EXTENDED ABSTRACT

THE CASE FOR CAPABILITY BASED COMPUTERS

R. S. Fabry
Computer Systems Research Project, University of California, Berkeley

The idea of a capability which acts T1ike a ticket
authorizing the use of some resource was developed
by Dennis and Van Horn as a generalization of
addressing and protection schemes such as the code-
words of the Rice computer, the descriptors of

the Burroughs machines, and the segment and

page tables in computers such as the GE-645 and
IBM 360/67. Dennis and Van Horn generalized

the earlier schemes by extending them to include
not just memory, but all systems resources:
memory, processes, input/output devices, and so cn;
and by stressing the explicit manipulation of
access control by nonsystem programs. The idea is
that a capability is a special kind of address for
an object, that these addresses can be c¢reated
only by the supervisor, and that in order to use
any object, one must address it via one of these
addresses. The name. comes from the fact that
having one of these special kinds of addresses

for a resource provides one with the capability

to use the resource.

The use of capabilities as a protection mechanism
has been the subject of considerable interest and
is now fajrly well understood. Access control
schemes using capabilities and capability-like
notions are, as a whole, the most flexible and
general schemes available. It will in fact be
assumed that the reader is familiar with the
advantages of capabilities for protection put-
poses; a somewhat different advantage of
capabilities will be developed here,

1t will be argued that there is a substantial
advantage in using capabilities as a basic com-
ponent of the address of every object which is
not a part of the processor doing the addressing.
In order to accomplish this, user programs must
be able to store capabilities freely into varicus
permanent user data structures (subject, of
course, to some scheme for preserving the integ-
rity of the representation of capabilities). Not
all schemes which use capabilities actually allow
capabilities to be used as permanent addresses in
this way. For example, the original Dennis and
Van Horn scheme did not, because it insisted that
capabilities be stored only in C-1ists associated
with computations; one could not use capabilities
to construct permanent user data structures.

The advantage of a capability used as an address is
that its interpretation is context independent. It
provides an absolute address for an object. This

fact is more important than it may at first appear.

Before the use of address relocation in the form of

base and 1imit registers, paging, and segmentation,

& number of independent jobs would have been alloca-
ted fixed areas of physical memory in which to run.

Addresses within the jobs would be relocated at load
time and a job would not be moved once it had

120

started running. The lack of the ability to relocate
Jobs in memory severely limited the freedom of the
memory allecator and resulted in underutilized com-
puters. To avoid this underutiiization, the various
forms of address relocation have been introduced.
They allow the jobs in memory to be mgved arcund
independently of each other. But in increasing the
freedom of the memory allocator, a new problem has
been introduced. Consider the case of two jobs which
need to interact with each other. In the primitive
system without relocation, jobs share a single ad-
dress space and could be allowed to interact freely,
sharing data structures and addresses as easily as

if they were a single job. As soon as address re-
Tocation is introduced into the system, however,
addresses no longer have a fixed interpretation;
their meaning becomes context dependent; each job

has its own address space, or perhaps even several.
This fact has generally been interpreted as an advan-
tage: Base and Timit registers, paging, and segmen-
tation, by virtue of their address relocation, allow
users to be easily and totally isolated from each
other, thus providing a form of protection of one

job from another. On the other hand, the addressing
of shared objects has become mere difficult, and

this side effect is generally ignored. This effect
is particularly ironic for those systems which stress
their usefulness for cooperating users who want to
work together, sharing programs and data.

I am familiar with two attempts to design a capabil-
ity-based computer in which every explicit memory
access uses an address in the form of a segment capa-
bility and work number pair and which allow capabili-
ties to be directly manipulated by user programs in
the traditional ways that addresses are used. The
first system to be designed was the Chicagc Magic
Number Computer developed by the Institute for Com-
puter Research at the University of Chicago. This
system was never completed, The second system to

be designed was the System 250 buiit by the Plessey
Company in England. The Plessey system has been
built and running for some time now and is available
comercially. Based on experience with these two
implementations, a number of implementation con-
siderations have been clarified.

Certain recent advances eliminate the need for the
modification of the representation of capabilities
by the operating system and suggest how to soive

the own variable problem in a general way. These
advances eliminate the major implementation problems
of previously designed systems.



