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Summary 

A theory of combined scheduling of pro- 
cessor and main memory has begun to emerge in 
the last few years. It has been proposed that 
schedulers use the working set concept to 
avoid thrashing. To our knowledge, no data 
has been published on experimental measure- 
ments of working sets or on the influence that 
program behavior may have on the choice of 
quantum size. In this paper empirical data are 
presented and its influence on the choice of 
system parameters is discussed. 

Introduction 

A computer system has different types of 
resources of which processor and memory are 
the two most important ones. In paging sys- 
tems a process can execute having only a sub 
set of pages in memory. The dynamic address 
translation mechanism together with the opera- 
ting system insures that when a page not pre- 
sent in memory is referenced the process will 
be prevented from further execution until the 
missing page is brought to core. 

Scheduling means deciding which processes 
are to use the system's resources. In this 
case the resources that interest us are pro- 
cessor and main memory. Recent research has 
developed the working set model for program 
behavior and a theory of combined scheduling 
oflProcessor and memory has been built around 
it . Two recent papers deal with2t~e impleme~ 
tation of this scheduling method ' , but to 
our knowledge no information has been publi- 
shed on measured program working set behavio~ 
It is the purpose of this paper to report on 
working set characteristics of programs and 
how they might influence the choice of sche- 
duling parameters. 

Program workin 9 set behavior 

The working set, W(t,T) , of a process is 
the collection of information referenced by 
the process in the time span (t-T,t) . The 
domain of definition t and T is time, expres- 
sed in some adequate unit, and since we are 
interested in paging machines we will take 
the domain of definition of W to be the set 
of virtual pages allowed to be referenced. 
Another variable, the working set size, 
~(t,T) , is simply the number of pages in the 
working set. Its expected value, Et(~(t,T)) , 
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is denoted by ~(T). We assume that it is inde- 
pendent of time. As the process executes, it 
will reference pages not present in the work- 
ing set. We call l(t,T) the number of pages 
reentering the working set per unit time. Its 
expected value can be written as ~(T), a func- 
tion of T alone. 

In a scheduler based on working sets a 
process cycles through a running set each time 
receiving a burst of T time units until it 
either blocks or exhausts a quantum q. The 
pertinent questions are how to choose T and q. 
It is necessary to estimate how many pages are 
expected to be required by a process and how 
many page faults it will generate. By hypothe- 
sis the dispatcher ensures that every member 
of the running set keeps its working set in 
memory. The working set is computed at the end 
of each burst. It is clear that with such a 
policy m, the expected number of page faults~ 
per unit time, is at worst equal to I(T). In- 
it is reported that the2quantum has been cho- 
sen arbitrarily whereas does not discuss this 
problem at all. 

Process Efficienqy 

A process efficiency is defined as the percen- 
tage of virtual time a process spends compu~ng 

Restricting our attention to quantums of 
the form 

q(T) = KT 

we expect under demand paging ~(T) page faults 
in the first burst, since the working set has 
to be demand paged into memory. Thereafter we 
expect 

T [ (T)  

page faults during each of the remaining K-I 
bursts. The process efficiency is then 

KT 1 
np = = 

KT+T (~ (r) + (K-l) T~ (T)) l+f (T) 
P 

= + (K-I) i (~) 
K ~ T 

fCT) 

where T is the traverse time involved in 
transferring a page between main memory and 
auxiliary storage. To maximize np is tanta- 
mount to minimizing f(T). 
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Deriving we obtain 

df(T) ~(T)-T~ (T) 
- -  = 0 ~> K= 1 + 
dT T2d~ (T)/d_t 

d03 (T) 
We have used the fact that ~(T) -- . For 
the proof see dT 

By hypothesis K>i which means 

~(~) - T ~ (~) < 0 

d~ (y) 
because < 0. 

dT 

The shape of [(T) strongly suggests that in a 
certain range it may be approximated by 

-bT 
a e 

d~ (T) 
solving for ~(T) in - -  = [(T) we find 

dT 

- 1 

= 3O + 5 (X0-X)" 

We write ~ for ~(T) and ~0 for ~(T0) for 

simplicity of notation. The same applies to 

~(T) and 

[0 (_I bT (! 
~0 + -- < ~ + T) = a e- + T) -~-> 

b b b 

[0+b~0 
< (I + bT)e -bT < I. 

a 

The experimental values for [0' ~0' a, b 
indicate that 

~0+b~0 

a 

It seems than in the range where the approxi 
mation is valid no maximum can be attained. 
It is however possible to obtain an upper 
bound on the efficiency, because from 

1 f(~) - 1 

np 

we can deduce 

O0-TX 
K 

T (a-~) 

i (!__ i) 
~ = ~p ~p 

since ~ - T[ > 0 

we find 

C~ > [ => 

1 

~P < i+[T~ 

The quantity on the right-hand side of the 
inequality can be considered to be the proc~s 
steady-state efficiency (called duty factor 
in ~). This quantity is a strict upper bound 
on the attainable process efficiency. We can 
zome arbitrarily close to it, however. Since 

is a decreasing function of T the relative 
maximum for the process steady-state efficien- 
cy corresponds to choosing the largest possi- 
ble T. Set now 

qp ~ p < 1 
i+[T 

P 

as target efficiency. This gives 
T (~-Tk) p 

X= --~ 
T (l+~Tp) 1-p 

As D comes closer to 1 the process efficien- 
cy approaches the steady state efficiency and 
K must be increased accordingly. 

System Efficiency 

The question arises of whether we should 
try to maximize the total system efficiency 
(defined as the percentage of real time the 
CPU is busy with problem programs) rather 
than a process total efficiency. 

When a program executes in a paging ma- 
chine it will demand I/O operations from the 
paging channel and the file units. If the 
program is to execute V virtual time units it 
will require a total time of 

T = V + Vmp Tp + Vmi0 Ti0 

The process efficiency will in this case be 

V 1 
~T = T = 

l+mpTp+mi0Ti0 

The quantities m and T are respectively the 
number of page faults per unit virtual time 
and the transfer time of a page fault. A com- 
plete discussion of these quantities is found 
in . Similarly, m.^ and T.^ are the number 

1 
of I/O operations ~r unit ~irtual time de- 
manded by the process and the time necessary 
to process one such request. The discussion 
of the factors affecting these two parameters 
parallels that of m and T . It is interes- 
ting, however, to n~tice that m~ depends 
only on the process being considered. 
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As long as the quantities m , T , m.^, 
T.^ are independant of the number N Pof ~o- 
ceases in maln memory the total system effi- 
ciency will grow linearly with N, i.e., 

nsy s = 

N 

l+mpTp+mi0Ti0 

If this is the case the times Tp and Ti^ are 
composed almost exclusively of seek tire and/ 
or rotational delay, plus data transfer time. 
However, when N is increased both thrashing 
(i.e. an increase in m ) and the effect of 
queueing (i.e. an increase in T ) will add up 
to make m T >> 1 + m.^T.^. This is confirmed 
experimentally, sincel~n~Uartificially induced 
thrashing it is observed that the number of 
I/O operations per second of real time is 
very low (as corresponds to an extremely low 
observed CPU activity) whereas the channel is 
paging at nearly its maximum rate. 

If there are M pages available in main 
memory N is given by 

M 

N = 

~+m T 
P 

where m is to be replaced by the average 
number Pof page faults per unit time, i.e. 

~o+ ( K-l} T~ 
m = 
P K~ 

~nsys ~nsys 
It is possible to form now and , 

~T ~K 
set them to 0 and solve the two non-linear, 
simultaneous equations. The expressions in- 
volved are complicated and an easier course 
is to plot ~ as a function of T for diffe- 
rent values SySof the parameter K. It shows 
sudden decreases in efficiency whenever the 
expected multiprogramming level diminishes. 

System Operatin 9 Point 

Measures of processor and memory utiliza 
tion are, respectively, system efficiency, 
Ds. s (defined above) and memory efficiency, 

~ , defined as the percentage of memory 
omem ccupled by the processesexecuting in the sys- 
tem. The operating poinu of the system is a 
point in the (nmem,~sys) plane. 

The path of the operating point of the 
system depends on several factors. The pro- 
cesses executing and the behavior of the ope- 
rating system affect it. It oscillates rapid- 
ly with time but experimental evidence shows 
that the average operating point of a whole 
session will vary little from that of other 
sessions. 

Computer systems often operate near 
memory saturation. In other words, nme m is 

often about 90 %. In a well balanced system 
will be correspondly high. However, in 

sys 
a surprinsingly large number of cases n 
is very low, about 20 %. In an effort to sys 
use the idle CPU unwise operating systems 
try to increase the level of multiprogramming. 
Thus thrashing sets in. 

With a working set policy the number N 
of processes in main memory is not fixed. 
Rather it varies depending on the instanta- 
neous demands of the processes being executed. 
We would like to know the probability of fin~ 
ing the system in a certain operating point. 

Let the function G(9,T) be defined as 
follows 

G (@,T) = probability (~(t,T) < 8) 

The function G(@,T) is called the page demand 
function. It depends only on the process 
being considered and not on the choice of 
paging algorithm. The function accounts for 
the fact that working set sizes are rather 
different from their expected values. The 
derivative dG (@,T) indicates the most proba- 

d@ 
ble page demand value. 

Under a working set dispatching policy a 
process is guaranteed an amount of memory 
equal to its working set size. Moreover, it 
will demand the pages reentering its working 
set. A process has the right to claim 

r(T) = ~(T) + T[(T) 

pages. When a process demands more than r(T) 
pages it is said to be page avid. The proba- 
bility of a process being avid is 1 - G(r(;~T) 
If we have identical processes the expected 
multiprogramming level is 

N = entier (M/r(T)) 

Corresponding to this expected multiprogram- 
ming level we will have an expected system 
efficiency given by 

nsy s = 
l+mpTp+mioTio 

and an expected memory efficiency, Dmem, 

Nr (T) 

nme m = - -  
M 

The probability that the system efficien- 
cy decreases below n depends on no progzam 
being page avid, forSySwhen a program is 
page avid it may well demand so may pages 
that another program is forced to leave the 
running set in order to accommodate the page 
avid program's sudden demand for pages. The 
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probability of no process being page avid is 
of course 

N 
1 - (G(r(T) , T)) 

and the probability that some process is page 
avid is an upper bound on the probability that 
the system efficiency is smaller than its ex- 
pected value. 

Pr ( ~sys < ~sys ) ~ 1 - (G(r(T),T)) N 

Analysis of results 

In order to investigate the dynamic be- 
havior of programs a fully interpretive simu- 
lator designed to monitor any IBM SYSTEM/360 
program has been used. A set of routines ga- 
thers information on which pages a program re- 
ferences at every instruction. The pages are 
then annotated in a boolean matrix kept in 
core. When the programs request an I/O opera- 
tion the pages it references are also noted 
down by a program that examines the channel 
program. All data reduction is done after the 
monitor relinquishes control so that there 
will be no interference with the monitored 
programs I/O functions. The quantities measu- 
red include W(t,l) and the number of I/O ope- 
rations the program requests together with 
the units involved. 

To conduct the experiments the programs 
have been loaded in a virtual machine running 
in a 360/67 under control of CP67-. The sys- 
tem at Grenoble includes 128 pages, each page 
having 4096 8-bit bytes. Paging is done on a 
single drum, which CP uses on a first-come- 
first served basis. Each page is assigned a 
fixed location in the drum (or in disk should 
the number of pages in the drum be insuffi- 
cient) which is never changed during the life 
of the process. After the data is collected 
other programs treat them and display perti- 
nent ~sults on a CRT. 

We have tested the Fortran compiler 
the Assembler and the PL/I compiler, which 
are all heavily used components of the system 
Using virtual machines has given us the adva~ 
tages of a bare machine while still keeping 
on-line capabilities. This has provided us 
with a powerful and versatile tool hard to 
match conventional systems. 

Figures I, 2 and 3 show pictures of ~, X 
and ~(t,T) for T = 25000 instructions. The 
program monitored was in this case the assem- 
bler. The program to be assembled was about 
300 instructions long and it was assembled in 
roughly two million instructions. The range 

(500 000 - 2 500 000) instructions 

has been found enough to compile or assemble 
typical assembler or Fortran modules. 

In figure 3 it can be seen that the work- 
ing set size stays close to 20 pages during 
the life of the process. The working set size 
jumps suddenly, attaining values close to 40 
pages and even depassing this value. In this 
case it has been determined that the peaks 
correspond to the loading of the different 
phases of the assembler. The peaks are short 
lived, rarely lasting more than 10000 instru~ 
tions, as it could be seen in a plot of 
~(t,T) with T fixed at 10000 instructions. 
Software has already been modified in Grenob~ 
to decrease the working set size of programs. 
Virtual access methods are presently being im- 
plemented. It is expected that this technique 
will completelyeliminate the peaks. 

Figures 4 and 5 show graphs of ~ and ~ as 
a function of T together with their approxi- 
mations. The agreement with the experimental 
values in the range (5000,50000) instructions 
is good. The approximation used in this party 
cular case has been 

0.45 0.4xT 

103 . . e instructlons 104instructions 

Other experiments indicate that ~ is approxi- 
mated by 

-bT 
= a I a 2 e 

where a^~ and b are practically the same for 
all programs examined. Their values have 
been determined as 

a 2 = 0.9 

0.4 1 

104 instructions 

The constant a I depends on the type of prog~mn 
being considered. For example, it has been 
found that 

0.5 1 

a I = -- _ i03 instructions 
for assembler 

0.35 1 
a. = - for Fortran 
i 10 s instructions 

Figure 6 shows ~ as a function of T. 
The curves for K=I SySand K=20 are nearly 
parallel after T = 20000 instructions. Before 
this value of T the curves exhibit large va- 
riations caused by changes in multiprogram- 
ming level. For values of K between i0 and 50 
the curves remain very close to the curve for 
K=20. This suggests that after T = 20000 ins- 
tructions and K=I0 the expected systems effi- 
ciency should be about 45 per cent a value 
rather insensitive to the choice of K. On the 
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other hand, the response time to a particular 
transaction depends quite certainly on the 
choice of K, which can then be viewed as the 
parameter insuring equity in the distribution 
of CPU time. 

When T is small the probability of some 
program being page avid is rather high, since 
we have 4 or 5 processes in memory. As T 
increases, however, we reach a more stable 
operating point in which increasing T does 
not significantly alter the expected efficien- 
cy, but it increases the probability of drop- 
ping further in the multiprogramming level. 
For this reason T should be chosen such that 
it keeps the system in the stable region. Its 
choice depends on the available system resour- 
ces. In the case depicted in figure 6,T 
should be at least 20000 instructions (i.e. 
30 msec in a 360/67). Then K can be chosen to 
improve efficiency somewhat. Its value should 
be greater than 10. 

We are at present implementing a dispat- 
cher based on working sets to run CP67. We 
have chosen T = 30 msec and K=35. There is of 
course, no reason why K and T cannot be time- 
dependent, nor any reason why they should be 
the same for all processes in the system. 
Our research is directed towards letting K 
and T be time-varying, process-dependent para- 
meters, as well as development of software 
measuring tools to evaluate system response. 

Figure 7 shows the expected operating 
points of the system which depend on K and T 
Only the stable region (20000 < T < 50000) 
is depicted. The path of the system as T is 
increased is shown by the arrows. 

Figure 8 is a plot of G(@,T) and 
d G (@,T). It is interesting to notice that 
~e most probable value is smaller than the 
average working set size. However, should the 
program become page avid, it will demand vast- 
ly more than its right, as indicated by the 
hump around 38 pag@s. Other programs show 
similar graphs. G(~,T) is usually between 
60 % and 70 %. 

N 
Figure 9 shows G(r,T) and 1 - (G(r,T)) 

G dep~ds only on the program being considered 
but G depends on the multiprogramming level, 
i.e. on the available resources. In our case 
there are 85 pages available for user proces- 
ses, giving very low multiprogramming levels. 
In the range of interest, multiprogramming is 
never done on more than 5 processes, 3 being 
the most common value. Experimental data being 
gathered by a Spy machine indicates that the 
mean multiprogramming level in a whole session 
is about 3 in our system. 
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