
THE NE~WORKUNIX SYSTEM

Gregory L. Chesson t
University of Illinois
Urban, Illinois 61801

Abstract: A Network Interface Program (NIP) is that part of an operating system which inter-
faces with similar entities in a network. Normally, the NIP is a collection of software routines
which implement interprocess communication, interhost protocols, data flow controls, and other
necessary executive f~ctions. This paper discusses the organization of the NIP currently being
used with the Unix operating system on the ARPA network. The Network Unix system is noteworthy
because of the natural way that network and local functions are merged. As a result the network
appears as a logical extension to the local system - from the point of view of both the inter-
active terminal and user program.

Key Words and Phrases: ARPANET, operating system, protocol, Unix

CR Categories: 4.3

i. Introduction

The Unix time-sharing system Ill, deVeloped at
Bell Laboratories for the Digital Equipment Corpo-
ration PDP-11/40 and 11/45 cQmputers, has been
installed at 100 or more sites. It has proven to
be an efficient and powerful tool for ntmlerous
applications. At the University of Illinois,
Unix has been placed on the ARPANETby adding a
Network Interface Program (NIP) to the standard
Unix system. Other sites that are using or have
received copies of this software include UCLA, UC
at Berke~v, MIT Lincoln Laboratories, Purdue
University, the Rand Corporation, and the Stanford
AI Laboratory.

The architecture of standard Unix simplified
many aspects of the design of the Network Unix.
As a result, the UnixNIP enjoys several properties
which are not often found in a single networking
executive: (I) the system will work with a variety
of network hardware interfaces - it is not limited
to operation on the ARPANET alone; (2) the resident
core overhead is low - about 3.5K 16-bit words;
(B) protocol state machines are implemented by a
natural mechanism - thus tending to be easy to
maintain; (4) user interfaces to the NIP are
clean and simple; (5) the NIP is written entirely
in a high-level language, as is Unix; and (6) a
network Unix can easily operate as a link between
the ARPANET and other networks.

The network Unix system is being used to
build sophisticated network mechanisms. Some of

$Work supported in part by NSF DCR 72-03740 AOi,
the Department of Computer Science of the Univer-
sity of lllinois, and the Center for Advanced
Computation at the University of lllinols.

this work is described in section 5 below. Other
applications are mentioned here in passing. In
particular, "stripped" versions of the current
system can easily be used as satellite processors
for larger systems. Also, it is possible to
connect several Unix systems together to achieve
multiprocessing as well as the sharing of
resources.

Although this paper is primarily an exposi-
tion of the architecture of the NIP in Unix, some
familiarity withARPANET protocols and Unix
features is necessary. Therefore, a summary of
appropriate terminology and protocols is included
in the next two sections in order to simplify the
presentation of the NIP design.

2. Terminology

2.1 Unix

The operating system uses the standard DEC
address relocation hardware to partition the
physical memory into two parts - kernel space
which is reserved for the resident portion of
Unix, and user space which is available to user
programs. The user's keyboard interface to the
system is a program called the shell. The system
forks (i.e., creates a new process~a copy of the
shell for each terminal logged onto the system.
Commands typed by the user are read and analyzed
by the shell which then starts up system programs
for the user. Filenames are part of the command
syntax recognized by the shell. Since the
directory structure of the Unix filing system is
a tree, a pathname is an ordered list of directory
names that makes up a path from the root of the
tree to a particular file. Directory names are
separated by / in a pathname. For example,

60

/usr/greg/f specifies file f in directory greg,
which is a subdirectory of usr.

The file system and directory structure are
implemented by a simple pointer system. A direc-
tory entry contains only a name for the associated
file and a pointer. The pointer is an integer
called the i-number (index number) of the file.
The i-number is used as an index into a system
table (i-list). The indexed element of the i-list
is a 16-word data block known as an inode. An
inode contains all the information necessary to
access a file. In particular, an inode indicates
whether a file is an ordinary data file (contain-
ing file names and pointers to inodes), or a
special file.

Within the Unix kernel, each I/0 device con-
troller is assigned a major device number. Each
controller maybe associated with one or more
actual devices, such as disks or tapes. These are
distinguished by minor device numbers. The major
device numbers are used by the system to select
I/O device drivers, and the minor device numbers
are used by the drivers to select particular
devices. Each I/O device in a Unix system is also
represented by at least one special file. These
files are usually located in directory /dev. For
example, /dev/tty4 would be the special file
associated with a particular terminal attached to
the system. The inode associated with a special
file contains the major and minor device numbers
and the flag bit which marks the inode "special."
Read, Write, and Seek (when appropriate) commands
to special files are passed directly to the device
drivers by means of the information contained in
the special file inodes. Hence I/O commands on
/dev/tty4 would activate that terminal accordingly.
This feature of Unix facilitates the treatment of
network I/O as standard I/O.

2.2 ARPANET

The Interface Message Processor, or IMP, is
the packet switching computer which provides the
basic data transmission facility of the ARPANET.
A host is a computer attached to an IMP. Each
host is assigned a unique host number. A mess~
is the unit of transmission (up to 8695 bits)
between a host and an IMP. A leader is the first
32 bits of a message. It specifies, among other
things, the destination host and a link number.
The link is used to demultiplex messages entering
a host into256 possible channels. Link zero is
assigned as the control link used for host-host
protocol exchanges. Links 2 through 71 are avail-
able for general use, links 196 through 255 are
available for experimental use, and the rest are
otherwise assigned or reserved. A socket number
is a 32-bit value that identifies a software I/O
port belonging to a process in a host system. A
process is uniquely identified in the network by
its host number and socket number. Even numbered
sockets are defined to be "read" sockets that
receive data from the net; odd numbers designate
"write" sockets. A connection is a simplex
(unidirectional) data path between processes con-
sisting of two sockets (one read socket and a
write socket) and a link. When incoming data
arrives at a host, the NIP program uses the
incoming link number to determine which local
socket should receive the message.

3. Protocols

A protocol is a set of conventions that
cooperating systems agree to observe. In this
case, the ARPANET protocols [2] specify the form
and content of messages that are exchanged between
the various elements of the network. The actual
transfer of user data between network hosts is
supported by a hierarchy of protocols. These
protocols arg related to the various logical levels
of data transfer between hosts: bit transfers
between IMP's, regular message transfers between
hosts, communication between software processes,
and file transfers between systems. These are out-
lined in the following paragraphs, beginning with
the lowest level.

3.1 IMP-to-IMP

Each IMP may be connected to as many as five
other IMP's and up to four hosts. The low-level
Imp-to-Imp operations do not affect the NIP design
since they are transparent to a host system.
Therefore, they will not be discussed here.

3.2 IMP-host (first level protocol)

The IMP and host cc~municate through an IMP
interface. Interfaces in current use range in
complexity from simple data channels to small
computer systems depending on the size and nature
of the host. However, for the purpose of protocol
definition, the IMP interface is merely a data
path. Given a suitable IMP interface and device
driver, the IMP-host protocol is based on the 32-
bit message leaders. Control bits in a leader
indicate whether or not the leader is followed by
additional data. If there is additional data (up
to the maximum message size) then the leader plus
the data constitutes a regular message. If there
is no additional data then the leader is an IMP-
host control message. The most commonly occurring
IMP-host signal is the Ready-For-Next-Message
(RFNM) control message. A RFNM is a positive
acknowledgment frem a distant IMP that is sent to
the local INP when the distant IMP begins copying
a regular message frem the local IMP. All other
IMP-host messages are diagnostic in nature or
indicate error conditions.

3.3 Host-host (second level protocol)

The control messages used for this protocol
consist of a T2-bit (9 byte) header followed by
additional control information. These control
messages are the basis for opening and closing
connections between hosts, transferring data across
connections, and for performing several other
auxiliary functions.

3.3. i Connections

Request-For-Connection (RFC) comm~nds are
exchanged between hosts for the purpose of estab-
lishing connections between processes. There are
actual~y two RFC ccmnands, one for a prospective
receiver and one for senders. Each RFC contains a
pair of socket numbers (the pair desired for the
connection); the receiver's RFC also specifies the
link to be associated with the read socket. The
NCP in a host must compare the RFC's that it sends

61

to other hosts with those it receives. When the
socket pair in an incoming RFC from some foreign
host matches a pair sent to that same host, then
the connection is considered to be open. Fine
points in this process which have been ignored in
this discussion include timeout and queuing poli-
cies to be observed during the connection process,
as well as that part ofthe protocol which defines
the byte size to be used in subsequent data
transmissions over the connection.

The RFC cemmands for setting up simplex connec-
tions are used by higher level protocols (see 3.4,
3.5) to establish duplex connections.

3.3.2 Flow Control

Hosts are required to maintain a messa6e
counter and bit counter for every open connection.
These counters are initially set to zero. No data
can be sent over a connection until the receiver
sends an allocate command to the sender. The
allocate tells the sender the maximum number of
messages and the total nt~aber of bits that can be
sent. Every time data is transmitted over the
connection, both the sender and receiver decrement
their message counters by one and the bit counters
by the number of bits in the message. No data
transfers may take place that would cause either
the message counter or bit counter to become
negative. Thus the receiver must continuously send
allocates to the sender. This technique guards
against the possibility of a fast sender overrun-
ning a slower receiver with data.

3.4 Initial Connection Protocol
(third level protocol)

The ICP, as it is called, is the standard
ARPANETmechanism for connecting a process in one
host with a process in another host. The ICP uses
the. host-host protocol to establish a pair of
comnections between hosts. The result is a
bidirectional data path consisting of a read and
write socket for each process and a link for each
read socket.

3.5 Higher Level Protocols

The Telnet protocol allows a user at a terminal
on one host to log on to a foreign host system as
though his terminal were attached to the foreign
host. This is accomplished by using the ICP proto-
col to connect to a Telnet "server" process in the
foriegn host. The Telnet protocol itself consists
of the data and control c~mmands that are passed
over the duplex connection established by the ICP.

The File Transfer Protocol (~TP) is used for
transferring files between hosts. An ~TP exchange
consists of opening a Telnet connection to a
foreign F2P socket, carrying on an initial conver-
sation, opening a simplex data connection, trans-
ferring the file over the data connection, and
then closing the connections.

Larger hosts on the ARPANET support a Remote
Job Entry (RJE) protocol which enables a distant
user to submit jobs to a batch job stream.
Although there is a prototype official ARPANET RJE
protocol [4], existing network RJE implementations
are local a~ptations.

There exist numerous experimental or proposed
higher level protocols. Examples include schemes
for file access (as opposed to file transfer),
interactive graphics, procedure calling, and inter-
network c~nmunications, i.e., communications
between ARPANET and nonARPANET networks. These
examples are given for completeness only and will
not be discussed since a survey of protocol
development is outside the scope of this paper.

4. NIP Structure

The Network Unix system is a standard Unix
augmented by a Network Control Program (NCP), pro-
tocol programs, and network special files. The
NCP is implemented in two parts: an NCP kernel
which is made part of the core-resident Unix code;
and the NCP daemon which is a continuous backgrolmd
user-level process in the system. The NCP daemon
implements the host-host and ICP protocols; the
NCP kernel services the IMP, the NCP daemon, an~
user programs; the protocol programs execute in
user space utilizing the NCP kernel and daemon to
implement higher level protocols; and network
special files provide the basis for the interface
between user programs and the NCP. The NCP kernel
(about 3.5K words) is the only resident software
in the NIP. The NCP daemon (about 8K words) and
other programs are only brought in to memory (as
user programs) when they are needed. Since the
NCP is pr~arilyneeded for opening and closing
network connections, and since the NCP kernel
manages network data flow, this "split" organiza-
tion conserves memory without sacrificing per-
formanee. In fact the NIP was developed and will
run on a PDP-llwith only 32K words of memory -
the minimumrequired for standard Unix.

4.1 Network Special Files

In Unix, special files map a character string
representation of physical device names into their
assigned integer names within the system (refer to
section 2). Network special files perform a
similar function in that they map network host
names into host numbers. The network special files
are found in directory '~dev/net." For example,
"~dev/net/harv" represents the Harvard PDP-iO, and
"/dev/net/london" represents the PDP-9 front-end
in England. Each network special file has a major
device number of 255 which distinguishes it from
the standard Unix device numbers which are assigned
starting from zero. The minor device number of a
network special file is the assigned network iden-
tifier for the corresponding host.

4.2 Unix-NCP Interface

Programs access the network software by apply-
ing standard Unix I/O calls (Open, Close, Read, and
Write) to network special files. Thus, the network
can be accessed by a program written in any language
that provides the standard interface to the file
system. Usage of these commands with network files
is just what one would expect. That is, the Open
command establishes a connection between the calling
program and a server process on the foreign host.
Read and Write commands transfer data between the
two processes, and a Close terminates the
connection.

62

The form of the Open call is:

fd = open ("/dev/net/hostname, " mode) ;

The Open cnm~aud returns a file descriptor (fd ~= O)
if the connection is opened successfully, and minus
one otherwise. The first argument is the Unix
pathname of the desired network special file. The
second argument is normally O, l, or 2 signifying
that a read-only, wrlte-only, or a read-write
(i.e., standard Telnet) connection is desired.
This interpretation coincides with standard Unix
usage when the value of 'RhOde" is O, l, or 2. How-
ever, any other value is interpreted as the address
of a control block in the user program during a
network Open. The control block fields and their
meanings are given below:

type - indicates (1) whether a connection or
a "listen" for a foreign RFC is
desired on a local socket, (2) simplex
or duplex connections, (3) absolute
socket numbers or numbers relative to
a base, and (4) whether an ICP or a
direct connection is desired.

flle id - flle descriptor used when the open
refers to an already open network file.

local
socket - refers to a local socket number.
foreign
socket - specifies a foreign socket number.
host - specifies a foreign host.
byte - specifies the connection byte size.
alloc - specifies the nominal size of an

allocate ccm~nand sent to a foreign
host.

time - the time in 60ths of a second to wait
for the foreign host to fulfill the
request before canceling it.

If any fields in the control block are zero, the
NCP will use default values in their place. The
flexibility in opening network connections afforded
by this control block scheme greatly simplifies the
task of implementing higher level protocols.

The Read/Write/Close calls are equivalent to
the standard Unix calls. They have the following
form:

nbyte s = read (fd, buffer, count) ;

nbytes = write (fd, buffer, cotmt) ;

status = close (fd) ;

In each of these calls "fd" is a file descriptor
returned by an Open call, 'buffer" is a buffer
address, and "count" is the number of bytes
requested for transfer. On data transfers,
"nbytes" is set to the number of bytes actually
transferred, and in all three cases a -1 is
returned on an error.

It should be pointed out that although the
ARPANET does define an INTERRUPT signal on a link,
the Unix NCP does not currently implement such a
mechanism. Indeed, file system cc~nds such as
those mentioned here do not provide a natural
interrupt mechanism. However, there does exist
within the standard Unix a signal call by which a
user program specifies the address of a software

procedure that the system will invoke in response
to an external event. Normally these events are
abnormal occurrences such as illegal instruction
traps, or loss of carrier on a data connection.
Nevertheless, this mechanism could be pressed into
service for the purpose of handling incoming inter-
rupt signals. Outgoing interrupt signals can be
generated with ease by a variety of software
mechanisms. However, we have not felt obliged to
implement these interrupt facilities, and mention
the subject here for completeness only.

4.3 NCP Kernel

Referring to Figure l, the NCP kernel includes
everything below the dotted line. The principal
data structures associated with the NCP kernel are
the Read and Write connection tables, the network
file table, and data buffers. These structures
refer to standard Unix structures that already
exist in the kernel; specifically as inodes, file
blocks, and kernel buffers. The NCP kernel uses
existing Unix procedures for managing these
structures (see 4.3.2 and 4.3.B).

~ SEND
J ~ ~ SETUP

/ ~ / ~ \ MODIFY
/ READ / ~ \ READY I USER / WRITE / ~ \ CLEAN

SPACE / OPEN / \ \ RESET

. . . .

SPACE

DATA BUFFERS

READ CONNECTION TABLE

~ WRITE CONNECTION TABLE

:' NETWORK FILE TABLE

TO

IMP INTERFACE

Figure 1. NCP Data and Control Flow

4.3.1 User Service

Communication between user programs and the
user service routines is accomplished through the
existing Unix system call mechanism. User I/O
calls on a network special file are detected by
four conditional statements that au~nent the
standard Unix file system. These four statements
are the only changes to standard Unix code required
by the NCP - and all they do is check for I/O calls
on special files having major device number 255.
System calls distinguished by this simple mechsnism
are diverted to the NCP kernel. There the

63

Open/Close requests are sent to the NCP daemon
while transfer requests are processed in the kernel.
Communication between the NCP kernel and NCP daemon
is implemented by a special file (/dev/ncpkernel).
Unlike the network special files described in 4.1,
the ncpkernel file has a normal Unix major device
number. However, the device driver for
/dev/ncpkernel is actually the NCP kernel. That
is, Unix is set up so that Read/Write calls on
/dev/ncpkernel are processed by routines in the NCP
kernel. These routines essentially copy data
between daemon buffers in user space and kernel
buffers in kernel space.

4.3.2 Connection and File Tables

Whenever a file is opened in Unix, the system
sets up certain data structures in the kernel that
describe the file and which are updated as the
file is modified. This is true as well for network
special files. However, since standard Unix I/O
calls on network files are diverted to the NCP
kernel, most of the space in these data structures
can be used by the NCP kernel for its own purposes.
In particular, Unix inodes are used to represent
sockets, and each standard Unix file control block
can point to as many as three of these sockets.
The socket inodes contain message and bit counters
(refer to 3.3.2), host and link data, and other
parameters that are part of network data flow
control.

For each local socket there exists an entry in
one of the connection tables (i.e., the read table
for read sockets; write table for write sockets).
A table entry consists of a pointer to the socket,
the foreign host number and a link number.

The network file table contains a one word
pointer to a Unix file control block for each open
network file. The file table is the basis for
co~mmication between the NCP kernel and the NCP
daemon - open network files are referred to by
their index number in the file table. The sizes
of the file table and connection tables are compile
time constants - they are all set for 32 entries
in the current system.

4.3.3 Buffer Control

The buffer control section of the NCP kernel
manages a pool of 64-byte buffers that are obtained
from 512-byte buffers allocated by standard Unix.
The NCP kernel will take up to 8 512-byte buffers
from Unix, returning them when free. Also incor-
porated into the buffer control section are pro-
cedures for concatenating messages, appending
data to messages, and copying messages to and from
user space. A '~nessage" in this context is an
IMP-host regular message, i.e,, network data, and
may occupy several of the small 64-byte buffers.

4.3.4 IMP Control

The IMP control section haudles the IMP-host
protocol and other mechanics of transferring data
between the host and IMP.

4.3.5 Daemon Service

The daemon service routines process commands
(SEND, etc.) from the NCP daemon, and send messages

from the net to the daemon (RCV). The SEND co--rid,
as the name implies, is used by the daemon to send
protocol messages to other hosts. The other
commands recognized by daemon service procedures
are used to update kernel data structures (connec-
tion and file tables) as directed by the NCP daemon.

4.3.6 Flow Control

The key to the operation of the split NCP is
really the flow control section. This part of the
kernel implements user data flow control according
to the host-host protocol. This entails (1) send-
ing allocate cc~mands to foreign hosts (refer to
section 3.3), (2) accepting allocates from foreign
hosts, (3) maintaining message and byte counters
affected by allocate comm~uds and data structures,
and (4) implementing the reallocation protocol.
Since user Read/Write and flow control processing
routines are core resident at all times, user data
transfers to and from the net are efficient.

Flow control as implemented in the network
Unix is constrained by a design requirement that
the system operate on a PDP-11 with only 32K words
of memory. The algorithm is as follows:

a) a process writing to a foreign host
will be buffered by the NCP kernel up
to a limit of 4096 words. When the
limit is reached the sending process
is put to "sleep" until some of the
buffered data is sent to the foreign
host.

b) the message header of every message
coming into Unix from the IMP is
examined in a fixed buffer dedicated
to that purpose. If the header indicates
that it is part of a regular message,
then additional buffer space is
allocated from the buffer pool as
required. If space is not available,
then the kernel process that reads
from the IMP blocks ~mtil awakened
by a space-freeing primitive.

Faster algorithms than the one described here
require more memory than is consistent with a
minicomputer installation. Large hosts with
virtual memory can allocate large virtual buffers
for every open connection. This kind of scheme
can be implemented to an extent with the memory
management unit of a PDP-11/45, but not with an
ll/40. Since the bandwidth of the current system
is more than adequate for our needs, and is in
fact often greater than the available bandwidth
of the ARPANET, the algorithm which is compatible
with both ll/40's and ll/45's is preferred over a
faster algorithm which would not be compatible.

The NCP daemon is a continuous background
process in Unix, running as a user program. Inputs
to the NCP daemon consist of Open, Close, or RCV
ccmmands frcm the NCP kernel which are read from
the communication file /dev/ncpkernel. As
explained in 4.2 and 4.3, the Open and Close
commands arise from Open and Close requests on
network special files generated by local user
programs. The RCV c~mnand indicates inc~ning
network traffic for the NCP daemon.

6~

Most of the time the NCP daemon is "asleep"
waiting for a read on the ccmmmmication file to
be satisfied. However, when input commands do
arrive, the program responds in a number of ways.
It can (1) update its internal data structures,
(2) send protocol messages to other hosts, (3)
send commands to the NCP kernel, and (4) log
statistics and events in external files. Depend-
ing on the state of the sockets and files
associated with an incoming commsnd, the NCP
kernel maytake any, or all or none of the above
actions. In this sense the NCP daemon is simply
a finite state machine - for each input it com-
putes a next state and an output function
depending on the current state. Actually the
transition Ikmctions in the program are specified
for a single socket and network file. When an
input c~mand is decoded, it will specify the
particular network file or socket to be affected.
Thus the state machines in the NCP daemon consider
one network event at a time.

The most complicated state machine in the
NCP daemon is the "socket machine." There are
nine possible states for each socket (2 listen
states, 2 rfc states, 4 states associated with
closing, a socket open state, and a null state)
and nine operations that the socket machine can
accept as input commands:

two listen commands
local rfc c~m~ud
foreign rfc c(xmnaud
foreign close cc~m~ud
local close command
ncp daemon close co~nd
timeout cc~nand
foreign host died signal

This could lead to an 81-state machine. However,
the implementation is reasonably compact since
there are only25 unique actions that are per-
formed at the 81 possible states. Each of the
possible actions is implemented as a lhmction, and
the state table is a nine-by-nine array of
function addresses. The state table indicates
which function to call for a given configuration,
and the next state is determined by code in each
function.

4.4. i Outputs

The cc~uds that the NCP daemon can send to
the NCP kernel are given below:

send
reset

clean
ready

mod
setup

- transmit data to the network
- clean up all table entries and
processes related to a specific host

- release a kernel socket (inode)
- wake up any processes that are wait-

ing for the specified network file
- change the state of a kernel socket
- initialize a kernel socket

4.4.2 Daemon Data Structures

The NCP daemon maintains several arrays that
each have one entry for every possible host on the
network, and file and socket structures that
relate to local processes. These are:

/
hostup - an array of 256 bits, one for J

each possible host. A one indi- i /
cates that the host is availablej

rfnm - an array of 256 bits. A bit set
indicates that an rfnm is out-
standing from the indicated host.

retry - an array of 256 counters. Each
one keeps track of the number of
times a message to a host is
retransmitted.

probuf headers - an array of 256 pointers to
protocol buffers. The NCP daemon
assembles host-host messages in
buffers which are allocated as
needed. The header array pointers
map host numbers into the addresses
of these protocol buffers.

socket struct - the NCP daemon data structure for
a socket. It indicates the local
socket, foreign socket, host,
link, byte size, network file,
and socket state of a particular
socket.

file struct - the NCP daemon data structure
for a network file. It contains
the kernel's id for the file
(i.e., index into kernel file
table), a file state indicator,
and the location of NCP socket
structs associated with the file.

4.4.3 NCP Daemon Main Loop

The algorithm given below closely paraphrases
the main loop in the actual code of the NCP daemon.
Note that 3 sockets are allocated on an open
because the ICP uses one socket as it establishes
two others. Note also that statistics are kept
on all incoming host-host'messages (RCV).

procedure ncpdaemon;
(

Open communication file /dev/mcpkernel;
while not end-of-file on /dev/ncpkernel

do (
Read next command;
if (c~mnand = OPEN) then

C
allocate file, 3 sockets, and

link;
call socket machine with open

conm~nd
)

if (command = CLOSE) the~
(
if file is in use then call

socket machine with close
cow-nard

if (command = RCV) then
(
decode host n~nber frem leader;
update statistics;
call specified host-host

procedure;
)

if (protocol was generated) then
send protocol;

)

65

5. Current and Future Work

- Unix currently supports the Telnet and FfP
protocols to the extent that local Unix users may
log into a foreign host with Telnet or transfer
files between Unix and a foreign host that has an
FTP server. However, Telnet and FTP servers are
planned for Unix. They are expected to simplify
the sharing and updating of software by Unix users
on the ARPANET.

Because the Unix interface to the NIP uses
much of the standard Unix file system, networking
programs are easy to write and a significant
portion of the Unix shell colmnaad syntax beccmes
meaningful in a network context. Current work
involves modifying the Unix shell so that path-
names of the form "/hostname/pathname" will be
interpretedas pathnames on the specified foreign
host. In general, it would be desireable to be
able to replace any Unix pathnsme in a command
line with a "network" pathname. However, the full
generality of Unix shell comm~nds would tax the
present abilities of the ARPANRT, although the
results would be worthwhile. For example, the
command

/hostl/progl /host2/path2 I /host3/pro~ I

prog3 I lpr &

would require progl, proS, prog3, and lpr to be
run concurrently. The & symbol specifies that
this four program system is to be run as a
separate process - that is, "forked" off as a
batch job, thus returning the terminal to the
user. Each of these programs has a "standard"
input and output (i.e., the user's terminal) in
addition to any others it may have. However, in
command lines of the type given above, the standard
output of a program on the left side of a vertical
bar is connected to the standard input of the
program to its right. The result is to chain the
standard I/O from left to right across the line.
So in the example, progl executes on hostl. It
receives an input file from host2. The standard
output from progl is the input to pro~ running
on host3. Prog3 runs on the local system and
directs its output to the local line printer
process (ipr).

Although there are many practical problems
involved with supporting cowhand lines like the
one given above, there are seme general techniques
that look promising. BasicaLly, the Unix shell
could open up Teluet connections to the foreign
hosts mentioned in a command line. Then "canned"
messages and other commands derived frem the
original line typed by the user would be sent to
the foreign hosts. A reasonably simple "daemon"
process could be r~ on each foreign system that
could set up the standard input and output
connections across the network for the coupling
convention expressed by the vertical bars in
the Unix shell syntax. The proposed daemon would
need the ability to start processes on the foreign
host in response to ccm~unications from the local
Unix. However, unless the foreign host is Multics
or another Unix this may not be an easy thing to
do. However, there is a simpler approach which
can be made to work using only FTP and Telnet.
To whir, instead of trying to start concurrent
processes the cc~mand line could be considered as

a sequence of job steps, with some steps taking
place on different hosts. The Unix shell could
easily start a program on some host, collect the
output into a file, and when one program completes
use FTP to supply the input for the next program.
The control steps would be initiated automatically
by Unix On behalf of the user.

The imnediate applications that are seen for
the "intelligent" shell are in providing simple
network RJE mechanisms, in providing useful and
efficient distributed data access techniques, and
in connecting multiple Unix systems together. The
RJE work is fairly straightforwardsince RJE
protocols already abound and protocol programs
can be easily implemented given the interface
stracture of the NIP. Techniques involving cross-
network file access techniques have yet to be
perfected, but preliminary work indicates that
distributed file concepts can be worked into Unix.
Experimental work involving multiple Unix systems
is currently in progress. From the users' point
of view, a multiple processor Unix system is
accessed via the shell syntax outlined above.
Given a local mini-network of Unix systems,
network-wide password authentication is possible;
thus a login at one processor can also be a login
at the other processors. A small network is
being organized along these lines. Although the
primary purpose of the mini-network is to provide
ARPANET access to other systems through the Unix
NIP, distributed processing experiments are also
planned. These include the natural coroutine
scheme exemplified by the shell syntax already
described, as well as experiments where a pro-
cessor and its resources ma~v be "slaved" to
another processor. The object of this work is
to provide a test bed for distributed control and
resource management algorithms.

6. Acknowledsment

The programmers who developed the NIP design
and performed the initial coding are Steve Bunch,
Gary Grossman, and Steve Holmgren. Special credit
should be given as well to the developers of
Unix, Ken Thompson and Dennis Ritchie.

References

[i] Dennis M. Ritchie and Ken Thompson, "The
UNIX Time-Sharing System, " CACM, Vol. 17,
No. 7 (1974), Pp. 365-375.

[2] Network Information Center, "Current Network
Protocols, " NIC 7104, Augmentation Research
Center, Stanford Research Institute, Menlo
Park, California, Revised June, 1973.

[3] Jonathan B. Postel, "Survey of Network
Control Programs in the ARPA Network, " Mitre
Corporation Technical Report MTR-6722.

[~] Bob Bressler, Rich Guida and Alex McKenzie,
"Remote Job Entry Protocol, " ARPANET RFC #407,
Network Information Center document #12112.

66

