
EXTENDED ABSTRACT

THE CASE FOR CAPABILITY BASED COMPUTERS

R. S. Fabry
Computer Systems Research Project, Univers i ty of Ca l i fo rn ia , Berkeley

The idea of a capab i l i t y which acts l i ke a t i c ke t
authorizing the use of some resource was developed
by Dennis and Van Horn as a general izat ion of
addressing and protect ion schemes such as the code-
words of the Rice computer, the descriptors of
the Burroughs machines, and the segment and
page tables in computers such as the GE-645 and
IBM 360/67. Dennis and Van Horn generalized
the ea r l i e r schemes by extending them to include
not jus t memory, but a l l systems resources:
memory, processes, input/output devices, and so on;
and by stressing the e x p l i c i t manipulation of
access control by nonsystem programs. The idea is
that a capab i l i t y is a special kind of address for
an object, that these addresses can be created
only by the supervisor, and that in order to use
any object, one must address i t via one of these
addresses. The name. comes from the fac t that
having one of these special kinds of addresses
for a resource provides one with the capab i l i t y
to use the resource.

The use of capab i l i t i es as a protect ion mechanism
has been the subject of considerable in te res t and
is now f a i r l y well understood. Access control
schemes using capab i l i t i es and c a p a b i l i t y - l i k e
notions are, as a whole, the most f l e x i b l e and
general schemes ava i lab le . I t w i l l in fact be
assumed that the reader is f am i l i a r with the
advantages of capab i l i t i es for protection put-
poses; a somewhat d i f f e ren t advantage of
capab i l i t i es w i l l be developed here.

I t w i l l be argued that there is a substantial
advantage in using capab i l i t i es as a basic com-
ponent of the address of every object which is
not a part of the processor doing the addressing.
In order to accomplish th i s , user programs must
be able to store capab i l i t i es f ree l y into various
permanent user data structures (subject, of
course, to some scheme for preserving the integ-
r i t y of the representation of capab i l i t i e s) . Not
a l l schemes which use capab i l i t i es ac tua l l y al low
capab i l i t i es to be used as permanent addresses in
th is way. For example, the or ig ina l Dennis and
Van Horn scheme did not, because i t ins is ted that
capab i l i t i es be stored only in C - l i s t s associated
with computations; one could not use capab i l i t i es
to construct permanent user data structures.

The advantage of a capab i l i t y used as an address is
that i t s in terpre ta t ion is context independent. I t
provides an absolute address for an object. This
fact is more important than i t may at f i r s t appear.

started running. The lack of the a b i l i t y to relocate
jobs in memory severely l im i ted the freedom of the
memory a l loca to r and resulted in underut i l ized com-
puters. To avoid th is underu t i l i za t ion , the various
forms of address re locat ion have been introduced.
They al low the jobs in memory to be moved around
independently of each other. Bu t in increasing the
freedom of the memory a l loca to r , a new problem has
been introduced. Consider the case of two jobs which
need to in te rac t with each other. In the p r im i t i ve
system without re locat ion, jobs share a s ingle ad-
dress space and could be allowed to in te rac t f r ee l y ,
sharing data structures and addresses as eas i l y as
i f they were a single job. As soon as address re-
locat ion is introduced into the system, however,
addresses no longer have a f ixed in te rp re ta t ion ;
t he i r meaning becomes context dependent; each job
has i t s own address space, or perhaps even several.
This fac t has general ly been interpreted as an advan-
tage: Base and l i m i t reg is te rs , paging, and segmen-
ta t ion , by v i r t ue of t he i r address re locat ion, al low
users to be eas i l y and t o t a l l y isolated from each
other, thus providing a form of protect ion of one
job from another. On the other hand, the addressing
of shared objects has become more d i f f i c u l t , and
th is side e f fec t is general ly ignored. This e f fec t
is p a r t i c u l a r l y i ron ic for those systems which stress
the i r usefulness for cooperating users who want to
work together, sharing programs and data.

I am fam i l i a r with two attempts to design a capabi l -
i ty-based computer in which every e x p l i c i t memory
access uses an address in the form of a segment capa-
b i l i t y and work number pai r and which al low capab i l i -
t ies to be d i r e c t l y manipulated by user programs in
the t rad i t i ona l ways that addresses are used. The
f i r s t system to be designed was the Chicago Magic
Number Computer developed by the I ns t i t u te for Com-
puter Research at the Univers i ty of Chicago. This
system was never completed. The second system to
be designed was the System 250 b u i l t by the Plessey
Company in England. The Plessey system has been
b u i l t and running for some time now and is ava i lab le
comercial ly. Based on experience with these two
implementations, a number of implementation con-
siderat ions have been c l a r i f i e d .

Certain recent advances el iminate the need for the
modif icat ion of the representation of capab i l i t i es
by the operating system and suggest how to solve
the own var iab le problem in a general way. These
advances el iminate the major implementation problems
of previously designed systems.

Before the use of address relocation in the form of
base and l im i t registers, paging, and segmentation,
a number of independent jobs would have been alloca-
ted fixed areas of physical memory in which to run.
Addresses within the jobs would be relocated at load
time and a job would not be moved once i t had

120

