
EXTENDED ABSTRACT

Scale and Performance in a Distributed File System

John H. Howard
Michael L. Kazar
Sherri G. Menees
David A. Nichols

M. Satyanarayanan
Robert N. Sidebotham

Michael J. West

Information Technology Center
Carnegie Mellon University

Pittsburgh, PA 15213

Andrew is a distributed computing environment being developed in a
joint project by Carnegie Mellon University and IBM. One of the major
components of Andrew is a distributed file system which constitutes
underlying mechanism for sharing information. The goals of the Andrew
file system are to support growth up to at least 7000 workstations (one
for each student, faculty member, and staff at Carnegie Mellon) while
providing users, application programs, and system administrators with
the amenities of a shared file system.

A fundamental result of our concern with scale is the design decision
to mmsfer whole files between servers and workstations rather than some
smaller unit such as records or blocks, as'almost all other distributed file
systems do. This paper examines the consequences of this and other
design decisions and features that bear on the scalability of Andrew.

Large scale affects a distributed system in two ways: it degrades
performance and it complicates administration and day-to-day operation.
This paper addresses both concerns and shows that the mechanisms we
have incorporated cope with them successfully. We start the initial
prototype of the system, what we learned from it, and how we changed
the system to improve performance. We compare its performance with
that of a block-oriented f'tle system, Sun Microsystems' NFS, in order to
evaluate the whole file transfer strategy. We then turn to operability, and
f'mish with issues related peripherally to scale and with the ways the
present design could be enhanced.

T h e P r o t o t y p e

Using a set of dedicated servers, collectively called Vice, the Andrew
File System presents a homogeneous, location-transparent file name
space to all its client workstations. Clients and servers run the 4.2
Berkeley Software Distribution (4.2BSD) of the Unix operating system 1.
The operating system on each workstation intercepts file system calls and
forwards them to a user-level process on that workstation. This process,
called Venus, caches files from Vice and stores modified copies back on
the servers they came from. Venus contacts Vice only when a file is
opened or closed; reading and writing individual bytes of a file are
performed directly on the cached copy, bypassing Venus. In general, the
design performs operations directly in the workstation wherever possible,
minimizing interactions with Vice.

1Unix is a trademark of AT&T. To avoid any possible ambiguity, we use the name
"4.2BSD" throughom for the specific version of Umx used in our syslcm.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

The prototype of the Andrew file system was intended to validate the
basic architecture and m obtain design feedback as rapidly as possible,
while being large and usable enough to make that feedback meaningful.
At its peak the prototype had about 400 users sharing 100 workstations
and was implemented with six servers.

Almost every application program on workstations was able to use
files in Vice without being recompiled or relinked, demonstrating that it
is possible to emulate 4.2BSD file system semantics using caching and
whole file transfer. Command execution from Vice was noticeably
slower than from local fdes on workstations, but overall performance
was so much better than that of the heavily-loaded timesharing systems
used by the general user community that our users suffered the Vice
delays willingly. We found that performance was usually acceptable up
to a limit of about 20 active users per server. However, there were
occasions when even a few users could cause performance to degrade
intolerably.

P e r f o r m a n c e I m p r o v e m e n t s

In addition to subjective reports of file system speed, we measured file
system performance with a benchmark operating on a set of files. The
operations performed by the benchmark are intended to be a sample of
the kinds of actions a user might perform. We used this benchmark to
compare different versions of the Andrew file system with each other and
with alternatives including a non-distributed system. We also derived
curves showing the response of the file systems compared to increasing
loads, and extracted file system specific statistics, such as hit and
read/write ratios, from workstations in production use.

One of the fast surprises we got about the prototype was the relatively
high frequency of "stat" operations, which ask about file status. The
prototype Venus re-validated cache entries every time the application
program opened files or asked for status information. About 62% of the
operations were re-validations of existing cache entries. Another 27%
where requests for status about files not in the cache. Only 6% of the
Venus-Vice calls involved actual file transfers, with approximately two
Fetch calls for every Store. This led us eventually to modify the design
so that file servers notify Venus when file status information changes (a
relatively infrequent event) rather than Venus so frequently re-validating
it. Although this Callback mechanism violated an earlier design
principle that the servers should never initiate operations, it resulted in a
very significant reduction in Venus-Vice traffic and the resultant network
and CPU loads.

CPU utilizations were high in both in the benchmark and in production
measurements. Average CPU utilizations of the two busiest servers were
about 40%, with 5-minute peaks around 75%. Profiling revealed that the
two factors chiefly responsible for CPU loading were the process
switches and pathname resolution. Server loads were often unbalanced,
suggesting that some sort of load balancing would be desirable.

In order to deal with the functional complexity and CPU load of
symbolic pathname resolution, we moved it to workstations. We
introduced a low-level internal file name, called a Fid (File Identifier.) A
Fir is a fixed-length unique ID for a specific Vice file. Venus and Vice
communicate using Fids rather than symbolic names. When Venus
fetches a directory from Vice, it gets a mapping from symbolic pathname
components to Fids. (This is in principle similar to the way Unix
directories map pathname components into inodes, so a Fid resembles an

© 1987 A C M 0 8 9 7 9 1 - 2 4 2 - X / 8 7 / 0 0 1 1 / 0 0 0 1 $ 1 . 5 0
1

inumber.) Venus caches these directories very much as it caches i~iles,
and resolves pathnames directly without involving the server except to
fetch missing directories. This approach depends on the callback
mechanism to avoid revalidating all the directories. It eliminated server
CPU load for filename resolution with no observable cost in the
workstation.

The other heavy consumer of server CPU time in the prototype was
process switching. We introduced a lightweight process mechanism to
deal with this, and to eliminate the problem of running into arbitrary and
sometimes undocumented resource limitations in the kernel.

The overall effect of these changes on performance was dramatic.
Where the prototype peaked out at approximately 20 users, the current
system handles 50 with capacity to spare. Production measurements
show 50 to 70 active u¢~.rs per server during peak hours. (However, it
should be kept in mind that a single user may have active connections to
more than one server.) At present, all servers are connected to the
campus backbone Ethernet which is showing peak utilizations of around
5%; this may well become our next bottleneck.

Comparison With Remote Open File Systems
The comparison with NFS is intended primarily to evaluate the effect

of whole file transfer and caching in a distributed file system. The
Andrew strategy is not without its drawbacks: it requires a local disk for
the file cache, it has trouble with very large files, and it moves the entire
file even if only one byte is read or changed. Strict emulation of 4.2BSD
concurrent read and write, which permit byte by byte interleaving, is
impossible since read and write operations are not intercepted. On the
other hand, it greatly reduces the number of interactions with the file
servers, it simplifies cache management since only files, not individual
pages, must be tracked, and makes it possible to retain cache dontents
across reboots, a beneficial bonus.

We chose NFS for this comparison because it is a typical and
successful example of a distributed f'de system which open flies remotely
and reads and writes blocks, and because it runs on the same hardware as
Vice does. The comparison addresses only performance given an
identical hardware configuration, not such other interesting questions as
overall system cost, which is meaningful only if the alternative
configurations are individually tuned to the needs of their respective
systems.

The comparison's results are summarized in Figure 3 of the paper
(reproduced below), showing the time to complete the benchmark for
various loads. At very low loads, NFS is faster, but the curves cross at 3
to 4 load units (corresponding to about 15 to 20 Andrew users). At the
highest loads measured, NFS was taking nearly twice as long to complete
the benchmark as Andrew, and client processes were beginning to fail
under NFS due to lost packets. Both CPU and disk utilizations in NFS
exceeded 50% beyond 5 load units, while the highest measured values
for Andrew were 42% CPU and 28% disk. It is clear that the Andrew
File System is far less load sensitive than NFS. Since NFS is a mature
and well-tuned system, the most probable cause for this is the difference
in their designs.

O p e r a b i l i t y
Among the features introduced for operability's sake were simple

migration of files from one server to another, space quotas for users,
replication of seldom-changing system files, and on-the-fly backup. All
of these were made much easier by introduction of the notion of a
Volume, which is a collection of files forming a partial subtree of the
Vice name space. Typically, a user is given a single volume to hold his
or her personal files; project groups may share a volume, and system
administrators set up new volumes to hold new versions of the system or
other sets of closely related files.

Volumes are glued together at Mount Points to form the complete
name space. Mount points are not visible in pathnames; Venus
transparently recognizes and crosses them during name resolution, much
as the standard 4.2BSD mount mechanism does.

One of the components of a Vice File Identifier (Fid) is a Volume
number. Knowing the volume number, you locate the server(s) which
have a file by reference to a Volume Location Database which is
replicated on all the servers using a periodic broadcast from a centralized
administrative source. (All administrative data is handled this way, so it
is possible a Vice server to continue running even if all the other servers

are down.) The server locates the file using the remainder of the Fid m
identify a particular file within a volume.

The volume mechanism permits a Clone operation, which constructs a
read-only snapshot of a volume by duplicating the volame's index (but
not the individual files.) Clones are cheap, so they are used for several
purposes. They are the basis of replicated system volumes, which help
balance server utilizations and increase availability. Migrating a volume
to a new server uses a temporary clone, so the volume can continue to be
used (and updated) while it is being migrated. Every user volume is
cloned daily and the clone inserted into the user's home directory under
the name "OldFiles", thus making yesterday's files available in case of
an accidental deletion or other blunder. The "OldFiles" clone is also
used by the backup system, which can thus make a consistent copy of a
volume without taking it offline.

The volume system is also the basis for administrative actions such as
adding and removing users, and for disk quotas. We are convinced that
something like the volume abstraction is indispensable in a large
distributed file system.

Conclusions
At writing (summer of 1987) there are about 400 Andrew workstations

shared by about 4000 registered users, of whom some 1000 are regular
users. Approximately one fifth of the workstations are in public clusters.
There are 16 servers storing approximately 6 gigabytes of data. Present
performance is generally satisfactory although there are instances of
noticeable but tolerable sluggishness. We feel confident that we can
nearly double the number of workstations with the current design.

There are many other areas which will need attention in the future.
Moving Venus and the server code into the kernel would improve
performance significantly. It would also be desirable to convert the
kernel intercept mechanism to an industry standard. Network topology
and clustering may be needed to reduce backbone loading. Some form of
replication of writable files will eventually be necessary. Monitoring,
fault isolation, and diagnostic tools that span all levels of the hardware
and software will also become increasingly important. Finally,
decentralized administration and physical dispersal of servers will will be
necessary in a very large system.

.~ 1 3 0 0

1200

1100

~ 1 0 0 0

9 o o

8 0 0

7 0 0

6 0 0

50~
0

o Andrew Cold Cache /
A Andrew Warm Cache / "
r~ N F S / "

/ "
/ "

.,/"
/

r~-. ~ ;6 ;a
2 4 6 8 10 12 14

Load Units

This figure compares the benchmark times of NFS and the
Andrew fde system as a function of load. The clients were
Sun3/50s with 4 Mbytes of real memory and a 70 Mbyte
local disk. The server was a Sun3/160 with 8Mbytes of real
memory and two 450 Mbyte disks. In the NFS
experiments, at loads of 10 or more, some of the clients
failed to complete the final phase of the benchmark. Refer
to the paper for more details.

Figure 3: NFS and Andrew Benchmark Times

