
EXPERIMENTAL DATA ON HOW PROGRAM BEHAVIOR
AFFECTS THE CHOICE OF SCHEDULER PARAMETERS

Juan Rodriguez-Rosell x
Department of Information Processing
The Royal Institute of Technology

Stockholm, Sweden

Summary

A theory of combined scheduling of pro-
cessor and main memory has begun to emerge in
the last few years. It has been proposed that
schedulers use the working set concept to
avoid thrashing. To our knowledge, no data
has been published on experimental measure-
ments of working sets or on the influence that
program behavior may have on the choice of
quantum size. In this paper empirical data are
presented and its influence on the choice of
system parameters is discussed.

Introduction

A computer system has different types of
resources of which processor and memory are
the two most important ones. In paging sys-
tems a process can execute having only a sub
set of pages in memory. The dynamic address
translation mechanism together with the opera-
ting system insures that when a page not pre-
sent in memory is referenced the process will
be prevented from further execution until the
missing page is brought to core.

Scheduling means deciding which processes
are to use the system's resources. In this
case the resources that interest us are pro-
cessor and main memory. Recent research has
developed the working set model for program
behavior and a theory of combined scheduling
oflProcessor and memory has been built around
it . Two recent papers deal with2t~e impleme~
tation of this scheduling method ' , but to
our knowledge no information has been publi-
shed on measured program working set behavio~
It is the purpose of this paper to report on
working set characteristics of programs and
how they might influence the choice of sche-
duling parameters.

Program workin 9 set behavior

The working set, W(t,T) , of a process is
the collection of information referenced by
the process in the time span (t-T,t) . The
domain of definition t and T is time, expres-
sed in some adequate unit, and since we are
interested in paging machines we will take
the domain of definition of W to be the set
of virtual pages allowed to be referenced.
Another variable, the working set size,
~(t,T) , is simply the number of pages in the
working set. Its expected value, Et(~(t,T)) ,

XVisitor at IBM France Scientific Center
Boulevard de la Chantourne, 38 - La Tronche
France

is denoted by ~(T). We assume that it is inde-
pendent of time. As the process executes, it
will reference pages not present in the work-
ing set. We call l(t,T) the number of pages
reentering the working set per unit time. Its
expected value can be written as ~(T), a func-
tion of T alone.

In a scheduler based on working sets a
process cycles through a running set each time
receiving a burst of T time units until it
either blocks or exhausts a quantum q. The
pertinent questions are how to choose T and q.
It is necessary to estimate how many pages are
expected to be required by a process and how
many page faults it will generate. By hypothe-
sis the dispatcher ensures that every member
of the running set keeps its working set in
memory. The working set is computed at the end
of each burst. It is clear that with such a
policy m, the expected number of page faults~
per unit time, is at worst equal to I(T). In-
it is reported that the2quantum has been cho-
sen arbitrarily whereas does not discuss this
problem at all.

Process Efficienqy

A process efficiency is defined as the percen-
tage of virtual time a process spends compu~ng

Restricting our attention to quantums of
the form

q(T) = KT

we expect under demand paging ~(T) page faults
in the first burst, since the working set has
to be demand paged into memory. Thereafter we
expect

T [(T)

page faults during each of the remaining K-I
bursts. The process efficiency is then

KT 1
np = =

KT+T (~ (r) + (K-l) T~ (T)) l+f (T)
P

= + (K-I) i (~)
K ~ T

fCT)

where T is the traverse time involved in
transferring a page between main memory and
auxiliary storage. To maximize np is tanta-
mount to minimizing f(T).

156

Deriving we obtain

df(T) ~(T)-T~ (T)
- - = 0 ~> K= 1 +
dT T2d~ (T)/d_t

d03 (T)
We have used the fact that ~(T) -- . For
the proof see dT

By hypothesis K>i which means

~(~) - T ~ (~) < 0

d~ (y)
because < 0.

dT

The shape of [(T) strongly suggests that in a
certain range it may be approximated by

-bT
a e

d~ (T)
solving for ~(T) in - - = [(T) we find

dT

- 1

= 3O + 5 (X0-X)"

We write ~ for ~(T) and ~0 for ~(T0) for

simplicity of notation. The same applies to

~(T) and

[0 (_I bT (!
~0 + -- < ~ + T) = a e- + T) -~->

b b b

[0+b~0
< (I + bT)e -bT < I.

a

The experimental values for [0' ~0' a, b
indicate that

~0+b~0

a

It seems than in the range where the approxi
mation is valid no maximum can be attained.
It is however possible to obtain an upper
bound on the efficiency, because from

1 f(~) - 1

np

we can deduce

O0-TX
K

T (a-~)

i (!__ i)
~ = ~p ~p

since ~ - T[> 0

we find

C~ > [=>

1

~P < i+[T~

The quantity on the right-hand side of the
inequality can be considered to be the proc~s
steady-state efficiency (called duty factor
in ~). This quantity is a strict upper bound
on the attainable process efficiency. We can
zome arbitrarily close to it, however. Since

is a decreasing function of T the relative
maximum for the process steady-state efficien-
cy corresponds to choosing the largest possi-
ble T. Set now

qp ~ p < 1
i+[T

P

as target efficiency. This gives
T (~-Tk) p

X= --~
T (l+~Tp) 1-p

As D comes closer to 1 the process efficien-
cy approaches the steady state efficiency and
K must be increased accordingly.

System Efficiency

The question arises of whether we should
try to maximize the total system efficiency
(defined as the percentage of real time the
CPU is busy with problem programs) rather
than a process total efficiency.

When a program executes in a paging ma-
chine it will demand I/O operations from the
paging channel and the file units. If the
program is to execute V virtual time units it
will require a total time of

T = V + Vmp Tp + Vmi0 Ti0

The process efficiency will in this case be

V 1
~T = T =

l+mpTp+mi0Ti0

The quantities m and T are respectively the
number of page faults per unit virtual time
and the transfer time of a page fault. A com-
plete discussion of these quantities is found
in . Similarly, m.^ and T.^ are the number

1
of I/O operations ~r unit ~irtual time de-
manded by the process and the time necessary
to process one such request. The discussion
of the factors affecting these two parameters
parallels that of m and T . It is interes-
ting, however, to n~tice that m~ depends
only on the process being considered.

157

As long as the quantities m , T , m.^,
T.^ are independant of the number N Pof ~o-
ceases in maln memory the total system effi-
ciency will grow linearly with N, i.e.,

nsy s =

N

l+mpTp+mi0Ti0

If this is the case the times Tp and Ti^ are
composed almost exclusively of seek tire and/
or rotational delay, plus data transfer time.
However, when N is increased both thrashing
(i.e. an increase in m) and the effect of
queueing (i.e. an increase in T) will add up
to make m T >> 1 + m.^T.^. This is confirmed
experimentally, sincel~n~Uartificially induced
thrashing it is observed that the number of
I/O operations per second of real time is
very low (as corresponds to an extremely low
observed CPU activity) whereas the channel is
paging at nearly its maximum rate.

If there are M pages available in main
memory N is given by

M

N =

~+m T
P

where m is to be replaced by the average
number Pof page faults per unit time, i.e.

~o+ (K-l} T~
m =
P K~

~nsys ~nsys
It is possible to form now and ,

~T ~K
set them to 0 and solve the two non-linear,
simultaneous equations. The expressions in-
volved are complicated and an easier course
is to plot ~ as a function of T for diffe-
rent values SySof the parameter K. It shows
sudden decreases in efficiency whenever the
expected multiprogramming level diminishes.

System Operatin 9 Point

Measures of processor and memory utiliza
tion are, respectively, system efficiency,
Ds. s (defined above) and memory efficiency,

~ , defined as the percentage of memory
omem ccupled by the processesexecuting in the sys-
tem. The operating poinu of the system is a
point in the (nmem,~sys) plane.

The path of the operating point of the
system depends on several factors. The pro-
cesses executing and the behavior of the ope-
rating system affect it. It oscillates rapid-
ly with time but experimental evidence shows
that the average operating point of a whole
session will vary little from that of other
sessions.

Computer systems often operate near
memory saturation. In other words, nme m is

often about 90 %. In a well balanced system
will be correspondly high. However, in

sys
a surprinsingly large number of cases n
is very low, about 20 %. In an effort to sys
use the idle CPU unwise operating systems
try to increase the level of multiprogramming.
Thus thrashing sets in.

With a working set policy the number N
of processes in main memory is not fixed.
Rather it varies depending on the instanta-
neous demands of the processes being executed.
We would like to know the probability of fin~
ing the system in a certain operating point.

Let the function G(9,T) be defined as
follows

G (@,T) = probability (~(t,T) < 8)

The function G(@,T) is called the page demand
function. It depends only on the process
being considered and not on the choice of
paging algorithm. The function accounts for
the fact that working set sizes are rather
different from their expected values. The
derivative dG (@,T) indicates the most proba-

d@
ble page demand value.

Under a working set dispatching policy a
process is guaranteed an amount of memory
equal to its working set size. Moreover, it
will demand the pages reentering its working
set. A process has the right to claim

r(T) = ~(T) + T[(T)

pages. When a process demands more than r(T)
pages it is said to be page avid. The proba-
bility of a process being avid is 1 - G(r(;~T)
If we have identical processes the expected
multiprogramming level is

N = entier (M/r(T))

Corresponding to this expected multiprogram-
ming level we will have an expected system
efficiency given by

nsy s =
l+mpTp+mioTio

and an expected memory efficiency, Dmem,

Nr (T)

nme m = - -
M

The probability that the system efficien-
cy decreases below n depends on no progzam
being page avid, forSySwhen a program is
page avid it may well demand so may pages
that another program is forced to leave the
running set in order to accommodate the page
avid program's sudden demand for pages. The

158

probability of no process being page avid is
of course

N
1 - (G(r(T) , T))

and the probability that some process is page
avid is an upper bound on the probability that
the system efficiency is smaller than its ex-
pected value.

Pr (~sys < ~sys) ~ 1 - (G(r(T),T)) N

Analysis of results

In order to investigate the dynamic be-
havior of programs a fully interpretive simu-
lator designed to monitor any IBM SYSTEM/360
program has been used. A set of routines ga-
thers information on which pages a program re-
ferences at every instruction. The pages are
then annotated in a boolean matrix kept in
core. When the programs request an I/O opera-
tion the pages it references are also noted
down by a program that examines the channel
program. All data reduction is done after the
monitor relinquishes control so that there
will be no interference with the monitored
programs I/O functions. The quantities measu-
red include W(t,l) and the number of I/O ope-
rations the program requests together with
the units involved.

To conduct the experiments the programs
have been loaded in a virtual machine running
in a 360/67 under control of CP67-. The sys-
tem at Grenoble includes 128 pages, each page
having 4096 8-bit bytes. Paging is done on a
single drum, which CP uses on a first-come-
first served basis. Each page is assigned a
fixed location in the drum (or in disk should
the number of pages in the drum be insuffi-
cient) which is never changed during the life
of the process. After the data is collected
other programs treat them and display perti-
nent ~sults on a CRT.

We have tested the Fortran compiler
the Assembler and the PL/I compiler, which
are all heavily used components of the system
Using virtual machines has given us the adva~
tages of a bare machine while still keeping
on-line capabilities. This has provided us
with a powerful and versatile tool hard to
match conventional systems.

Figures I, 2 and 3 show pictures of ~, X
and ~(t,T) for T = 25000 instructions. The
program monitored was in this case the assem-
bler. The program to be assembled was about
300 instructions long and it was assembled in
roughly two million instructions. The range

(500 000 - 2 500 000) instructions

has been found enough to compile or assemble
typical assembler or Fortran modules.

In figure 3 it can be seen that the work-
ing set size stays close to 20 pages during
the life of the process. The working set size
jumps suddenly, attaining values close to 40
pages and even depassing this value. In this
case it has been determined that the peaks
correspond to the loading of the different
phases of the assembler. The peaks are short
lived, rarely lasting more than 10000 instru~
tions, as it could be seen in a plot of
~(t,T) with T fixed at 10000 instructions.
Software has already been modified in Grenob~
to decrease the working set size of programs.
Virtual access methods are presently being im-
plemented. It is expected that this technique
will completelyeliminate the peaks.

Figures 4 and 5 show graphs of ~ and ~ as
a function of T together with their approxi-
mations. The agreement with the experimental
values in the range (5000,50000) instructions
is good. The approximation used in this party
cular case has been

0.45 0.4xT

103 . . e instructlons 104instructions

Other experiments indicate that ~ is approxi-
mated by

-bT
= a I a 2 e

where a^~ and b are practically the same for
all programs examined. Their values have
been determined as

a 2 = 0.9

0.4 1

104 instructions

The constant a I depends on the type of prog~mn
being considered. For example, it has been
found that

0.5 1

a I = -- _ i03 instructions
for assembler

0.35 1
a. = - for Fortran
i 10 s instructions

Figure 6 shows ~ as a function of T.
The curves for K=I SySand K=20 are nearly
parallel after T = 20000 instructions. Before
this value of T the curves exhibit large va-
riations caused by changes in multiprogram-
ming level. For values of K between i0 and 50
the curves remain very close to the curve for
K=20. This suggests that after T = 20000 ins-
tructions and K=I0 the expected systems effi-
ciency should be about 45 per cent a value
rather insensitive to the choice of K. On the

159

other hand, the response time to a particular
transaction depends quite certainly on the
choice of K, which can then be viewed as the
parameter insuring equity in the distribution
of CPU time.

When T is small the probability of some
program being page avid is rather high, since
we have 4 or 5 processes in memory. As T
increases, however, we reach a more stable
operating point in which increasing T does
not significantly alter the expected efficien-
cy, but it increases the probability of drop-
ping further in the multiprogramming level.
For this reason T should be chosen such that
it keeps the system in the stable region. Its
choice depends on the available system resour-
ces. In the case depicted in figure 6,T
should be at least 20000 instructions (i.e.
30 msec in a 360/67). Then K can be chosen to
improve efficiency somewhat. Its value should
be greater than 10.

We are at present implementing a dispat-
cher based on working sets to run CP67. We
have chosen T = 30 msec and K=35. There is of
course, no reason why K and T cannot be time-
dependent, nor any reason why they should be
the same for all processes in the system.
Our research is directed towards letting K
and T be time-varying, process-dependent para-
meters, as well as development of software
measuring tools to evaluate system response.

Figure 7 shows the expected operating
points of the system which depend on K and T
Only the stable region (20000 < T < 50000)
is depicted. The path of the system as T is
increased is shown by the arrows.

Figure 8 is a plot of G(@,T) and
d G (@,T). It is interesting to notice that
~e most probable value is smaller than the
average working set size. However, should the
program become page avid, it will demand vast-
ly more than its right, as indicated by the
hump around 38 pag@s. Other programs show
similar graphs. G(~,T) is usually between
60 % and 70 %.

N
Figure 9 shows G(r,T) and 1 - (G(r,T))

G dep~ds only on the program being considered
but G depends on the multiprogramming level,
i.e. on the available resources. In our case
there are 85 pages available for user proces-
ses, giving very low multiprogramming levels.
In the range of interest, multiprogramming is
never done on more than 5 processes, 3 being
the most common value. Experimental data being
gathered by a Spy machine indicates that the
mean multiprogramming level in a whole session
is about 3 in our system.

Acknowledgements

I am deeply grateful to Mr. Max Peltier and
Mr. Claude Hans, both of IBM France Scienti-

fic Center, for their guidance and criticism.
Also M. Jacolin, S. Schuman and J.P. Dupuy,
all members of the Scientific Center, have gi-
ven their time and advice unsparingly. Thanks
are due to the anonymous referees, who provi-
ded helpful comments.

This work has been supported by a researd~
grant from IBM Svenska A.B.

Bibliography

i) Denning, P J : Resource allocation in multi-
process computer systems.
Tech. Rep. MAC-TR-50, MIT project MAC,
Cambridge, Mass 1968

2) Weizer, N and Oppenheimer G : Virtual memo-
ry management in a paging environment.
Proc. AFIPS 1969, SJCC.

3) Doherty, W J : Scheduling TSS/360 for res-
ponsiveness.
Proc. AFIPS 1970, FJCC.

4) CP Program Logic Manual Form GY20-0590-0
IBM Corporation. Technical Publications
Department

160

'10

¢0

10

i l k

q,e

e l

$0

+O

tO

• ' l i t - e l

. , i j t l - e i

• I l q4 i -O)

. 15 |1 -e$

. l i t - e l

. j i l l - e l

• 11141¢ -e$

• . o1 '¢ . e I

, ~e ' l ¢ -e4

t e

I o

111

~e

q,e

+o

$o

~o

ue

l , , e l l e e i l~i l l l + c r l 01~,i | i (CUrlliO

I i i ~ i I ~ 101111141G 411~I S i l l s

..... I a 1 - - . . i a a ;

I~ &cm OIipI~IOIII I~ eeeee ll, r i ~ r l ~ j 4 ~ l l m

Figure I

1¢•! 1041o lo , ICs l l l ke : O l¢O l , o.

, l l ose , e~l o~ reuc l l l l e l ~ l , ¢¢¢ (u1¢0

&41~ ¢ Q¢ I I I I I I I l l ' e&l~11.

+ ' ' ' " " ' ' " " ' ' ' 4 ' ' ' ' J • . -
l i eu , t i t

I l l . l l v l l I l l l I I l l l l e I i i i I I I IQC I IOM

Figure 2

1 l i t , ~ l , ~ 'w ' <~ r ' 0 * ' 1~ I (0~ ,

(Cio,l~l, l l~qr r&~j ; e l soo 114.5t11~(I10 14e,

..... I ; J ; A I I

t *vo,

(lCm O IV I ' L ION I , eooee I '~ I I I IUCI IO I~ IqL

Figure 3

, l , l . 14~o o l I (6 l Oll m O I I l I ~

~ , l l e , 081¢ ~ l ao~ . l e l l l lOm

l l o41 ,~ l l l ~J l , l IO l l l ~ I I

- , I r e - e l

I I ' l l l - I $

| I) l ¢ * l k l

,II'II ~I I " 4 ' l

l l l (' l l

l l q l (' l l

• e4Z~ -e)

~. '14 -e , l

+ t I ¢ . e t

f l u l t l t ¢~ (~ eO lW! i ~ q l lpeo l a~ l . l .

Figure 4

+++e ,Oo ,Aa r ;O~ tm , ,O~ J~

l e

lal,,,i aa0~ ¢ACN OGIOI ! Oql, ql, OO0 Io'1~,11 ' ,

Figure 5

161

~S

| I

z~

Figure 6

- - I 'K: ZO

I K = I

s o

/ 0 ~ /~jr .

~SY5 1.0

O,.f

0.5

Figure 7

LO

~EM

162

O,tO

O, ~O

O.~O

O.IO

O,O0

Q Q I

Pal M~ml 1o |O |0 4o ~o bQ IQ IO ~Q

Figure 8

/.0

b.5"

I o . i , ! o ~ I t , I

Z,.5 50

I0 s/#57.

Figure 9

163

