control bits (called the

access matrix) associated with the entry which

referred to it. Since all the protection informatlon

iS present within the interlocks and the directory

entries which are processed during the path search,

the protection mechanism involves only a very small

overhead compared to an unprotected system, and no
extra data traffic results.

Filing machine interlocks are thus tailored to

the requirements of TRIPOS; they are both necessary

and sufficient, and efficient.

I m p l e m e n t a t i o n : T h e C l l e n t Stub

There is no restriction on who may use the filing

machine, provided that they conform to the specified

protocols. At the time of writing there is, however,

only a single implementation of a client stub, whlch

is used on all instances of TRIPOS. The number of

user program requests which the stud should handle
slmultaneously is specified when the stub task is

started, and is limlted to eight only by the filing

machine protocols. In practice, this is set to two, as

it has been observed in an equivalent TRIPES system

that this leads to the queueing of requests (because

two are already outstanding) in less than 5% of

cases. The stub can also handle an asynchronous data

transfer to or from its local cache, and a periodic

idle handshake, simultaneously wlth these two
requests. There are thus three series within each

session.

It is unfortunate that the local cache is

necessary. Without it, the amount of code and storage
needed by the stub is less than half of that required
by the filing system code for a system that

communicates directly with the fileserver (and can
be reduced still further by specifying that only a

single request be performed at any one time).
However, the performance improvements derived from

the local cache are sufficient to Justify its
existence except in machines with limited memory.

The stub performs a limited amount of read-ahead, and
asynchronous writing, provided that there are local

cache buffers available. For reading, this yields a
hlt rate (measured in the same way as for the filing

machine) of about 70%. Of the remaining 30%, about
half are already under way to the local cache when

the user program makes a read request.

Observed Results

Accompanying this description of the TRIPOS

filing machine are some measurements made during

normal use. Diagram I shows the filing machine cache
hit rate for reading as a function of the load as

measured by the n~mber of requests. Hit rates were
logged at hourly intervals; the diagram indicates
the limits beyond which very few oecurances were

recorded. Tables I and 2 present average response

times for requests from the filing machine to the

file server, and from the client stub to the filing

machine. In both cases typical TRIPOS operations
which cause these operations are listed; it should be

remembered that most TRIPES operations are
equivalent to several file server operations.

Extensions

The filing machine project was largely complete
when an opportunity arose to experiment with the

same system in a rather different context. The
Universe project [11] interconnects local networks

(in fact all Cambridge Rings) at seven sites by

means of a geostationary satellite. As part of a

programme of distributed computing experiments using

this network, it was decided to explore the

practicality of separating the filing machine from
the file server by the satellite link. There is

little intrinsic difficulty in doing this,
particularly if one concentrates on performance,

rather than interlock issues. Machines were inserted

in the ring at the Rutherford Laboratory in
Oxfordshire, and arrangements made to cause them to

use the Cambridge bootstrap service rather than the

local service. By suitable settings in the boot
server's tables, it can be arranged that it is only

necessary for the machines to be switched on and for
two simple commands to be issued at an ordinary

terminal in Cambridge in order to make Tripes, using

the Cambridge filing system, available at the

Rutherford. Some performance measurements are given

in table 2. These are about as one might expect.

Any a c t i o n which r e q u i r e s synchronous o p e r a t i o n s
to be performed (eg., c r e a t i o n o f a brand new f i l e)
has a s u b s t a n t i a l l y g r e a t e r tu rnround because o f the
d e l a y in the s a t e l l i t e l i n k . Once a f i l e has s t a r t e d
coming, the performance perce ived remote l y d i f f e r s
much less compared to the performance perceived

locally, due to read-ahead being performed by the

filing machine. Similarly, writing ls almost as fast,
though the final close operation is slower as the

cache and file server must be synehronised. The
figures in table 3 were obtained over a period of

about two hours, with a single client system. It is

expected that the average times will improve over a

125

longer sampling period, as the effects of caching

become more pronounced.

This system was used for a limited amount of work,

and proved quite tolerable. With a single client
there is ample room in the cache for the common

system commands to be permanently resident. From the
user's point of view, performance is much as
expected; simple commands take a relatively longer

time, but more complicated ones (compilations, for
example) are not observably much slower. It is

anticipated that this system will be used more in
the future.

Complications arise when interlocking and the
consistency of cached data is considered in

situations where there are multiple filing machines.
In the context of the Universe project, the following

scheme has been considered, although no
implementation work has yet been done.

A filing machine at a site attached to a
particular satellite ground station would 'own' all
the file servers on that site, and would have primary

control over access to objects on those file servers.
Should a filing machine at a remote site R wish to

access objects physically stored at local site C
then it would first obtain permission from the
filing machine at C. That would take out an interlock

on the object in the file server at C, and return the
identifier representing the interlock to the filing
machine at R. It would also provide a time stamp

giving the time at which the object was last updated,
so that the remote machine can ascertain the

validity of any data which it may have cached. The
filing machine at R would then bypass the filing
machine at C and communicate directly with the
fileserver. Only when it has completed its
transaction will it further communicate with the
local filing machine at C (other than perhaps to

maintain an idle handshake).

The need to obtain an interlock in the fileserver
causes a little inefficiency. However, if such an
interlock were not invoked, then all communication
would have to go through the both filing machines.

This would be a source of further overheads to both
sites. If the filing machine at R crashes, then the

idle handshake will time out, and the filing machine
at C can release the interlock in 'its' file server.

If the local filing machine crashes and is rebooted,
then the object will still be safely locked in the
file server. Should both filing machines crash, then
the file server interlock will time out of its own
accord. Finally, should the file server crash, the
interlock will become invalid, and the filing

machines will become aware of this when the file
server is restarted.

The provision of the time stamp removes the need

for one site to inform all others when it updates an
objects. In the scheme above, filing machines may be

introduced, and subsequently removed, from the
system, without the need to inform all other sites.
Time does not have to be accurately synchronised

between sites, since all time stamps needed for an
object will be provided by the site which 'owns' the
object. It is thus only neccessary that the time at

each site be monotonically increasing, and can
safely be derived from some local service.

C o n e l ~ i o n s

It is probable that a more efficient system could
be provided by a single machine which combined the

functions of the filing machine and the file server.
This could be done either by implementing a single

dedicated TRIPOS file server, or by running the file
server and the filing machine as separate virtual
machines on the same physical hardware. These would

eliminate some communications overhead, and allow

optimisation of the disc data structures. It would be
the obvious solution if the problem was simply that

of providing a centralised filing system for TRIPOS.
There are however two reasons for not doing this.

First, in the Cambridge environment, there are
several filing system clients. The file servers

provides the basic facilities which are needed by

all clients, notably garbage collection and
maintainance of disc integrity, and saves their

duplication and reimplementation every time a new
system is created. It would be comparatively easy to

provide further services analogous to the TRIPOS
filing machine, for example a data-base server. The
centralisation on a single file server allows, in

principal, links between the filing systems of
different clients. Also, it has proved quite easy to
modify the filing machine, and to add new facilities

to the client interface, without major upheavals and
inconvenience to users. Second, we do not have the

necessary hardware available. It is unfortunate that
the hardware of the file servers does not lend
itself to experiment, as the machines are not large
enough. We cannot therefore give comparisoms between
the performance of the system we hav'e and one with a
file server machine dedicated to the needs of TRIPOS,

even on an experimental basis.

We believe however, that t he practical success of
the TRIPOS filing machine demonstrates several
useful results. First, there is great advantage to be
gained from having e front end to a file server that
takes advantage of knowledge of the patterns of use
expected of a particular subset of the file server's

clients. Secondly, this advantage outweighs the cost
of transmitting data more than once over a local
network. Thirdly, the remote procedure call paradigm
is powerful end appropriate in this case. Finally,

126

the effects of caching in memory the results of

large-scale file server transactions in order to
retail the results to clients in smaller amounts are

sufficient to mask to a considerable and useful
degree even the delays caused by the presence of a
satellite segment in the network.

Table 1 : Filing Machine to File Server request
times in MilliSeconds

Local Sat

Create Index : 364.3 creating new directory

Retain : 554.9 1243 used during rename
Delete : 348.8 465 delete or during rename
Create File : 456.7 1077 create new file
Open : 127.3 841 (

Ensure : 255.2 updating a directory
Close : 273.8 (

Read : 316.0 1010 read >=2048 bytes
Write : 369.7 1350 write >:2048 bytes

SSP Read : 152.6 995 read <: 512 bytes
SSP Write : 188.6 980 write <: 512 bytes

Iooi

qO

6o

Hit Rate (%)

I

I
I
I
I

I
t

Almost all samples lie
within this range

Figure I : Sample Data Cache Hit Rates
Sampled at hourly intervals

IOOOO 3 o o o ~

Buffer Requests per Hour

Table 2 : Client Stub to Filing Machine request

times in MilliSeconds

light load heavy load over
<4 clients >8 clients satellite

Locate : 88.2 118.6 1489

Free : 35.6 36.7 15
Copy : 16.0 67.4 12
Delete : 180.0 4570

Rename : 1590,0 3201.3 5326
ExamineObj : 202.5 877
ExamineNext : 2~3.2 519
SetAccess : 20.0 20.0
FindInput : 113.2 233.9 549

FindOutput : 1280.O 1666.2 6590

Close : 45.4 111.9 306
Read : 72.8 260,7 468

Write : 204.7 233
SSPRead : 23.7 50.2 59
SSPWrite : 20.3 53.2 119
Refresh : 3.2 11.9

(find a directory)

(release void interlock)
(copy a void interlock)
(delete a file)

(rename a file)
(info about an object)

(examining a directory)
(change access to object,)
(open a file for input)

(open a file for output)
(close a file)
(read data operation)

(write data operation)
(read into local cache)

(write from local cache)
(idle handshake)

127

References

[I] R.M.Needham and JLJ.Herbert : The Cambridge Distributed Computing System -
International Computer Science Series, Addison-Wesley, 1982

[2] J.Dion : Reliable Storage on a Local Area Network -

Ph.D. Thesis, Cambridge Computer Laboratory, 1980

: The Cambridge Fileserver -

ACM Operating Systems Review 14(4), (pp26-35), Oct 1980

[3] J.G.Mitchell and J.Dion : A Comparlsom of Two Network-Based File Servers -

Commtmloations of the ACM, New York, 25, 2, 233-45
[4] A.D.Birrel and R.M.Needham : A Universal File Server -

IEEE Transactions on Software Engineering - Sep 1980, 450-53

[5] M.Richards et al. : TRIPOS - A Portable Operating System for Mihicomputers -

Software - Practice and Experience, Jun 1979

[6] B.J.Knight : Portable System Software for Personal Computers on a Network -

Ph.D. Thesis, Cambridge Computer Laboratory, 1982

[7] B.Nelson : Remote Procedure Calls-

Ph.D. Thesis, Carnegle-Mellon University, 1981

[8] M.V.Wilkes and P~M.Needham : The Cambridge CAP Computer -
Operating and Programming Systems Series (No 6), North Holland 1979

[9] C.N.R.Dellar : A Fileserver for a Network of Low Cost Personal MiniComputers -

Software - Practice and Experience, Nov 1982 (section 7.4)

[10] C.Popek et al. : LOCUS: A Network Transparent, High Reliability Distributed System -

Proceedings of the 8th Symposium on Operating Systems Principals, 1981
[11] Kirsteln et al. : The UNIVERSE Project-

Proceedings of the 6th Conference on Computer Communications, 1982

128

