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Abstract: A Network Interface Program (NIP) is that part of an operating system which inter- 
faces with similar entities in a network. Normally, the NIP is a collection of software routines 
which implement interprocess communication, interhost protocols, data flow controls, and other 
necessary executive f~ctions. This paper discusses the organization of the NIP currently being 
used with the Unix operating system on the ARPA network. The Network Unix system is noteworthy 
because of the natural way that network and local functions are merged. As a result the network 
appears as a logical extension to the local system - from the point of view of both the inter- 
active terminal and user program. 
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i. Introduction 

The Unix time-sharing system Ill, deVeloped at 
Bell Laboratories for the Digital Equipment Corpo- 
ration PDP-11/40 and 11/45 cQmputers, has been 
installed at 100 or more sites. It has proven to 
be an efficient and powerful tool for ntmlerous 
applications. At the University of Illinois, 
Unix has been placed on the ARPANETby adding a 
Network Interface Program (NIP) to the standard 
Unix system. Other sites that are using or have 
received copies of this software include UCLA, UC 
at Berke~v, MIT Lincoln Laboratories, Purdue 
University, the Rand Corporation, and the Stanford 
AI Laboratory. 

The architecture of standard Unix simplified 
many aspects of the design of the Network Unix. 
As a result, the UnixNIP enjoys several properties 
which are not often found in a single networking 
executive: (I) the system will work with a variety 
of network hardware interfaces - it is not limited 
to operation on the ARPANET alone; (2) the resident 
core overhead is low - about 3.5K 16-bit words; 
(B) protocol state machines are implemented by a 
natural mechanism - thus tending to be easy to 
maintain; (4) user interfaces to the NIP are 
clean and simple; (5) the NIP is written entirely 
in a high-level language, as is Unix; and (6) a 
network Unix can easily operate as a link between 
the ARPANET and other networks. 

The network Unix system is being used to 
build sophisticated network mechanisms. Some of 

$Work supported in part by NSF DCR 72-03740 AOi, 
the Department of Computer Science of the Univer- 
sity of lllinois, and the Center for Advanced 
Computation at the University of lllinols. 

this work is described in section 5 below. Other 
applications are mentioned here in passing. In 
particular, "stripped" versions of the current 
system can easily be used as satellite processors 
for larger systems. Also, it is possible to 
connect several Unix systems together to achieve 
multiprocessing as well as the sharing of 
resources. 

Although this paper is primarily an exposi- 
tion of the architecture of the NIP in Unix, some 
familiarity withARPANET protocols and Unix 
features is necessary. Therefore, a summary of 
appropriate terminology and protocols is included 
in the next two sections in order to simplify the 
presentation of the NIP design. 

2. Terminology 

2.1 Unix 

The operating system uses the standard DEC 
address relocation hardware to partition the 
physical memory into two parts - kernel space 
which is reserved for the resident portion of 
Unix, and user space which is available to user 
programs. The user's keyboard interface to the 
system is a program called the shell. The system 
forks (i.e., creates a new process~a copy of the 
shell for each terminal logged onto the system. 
Commands typed by the user are read and analyzed 
by the shell which then starts up system programs 
for the user. Filenames are part of the command 
syntax recognized by the shell. Since the 
directory structure of the Unix filing system is 
a tree, a pathname is an ordered list of directory 
names that makes up a path from the root of the 
tree to a particular file. Directory names are 
separated by / in a pathname. For example, 
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/usr/greg/f specifies file f in directory greg, 
which is a subdirectory of usr. 

The file system and directory structure are 
implemented by a simple pointer system. A direc- 
tory entry contains only a name for the associated 
file and a pointer. The pointer is an integer 
called the i-number (index number) of the file. 
The i-number is used as an index into a system 
table (i-list). The indexed element of the i-list 
is a 16-word data block known as an inode. An 
inode contains all the information necessary to 
access a file. In particular, an inode indicates 
whether a file is an ordinary data file (contain- 
ing file names and pointers to inodes), or a 
special file. 

Within the Unix kernel, each I/0 device con- 
troller is assigned a major device number. Each 
controller maybe associated with one or more 
actual devices, such as disks or tapes. These are 
distinguished by minor device numbers. The major 
device numbers are used by the system to select 
I/O device drivers, and the minor device numbers 
are used by the drivers to select particular 
devices. Each I/O device in a Unix system is also 
represented by at least one special file. These 
files are usually located in directory /dev. For 
example, /dev/tty4 would be the special file 
associated with a particular terminal attached to 
the system. The inode associated with a special 
file contains the major and minor device numbers 
and the flag bit which marks the inode "special." 
Read, Write, and Seek (when appropriate) commands 
to special files are passed directly to the device 
drivers by means of the information contained in 
the special file inodes. Hence I/O commands on 
/dev/tty4 would activate that terminal accordingly. 
This feature of Unix facilitates the treatment of 
network I/O as standard I/O. 

2.2 ARPANET 

The Interface Message Processor, or IMP, is 
the packet switching computer which provides the 
basic data transmission facility of the ARPANET. 
A host is a computer attached to an IMP. Each 
host is assigned a unique host number. A mess~ 
is the unit of transmission (up to 8695 bits) 
between a host and an IMP. A leader is the first 
32 bits of a message. It specifies, among other 
things, the destination host and a link number. 
The link is used to demultiplex messages entering 
a host into256 possible channels. Link zero is 
assigned as the control link used for host-host 
protocol exchanges. Links 2 through 71 are avail- 
able for general use, links 196 through 255 are 
available for experimental use, and the rest are 
otherwise assigned or reserved. A socket number 
is a 32-bit value that identifies a software I/O 
port belonging to a process in a host system. A 
process is uniquely identified in the network by 
its host number and socket number. Even numbered 
sockets are defined to be "read" sockets that 
receive data from the net; odd numbers designate 
"write" sockets. A connection is a simplex 
(unidirectional) data path between processes con- 
sisting of two sockets (one read socket and a 
write socket) and a link. When incoming data 
arrives at a host, the NIP program uses the 
incoming link number to determine which local 
socket should receive the message. 

3. Protocols 

A protocol is a set of conventions that 
cooperating systems agree to observe. In this 
case, the ARPANET protocols [2] specify the form 
and content of messages that are exchanged between 
the various elements of the network. The actual 
transfer of user data between network hosts is 
supported by a hierarchy of protocols. These 
protocols arg related to the various logical levels 
of data transfer between hosts: bit transfers 
between IMP's, regular message transfers between 
hosts, communication between software processes, 
and file transfers between systems. These are out- 
lined in the following paragraphs, beginning with 
the lowest level. 

3.1 IMP-to-IMP 

Each IMP may be connected to as many as five 
other IMP's and up to four hosts. The low-level 
Imp-to-Imp operations do not affect the NIP design 
since they are transparent to a host system. 
Therefore, they will not be discussed here. 

3.2 IMP-host (first level protocol) 

The IMP and host cc~municate through an IMP 
interface. Interfaces in current use range in 
complexity from simple data channels to small 
computer systems depending on the size and nature 
of the host. However, for the purpose of protocol 
definition, the IMP interface is merely a data 
path. Given a suitable IMP interface and device 
driver, the IMP-host protocol is based on the 32- 
bit message leaders. Control bits in a leader 
indicate whether or not the leader is followed by 
additional data. If there is additional data (up 
to the maximum message size ) then the leader plus 
the data constitutes a regular message. If there 
is no additional data then the leader is an IMP- 
host control message. The most commonly occurring 
IMP-host signal is the Ready-For-Next-Message 
(RFNM) control message. A RFNM is a positive 
acknowledgment frem a distant IMP that is sent to 
the local INP when the distant IMP begins copying 
a regular message frem the local IMP. All other 
IMP-host messages are diagnostic in nature or 
indicate error conditions. 

3.3 Host-host (second level protocol) 

The control messages used for this protocol 
consist of a T2-bit (9 byte) header followed by 
additional control information. These control 
messages are the basis for opening and closing 
connections between hosts, transferring data across 
connections, and for performing several other 
auxiliary functions. 

3.3. i Connections 

Request-For-Connection (RFC) comm~nds are 
exchanged between hosts for the purpose of estab- 
lishing connections between processes. There are 
actual~y two RFC ccmnands, one for a prospective 
receiver and one for senders. Each RFC contains a 
pair of socket numbers (the pair desired for the 
connection); the receiver's RFC also specifies the 
link to be associated with the read socket. The 
NCP in a host must compare the RFC's that it sends 
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to other hosts with those it receives. When the 
socket pair in an incoming RFC from some foreign 
host matches a pair sent to that same host, then 
the connection is considered to be open. Fine 
points in this process which have been ignored in 
this discussion include timeout and queuing poli- 
cies to be observed during the connection process, 
as well as that part ofthe protocol which defines 
the byte size to be used in subsequent data 
transmissions over the connection. 

The RFC cemmands for setting up simplex connec- 
tions are used by higher level protocols (see 3.4, 
3.5) to establish duplex connections. 

3.3.2 Flow Control 

Hosts are required to maintain a messa6e 
counter and bit counter for every open connection. 
These counters are initially set to zero. No data 
can be sent over a connection until the receiver 
sends an allocate command to the sender. The 
allocate tells the sender the maximum number of 
messages and the total nt~aber of bits that can be 
sent. Every time data is transmitted over the 
connection, both the sender and receiver decrement 
their message counters by one and the bit counters 
by the number of bits in the message. No data 
transfers may take place that would cause either 
the message counter or bit counter to become 
negative. Thus the receiver must continuously send 
allocates to the sender. This technique guards 
against the possibility of a fast sender overrun- 
ning a slower receiver with data. 

3.4 Initial Connection Protocol 
(third level protocol) 

The ICP, as it is called, is the standard 
ARPANETmechanism for connecting a process in one 
host with a process in another host. The ICP uses 
the. host-host protocol to establish a pair of 
comnections between hosts. The result is a 
bidirectional data path consisting of a read and 
write socket for each process and a link for each 
read socket. 

3.5 Higher Level Protocols 

The Telnet protocol allows a user at a terminal 
on one host to log on to a foreign host system as 
though his terminal were attached to the foreign 
host. This is accomplished by using the ICP proto- 
col to connect to a Telnet "server" process in the 
foriegn host. The Telnet protocol itself consists 
of the data and control c~mmands that are passed 
over the duplex connection established by the ICP. 

The File Transfer Protocol (~TP) is used for 
transferring files between hosts. An ~TP exchange 
consists of opening a Telnet connection to a 
foreign F2P socket, carrying on an initial conver- 
sation, opening a simplex data connection, trans- 
ferring the file over the data connection, and 
then closing the connections. 

Larger hosts on the ARPANET support a Remote 
Job Entry (RJE) protocol which enables a distant 
user to submit jobs to a batch job stream. 
Although there is a prototype official ARPANET RJE 
protocol [4], existing network RJE implementations 
are local a~ptations. 

There exist numerous experimental or proposed 
higher level protocols. Examples include schemes 
for file access (as opposed to file transfer), 
interactive graphics, procedure calling, and inter- 
network c~nmunications, i.e., communications 
between ARPANET and nonARPANET networks. These 
examples are given for completeness only and will 
not be discussed since a survey of protocol 
development is outside the scope of this paper. 

4. NIP Structure 

The Network Unix system is a standard Unix 
augmented by a Network Control Program (NCP), pro- 
tocol programs, and network special files. The 
NCP is implemented in two parts: an NCP kernel 
which is made part of the core-resident Unix code; 
and the NCP daemon which is a continuous backgrolmd 
user-level process in the system. The NCP daemon 
implements the host-host and ICP protocols; the 
NCP kernel services the IMP, the NCP daemon, an~ 
user programs; the protocol programs execute in 
user space utilizing the NCP kernel and daemon to 
implement higher level protocols; and network 
special files provide the basis for the interface 
between user programs and the NCP. The NCP kernel 
(about 3.5K words) is the only resident software 
in the NIP. The NCP daemon (about 8K words) and 
other programs are only brought in to memory (as 
user programs) when they are needed. Since the 
NCP is pr~arilyneeded for opening and closing 
network connections, and since the NCP kernel 
manages network data flow, this "split" organiza- 
tion conserves memory without sacrificing per- 
formanee. In fact the NIP was developed and will 
run on a PDP-llwith only 32K words of memory - 
the minimumrequired for standard Unix. 

4.1 Network Special Files 

In Unix, special files map a character string 
representation of physical device names into their 
assigned integer names within the system (refer to 
section 2). Network special files perform a 
similar function in that they map network host 
names into host numbers. The network special files 
are found in directory '~dev/net." For example, 
"~dev/net/harv" represents the Harvard PDP-iO, and 
"/dev/net/london" represents the PDP-9 front-end 
in England. Each network special file has a major 
device number of 255 which distinguishes it from 
the standard Unix device numbers which are assigned 
starting from zero. The minor device number of a 
network special file is the assigned network iden- 
tifier for the corresponding host. 

4.2 Unix-NCP Interface 

Programs access the network software by apply- 
ing standard Unix I/O calls (Open, Close, Read, and 
Write) to network special files. Thus, the network 
can be accessed by a program written in any language 
that provides the standard interface to the file 
system. Usage of these commands with network files 
is just what one would expect. That is, the Open 
command establishes a connection between the calling 
program and a server process on the foreign host. 
Read and Write commands transfer data between the 
two processes, and a Close terminates the 
connection. 
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The form of the Open call is: 

fd = open ("/dev/net/hostname, " mode) ; 

The Open cnm~aud returns a file descriptor (fd ~= O) 
if the connection is opened successfully, and minus 
one otherwise. The first argument is the Unix 
pathname of the desired network special file. The 
second argument is normally O, l, or 2 signifying 
that a read-only, wrlte-only, or a read-write 
(i.e., standard Telnet) connection is desired. 
This interpretation coincides with standard Unix 
usage when the value of 'RhOde" is O, l, or 2. How- 
ever, any other value is interpreted as the address 
of a control block in the user program during a 
network Open. The control block fields and their 
meanings are given below: 

type - indicates (1) whether a connection or 
a "listen" for a foreign RFC is 
desired on a local socket, (2) simplex 
or duplex connections, (3) absolute 
socket numbers or numbers relative to 
a base, and (4) whether an ICP or a 
direct connection is desired. 

flle id - flle descriptor used when the open 
refers to an already open network file. 

local 
socket - refers to a local socket number. 
foreign 
socket - specifies a foreign socket number. 
host - specifies a foreign host. 
byte - specifies the connection byte size. 
alloc - specifies the nominal size of an 

allocate ccm~nand sent to a foreign 
host. 

time - the time in 60ths of a second to wait 
for the foreign host to fulfill the 
request before canceling it. 

If any fields in the control block are zero, the 
NCP will use default values in their place. The 
flexibility in opening network connections afforded 
by this control block scheme greatly simplifies the 
task of implementing higher level protocols. 

The Read/Write/Close calls are equivalent to 
the standard Unix calls. They have the following 
form: 

nbyte s = read (fd, buffer, count ) ; 

nbytes = write (fd, buffer, cotmt ) ; 

status = close (fd) ; 

In each of these calls "fd" is a file descriptor 
returned by an Open call, 'buffer" is a buffer 
address, and "count" is the number of bytes 
requested for transfer. On data transfers, 
"nbytes" is set to the number of bytes actually 
transferred, and in all three cases a -1 is 
returned on an error. 

It should be pointed out that although the 
ARPANET does define an INTERRUPT signal on a link, 
the Unix NCP does not currently implement such a 
mechanism. Indeed, file system cc~nds such as 
those mentioned here do not provide a natural 
interrupt mechanism. However, there does exist 
within the standard Unix a signal call by which a 
user program specifies the address of a software 

procedure that the system will invoke in response 
to an external event. Normally these events are 
abnormal occurrences such as illegal instruction 
traps, or loss of carrier on a data connection. 
Nevertheless, this mechanism could be pressed into 
service for the purpose of handling incoming inter- 
rupt signals. Outgoing interrupt signals can be 
generated with ease by a variety of software 
mechanisms. However, we have not felt obliged to 
implement these interrupt facilities, and mention 
the subject here for completeness only. 

4.3 NCP Kernel 

Referring to Figure l, the NCP kernel includes 
everything below the dotted line. The principal 
data structures associated with the NCP kernel are 
the Read and Write connection tables, the network 
file table, and data buffers. These structures 
refer to standard Unix structures that already 
exist in the kernel; specifically as inodes, file 
blocks, and kernel buffers. The NCP kernel uses 
existing Unix procedures for managing these 
structures (see 4.3.2 and 4.3.B). 

~ SEND 
J ~ ~ SETUP 

/ ~ / ~ \ MODIFY 
/ READ / ~ \ READY I USER / WRITE / ~ \ CLEAN 

SPACE / OPEN / \ \ RESET 

. . . .  

SPACE 

DATA BUFFERS 

READ CONNECTION TABLE 

~ WRITE CONNECTION TABLE 

:' NETWORK FILE TABLE 

TO 

IMP INTERFACE 

Figure 1. NCP Data and Control Flow 

4.3.1 User Service 

Communication between user programs and the 
user service routines is accomplished through the 
existing Unix system call mechanism. User I/O 
calls on a network special file are detected by 
four conditional statements that au~nent the 
standard Unix file system. These four statements 
are the only changes to standard Unix code required 
by the NCP - and all they do is check for I/O calls 
on special files having major device number 255. 
System calls distinguished by this simple mechsnism 
are diverted to the NCP kernel. There the 
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Open/Close requests are sent to the NCP daemon 
while transfer requests are processed in the kernel. 
Communication between the NCP kernel and NCP daemon 
is implemented by a special file (/dev/ncpkernel). 
Unlike the network special files described in 4.1, 
the ncpkernel file has a normal Unix major device 
number. However, the device driver for 
/dev/ncpkernel is actually the NCP kernel. That 
is, Unix is set up so that Read/Write calls on 
/dev/ncpkernel are processed by routines in the NCP 
kernel. These routines essentially copy data 
between daemon buffers in user space and kernel 
buffers in kernel space. 

4.3.2 Connection and File Tables 

Whenever a file is opened in Unix, the system 
sets up certain data structures in the kernel that 
describe the file and which are updated as the 
file is modified. This is true as well for network 
special files. However, since standard Unix I/O 
calls on network files are diverted to the NCP 
kernel, most of the space in these data structures 
can be used by the NCP kernel for its own purposes. 
In particular, Unix inodes are used to represent 
sockets, and each standard Unix file control block 
can point to as many as three of these sockets. 
The socket inodes contain message and bit counters 
(refer to 3.3.2), host and link data, and other 
parameters that are part of network data flow 
control. 

For each local socket there exists an entry in 
one of the connection tables (i.e., the read table 
for read sockets; write table for write sockets). 
A table entry consists of a pointer to the socket, 
the foreign host number and a link number. 

The network file table contains a one word 
pointer to a Unix file control block for each open 
network file. The file table is the basis for 
co~mmication between the NCP kernel and the NCP 
daemon - open network files are referred to by 
their index number in the file table. The sizes 
of the file table and connection tables are compile 
time constants - they are all set for 32 entries 
in the current system. 

4.3.3 Buffer Control 

The buffer control section of the NCP kernel 
manages a pool of 64-byte buffers that are obtained 
from 512-byte buffers allocated by standard Unix. 
The NCP kernel will take up to 8 512-byte buffers 
from Unix, returning them when free. Also incor- 
porated into the buffer control section are pro- 
cedures for concatenating messages, appending 
data to messages, and copying messages to and from 
user space. A '~nessage" in this context is an 
IMP-host regular message, i.e,, network data, and 
may occupy several of the small 64-byte buffers. 

4.3.4 IMP Control 

The IMP control section haudles the IMP-host 
protocol and other mechanics of transferring data 
between the host and IMP. 

4.3.5 Daemon Service 

The daemon service routines process commands 
(SEND, etc. ) from the NCP daemon, and send messages 

from the net to the daemon (RCV). The SEND co--rid, 
as the name implies, is used by the daemon to send 
protocol messages to other hosts. The other 
commands recognized by daemon service procedures 
are used to update kernel data structures (connec- 
tion and file tables) as directed by the NCP daemon. 

4.3.6 Flow Control 

The key to the operation of the split NCP is 
really the flow control section. This part of the 
kernel implements user data flow control according 
to the host-host protocol. This entails (1) send- 
ing allocate cc~mands to foreign hosts (refer to 
section 3.3), (2) accepting allocates from foreign 
hosts, (3) maintaining message and byte counters 
affected by allocate comm~uds and data structures, 
and (4) implementing the reallocation protocol. 
Since user Read/Write and flow control processing 
routines are core resident at all times, user data 
transfers to and from the net are efficient. 

Flow control as implemented in the network 
Unix is constrained by a design requirement that 
the system operate on a PDP-11 with only 32K words 
of memory. The algorithm is as follows: 

a) a process writing to a foreign host 
will be buffered by the NCP kernel up 
to a limit of 4096 words. When the 
limit is reached the sending process 
is put to "sleep" until some of the 
buffered data is sent to the foreign 
host. 

b) the message header of every message 
coming into Unix from the IMP is 
examined in a fixed buffer dedicated 
to that purpose. If the header indicates 
that it is part of a regular message, 
then additional buffer space is 
allocated from the buffer pool as 
required. If space is not available, 
then the kernel process that reads 
from the IMP blocks ~mtil awakened 
by a space-freeing primitive. 

Faster algorithms than the one described here 
require more memory than is consistent with a 
minicomputer installation. Large hosts with 
virtual memory can allocate large virtual buffers 
for every open connection. This kind of scheme 
can be implemented to an extent with the memory 
management unit of a PDP-11/45, but not with an 
ll/40. Since the bandwidth of the current system 
is more than adequate for our needs, and is in 
fact often greater than the available bandwidth 
of the ARPANET, the algorithm which is compatible 
with both ll/40's and ll/45's is preferred over a 
faster algorithm which would not be compatible. 

The NCP daemon is a continuous background 
process in Unix, running as a user program. Inputs 
to the NCP daemon consist of Open, Close, or RCV 
ccmmands frcm the NCP kernel which are read from 
the communication file /dev/ncpkernel. As 
explained in 4.2 and 4.3, the Open and Close 
commands arise from Open and Close requests on 
network special files generated by local user 
programs. The RCV c~mnand indicates inc~ning 
network traffic for the NCP daemon. 
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Most of the time the NCP daemon is "asleep" 
waiting for a read on the ccmmmmication file to 
be satisfied. However, when input commands do 
arrive, the program responds in a number of ways. 
It can (1) update its internal data structures, 
(2) send protocol messages to other hosts, (3) 
send commands to the NCP kernel, and (4) log 
statistics and events in external files. Depend- 
ing on the state of the sockets and files 
associated with an incoming commsnd, the NCP 
kernel maytake any, or all or none of the above 
actions. In this sense the NCP daemon is simply 
a finite state machine - for each input it com- 
putes a next state and an output function 
depending on the current state. Actually the 
transition Ikmctions in the program are specified 
for a single socket and network file. When an 
input c~mand is decoded, it will specify the 
particular network file or socket to be affected. 
Thus the state machines in the NCP daemon consider 
one network event at a time. 

The most complicated state machine in the 
NCP daemon is the "socket machine." There are 
nine possible states for each socket (2 listen 
states, 2 rfc states, 4 states associated with 
closing, a socket open state, and a null state) 
and nine operations that the socket machine can 
accept as input commands: 

two listen commands 
local rfc c~m~ud 
foreign rfc c(xmnaud 
foreign close cc~m~ud 
local close command 
ncp daemon close co~nd 
timeout cc~nand 
foreign host died signal 

This could lead to an 81-state machine. However, 
the implementation is reasonably compact since 
there are only25 unique actions that are per- 
formed at the 81 possible states. Each of the 
possible actions is implemented as a lhmction, and 
the state table is a nine-by-nine array of 
function addresses. The state table indicates 
which function to call for a given configuration, 
and the next state is determined by code in each 
function. 

4.4. i Outputs 

The cc~uds that the NCP daemon can send to 
the NCP kernel are given below: 

send 
reset 

clean 
ready 

mod 
setup 

- transmit data to the network 
- clean up all table entries and 
processes related to a specific host 

- release a kernel socket (inode) 
- wake up any processes that are wait- 

ing for the specified network file 
- change the state of a kernel socket 
- initialize a kernel socket 

4.4.2 Daemon Data Structures 

The NCP daemon maintains several arrays that 
each have one entry for every possible host on the 
network, and file and socket structures that 
relate to local processes. These are: 

/ 
hostup - an array of 256 bits, one for J 

each possible host. A one indi- i / 
cates that the host is availablej 

rfnm - an array of 256 bits. A bit set 
indicates that an rfnm is out- 
standing from the indicated host. 

retry - an array of 256 counters. Each 
one keeps track of the number of 
times a message to a host is 
retransmitted. 

probuf headers - an array of 256 pointers to 
protocol buffers. The NCP daemon 
assembles host-host messages in 
buffers which are allocated as 
needed. The header array pointers 
map host numbers into the addresses 
of these protocol buffers. 

socket struct - the NCP daemon data structure for 
a socket. It indicates the local 
socket, foreign socket, host, 
link, byte size, network file, 
and socket state of a particular 
socket. 

file struct - the NCP daemon data structure 
for a network file. It contains 
the kernel's id for the file 
(i.e., index into kernel file 
table), a file state indicator, 
and the location of NCP socket 
structs associated with the file. 

4.4.3 NCP Daemon Main Loop 

The algorithm given below closely paraphrases 
the main loop in the actual code of the NCP daemon. 
Note that 3 sockets are allocated on an open 
because the ICP uses one socket as it establishes 
two others. Note also that statistics are kept 
on all incoming host-host'messages (RCV). 

procedure ncpdaemon; 
( 

Open communication file /dev/mcpkernel; 
while not end-of-file on /dev/ncpkernel 

do ( 
Read next command; 
if (c~mnand = OPEN) then 

C 
allocate file, 3 sockets, and 

link; 
call socket machine with open 

conm~nd 
) 

if (command = CLOSE) the~ 
( 
if file is in use then call 

socket machine with close 
cow-nard 

if (command = RCV) then 
( 
decode host n~nber frem leader; 
update statistics; 
call specified host-host 

procedure; 
) 

if (protocol was generated) then 
send protocol; 

) 
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5. Current and Future Work 

- Unix currently supports the Telnet and FfP 
protocols to the extent that local Unix users may 
log into a foreign host with Telnet or transfer 
files between Unix and a foreign host that has an 
FTP server. However, Telnet and FTP servers are 
planned for Unix. They are expected to simplify 
the sharing and updating of software by Unix users 
on the ARPANET. 

Because the Unix interface to the NIP uses 
much of the standard Unix file system, networking 
programs are easy to write and a significant 
portion of the Unix shell colmnaad syntax beccmes 
meaningful in a network context. Current work 
involves modifying the Unix shell so that path- 
names of the form "/hostname/pathname" will be 
interpretedas pathnames on the specified foreign 
host. In general, it would be desireable to be 
able to replace any Unix pathnsme in a command 
line with a "network" pathname. However, the full 
generality of Unix shell comm~nds would tax the 
present abilities of the ARPANRT, although the 
results would be worthwhile. For example, the 
command 

/hostl/progl /host2/path2 I /host3/pro~ I 

prog3 I lpr & 

would require progl, proS, prog3, and lpr to be 
run concurrently. The & symbol specifies that 
this four program system is to be run as a 
separate process - that is, "forked" off as a 
batch job, thus returning the terminal to the 
user. Each of these programs has a "standard" 
input and output (i.e., the user's terminal) in 
addition to any others it may have. However, in 
command lines of the type given above, the standard 
output of a program on the left side of a vertical 
bar is connected to the standard input of the 
program to its right. The result is to chain the 
standard I/O from left to right across the line. 
So in the example, progl executes on hostl. It 
receives an input file from host2. The standard 
output from progl is the input to pro~ running 
on host3. Prog3 runs on the local system and 
directs its output to the local line printer 
process (ipr). 

Although there are many practical problems 
involved with supporting cowhand lines like the 
one given above, there are seme general techniques 
that look promising. BasicaLly, the Unix shell 
could open up Teluet connections to the foreign 
hosts mentioned in a command line. Then "canned" 
messages and other commands derived frem the 
original line typed by the user would be sent to 
the foreign hosts. A reasonably simple "daemon" 
process could be r~ on each foreign system that 
could set up the standard input and output 
connections across the network for the coupling 
convention expressed by the vertical bars in 
the Unix shell syntax. The proposed daemon would 
need the ability to start processes on the foreign 
host in response to ccm~unications from the local 
Unix. However, unless the foreign host is Multics 
or another Unix this may not be an easy thing to 
do. However, there is a simpler approach which 
can be made to work using only FTP and Telnet. 
To whir, instead of trying to start concurrent 
processes the cc~mand line could be considered as 

a sequence of job steps, with some steps taking 
place on different hosts. The Unix shell could 
easily start a program on some host, collect the 
output into a file, and when one program completes 
use FTP to supply the input for the next program. 
The control steps would be initiated automatically 
by Unix On behalf of the user. 

The imnediate applications that are seen for 
the "intelligent" shell are in providing simple 
network RJE mechanisms, in providing useful and 
efficient distributed data access techniques, and 
in connecting multiple Unix systems together. The 
RJE work is fairly straightforwardsince RJE 
protocols already abound and protocol programs 
can be easily implemented given the interface 
stracture of the NIP. Techniques involving cross- 
network file access techniques have yet to be 
perfected, but preliminary work indicates that 
distributed file concepts can be worked into Unix. 
Experimental work involving multiple Unix systems 
is currently in progress. From the users' point 
of view, a multiple processor Unix system is 
accessed via the shell syntax outlined above. 
Given a local mini-network of Unix systems, 
network-wide password authentication is possible; 
thus a login at one processor can also be a login 
at the other processors. A small network is 
being organized along these lines. Although the 
primary purpose of the mini-network is to provide 
ARPANET access to other systems through the Unix 
NIP, distributed processing experiments are also 
planned. These include the natural coroutine 
scheme exemplified by the shell syntax already 
described, as well as experiments where a pro- 
cessor and its resources ma~v be "slaved" to 
another processor. The object of this work is 
to provide a test bed for distributed control and 
resource management algorithms. 
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