
MetaData Persistence using Storage Class Memory:
Experiences with Flash-backed DRAM

Jithin Jose
Department of Computer

Science
The Ohio State University

Columbus, OH
jose@cse.ohio-state.edu

Mohammad Banikazemi
IBM T.J Watson Research

Center
Yorktown Heights, NY
mb@us.ibm.com

Wendy Belluomini
IBM Almaden Research

Center
San Jose, CA

wb1@us.ibm.com

Chet Murthy
IBM Almaden Research Center

San Jose, CA
chet@us.ibm.com

Dhabaleswar K. Panda
Department of Computer Science

The Ohio State University
Columbus, OH

panda@cse.ohio-state.edu

ABSTRACT
Storage Class Memory (SCM) blends the best properties of
main memory and hard disk drives. It offers non-volatility
and byte addressability, and promises short access times
with low cost per bit. Earlier research in this field explored
designs exploiting SCM features and used either simulations
or theoretical models for evaluations. In this work, we ex-
plore the design challenges for achieving non-volatility us-
ing real SCM hardware that is available now: Flash-Backed
DRAM. We present performance analysis of flash-backed
DRAM and describe the system issues involved in achieving
true non-volatility using the system memory hierarchy which
was designed assuming that data is volatile. We present soft-
ware abstractions which allow applications to be redesigned
easily using SCM features, without having to worry about
system issues. Furthermore, we present case studies us-
ing two applications with different characteristics: an SSD-
based caching layer used in enterprise storage (Flash Cache)
and an in-memory database (SolidDB), and redesign them
using software abstractions. Our performance evaluations
reveal that SCM aware Flash Cache design could enable
persistence with less than 2% degradation in performance.
Similarly, redesigning SolidDB persistence layer using SCM
improved the performance by a factor of two. To the best of
our knowledge, this is the first work that evaluates SCM per-
formance and demonstrates application redesign using real
SCM hardware.

1. INTRODUCTION
The access time difference between memory and storage

has been one of the major challenges in storage systems

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
INFLOW ’13 Farmington, Pennsylvania, USA
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

design. High performance systems are designed in such a
way that this access time gap is hidden, through techniques
such as buffering the data before it is being written to stor-
age. Such techniques often sacrifice durability, consistency,
or performance in balancing their use of memory and stor-
age. Recent advancements in storage research have led to a
new class of memory called Storage Class Memory (SCM),
which combines the best properties of memory and storage.
It offers non-volatility and byte-addressability with access
times comparable to that of Dynamic Random Access Mem-
ory (DRAM).

It is widely believed that the evolution of SCM will have
significant impact on current systems and software stacks [8].
Earlier research in this area has shown that SCM aware
designs can improve the performance with high durability.
These studies ([6], [18], [7], [19], [5], [16], [14]) considered dif-
ferent classes of software systems spanning over databases,
key-value stores, file systems, and showed the possibility of
performance improvements. But, these studies considered
only simulations or theoretical models of SCM, because of
lack of real SCM hardware.

In this work, we use available real SCM hardware - Flash
Backed DRAM (FB-DRAM) - and present our experiences.
We conducted detailed performance and persistence evalua-
tions using FB-DRAM, which reveal new design challenges
that were not identified in earlier studies. For instance, the
presence of CPU memory hierarchy compromises memory
write ordering and may even result corrupting the data in
persistent memory. We discuss these challenges in detail and
propose software abstractions that can be used for redesign-
ing software systems taking advantage of SCM features.

Furthermore, we present case studies of two applications:
SSD based cache called ‘Flash Cache’ and an in-memory
data-base called ‘SolidDB.’ The original designs of Flash
Cache did not consider persistence and, therefore the sys-
tem requires battery backup in case of power failure. Sim-
ilarly, the original design of SolidDB relied on hard disk
drives (HDD) for persistence. We redesigned both of these
applications to use FB-DRAM for persistence. Our experi-
ment evaluations reveal that Flash Cache system was able to
achieve persistence with less than 2% degradation in perfor-
mance; and, SolidDB performance (latency and bandwidth)

was improved by a factor of two. For both of these ap-
plications, we verified our persistence design by pulling the
power cable during the operation and verifying that the data
is persistent after power is returned.

The rest of the paper is organized as follows. Section 2.1
presents some of the SCM technologies that are evolving
and Section 2.2 describes FB-DRAM in detail. We list the
challenges involved in using FB-DRAM and present generic
software abstractions for efficient SCM aware designs in Sec-
tion 3. In Section 4, we present case studies and illustrate
how we redesigned applications using SCM features. The ex-
periment results are presented in Section 5, where we present
performance characteristics of FB-DRAM and application
results. Finally, we conclude in Section 8.

2. BACKGROUND

2.1 Storage Class Memory (SCM)
There are several Storage Class Memory technologies that

are currently being developed. Among the most promi-
nent technologies are Phase Change Memory (PCM) [15],
STT-RAM [4], M-RAM [10], R-RAM [2] and Flash-backed
DRAM (FB-DRAM) [1]. In general, these memories (except
for the FB-DRAM) are slower than DRAM access speed, but
it is believed that in later generations, their performance will
get closer to that of DRAM. In comparison with SSD tech-
nologies such as NAND Flash, they have better endurance
and latency and provide higher granularity. In PCM, each
cell stores information by changing the crystallization state
of the phase-change material in the cell. MRAM technology
uses magnetic fields to store data. Spin-Transfer Torque
RAM (STT-RAM) is another emerging non-volatile mem-
ory technology that stores data as the magnetic orientation
of a magnetic tunnel junction and has lesser power require-
ments. The basic idea behind RRAM technology is that, by
applying sufficiently high voltages, an insulating dielectric
can be made to conduct through a filament or conduction
path. FB-DRAMs match the performance of DRAM by us-
ing DRAM as their main storage and provide persistence by
using flash memory to backup (and restore) the contents of
DRAM. These are different from Flash DIMMS [11], which
is NAND flash in a DIMM form factor, but not on the mem-
ory bus.

The authors agree that the cost of FB-DRAM is not low
enough to warrant their widespread use and hinders FB-
DRAM’s to be classified as SCM, since SCM’s are consid-
ered to be cheaper than DRAM. But FB-DRAM provide all
the desired features of SCM and these are becoming com-
mercially available. These facts make them the best vehicle
for building prototypes of systems with persistent memory.

2.2 Flash-Backed DRAM (FB-DRAM)
Flash-backed DRAM (FB-DRAM) consists of a DRAM,

NAND flash, and an ultracapacitor. A high level architec-
ture diagram of FB-DRAM is presented in Figure 1 [1]. Ap-
plication read-write operations are directly acted upon the
DRAM mapped memory. From application perspective, it is
just another address space. The entire system is controlled
by a control unit called Subsystem Control Unit (SCU).

SCU gets ‘power-failure’ signal through Powerfail Side-
band Communications channel, when system loses power.
SCU reacts to this signal by initiating backup operation,
in which the entire contents of DRAM are backed up to

FLASH memory. The operation is powered by the Ultraca-
pacitor Storage Array. When the power is back, application
can request to restore the data back to DRAM, in which the
DRAM contents are restored to the state during power fail-
ure. Thus, FB-DRAM achieves non-volatility while provid-
ing the same access speed as that of DRAM. This qualifies
FB-DRAM as Store Class Memory.

Subsystem
Control Unit

(SCU)NAND Flash

DRAM

Ultra-Capacitor
Energy Storage Array

Powerfail Sideband
Communications

Channel

Backup Restore

Memory Loads/Stores
from Application

Figure 1: Flash Backed DRAM System Architecture

FB-DRAM consists of a software driver, which maps its
DRAM address to a separate address space. Applications
can request for this address space and can access this mem-
ory along with volatile main memory. The software driver
provides access interfaces to get FB-DRAM address space
pointer and do explicit backup/restore operations.

A pointer into the FB-DRAM address space pointer is
used in the same way as a standard pointer. From the CPU
point of view, FB-DRAM address space is indistinguishable
from main memory and sits below the CPU memory hierar-
chy; just that the memory load/store operations are acted
upon the DRAM in FB-DRAM. Applications can assume
that the writes to this address space is non-volatile. How-
ever, the presence of the memory hierarchy imposes different
challenges that need to be addressed for efficient and correct
use of FB-DRAM, which are described in Section 3.1.

3. APPLICATION DESIGN USING FB-DRAM
Since the performance of SCM is far from being ‘fast

enough’ to be used in CPU memory hierarchy (L1-L3 caches),
systems with SCM will have both volatile and non-volatile
memory types in their memory hierarchy. This leads to sev-
eral challenges that need to be addressed in order to use
SCM efficiently. In this section, we describe these challenges
first, and then present the software abstractions that we used
to redesign applications with flash-backed DRAM’s.

3.1 Design Challenges
Data Loss due to CPU Cache: The slower speeds of
SCM memory (FB-DRAM) mandates the presence of high
speed caches in memory hierarchy. Thus, the memory store
operations might not get reflected in FB-DRAM immedi-
ately. If the power loss happens at this stage, the data might
get lost. Such loss in data can corrupt data structures and
can cause the recovery process to hang or crash [5]. This
compromises non-volatility.
Write Re-ordering: Another significant side effect of us-
ing caches in the memory hierarchy is write-reordering. De-
pending on the application behavior and cache replacement

algorithms, the order of writes to the memory system can be
different than the actual order in which writes were issued.
This can lead to inconsistency in SCM contents, which can
mislead crash-recovery algorithms or cause data loss or cor-
ruption. This in turn can lead the system to inconsistent
state after a system crash. Therefore, it is crucial to provide
mechanisms that enforce ordering among multiple writes or
groups of writes.
Writes across Cache-Line Boundaries: The smallest
unit of data transfer between the main memory and caches
is a cache line. If the data corresponding to a write spans
across multiple cache lines, it is possible that some of these
get flushed to DRAM, while others remain in cache. This
can lead to data corruption, as the data in cache lines is lost.
Virtual Address of FB-DRAM mapped memory: As
discussed in Section 2.2, the FB-DRAM software driver maps
the DRAM address space and presents the virtual address
to application layer. This virtual address will be different
at each system start-up. ie, even though the data is persis-
tent across power cycles, the address changes across power
cycles. Thus, pointer references within non-volatile address
space becomes invalid after a power cycle. Furthermore,
application might require non-volatile memory for different
data objects. So, how can the application know the new
address of a particular data structure, after a power cycle?

We address these challenges in a diligent manner and de-
sign an application interface for using flash-backed DRAM’s.
We present the detailed design of the application interface,
which abstracts the FB-DRAM access in a simple and effi-
cient manner, in the following section.

3.2 Software Abstractions
In this section, we present the software abstractions which

enable redesigning of applications without having to worry
about underlying system issues and challenges in achieving
volatility. We classify the abstractions as management and
data access operations.

3.2.1 Management Operations
Initialize/Finalize Operations: The initialize operation
initializes the FB-DRAM driver and maps the FB-DRAM
to a virtual address space. It also initializes the ‘Tag table’
(explained below). The finalize operation does defragmen-
tation of FB-DRAM address space, backs up data to Flash,
and finally closes the FB-DRAM device. The initialize and
finalize operations are directly implemented over FB-DRAM
driver.
Metadata for persistent memory management: As in-
dicated in previous section, the address of FB-DRAM mapped
region might be different for each initialize call, but contents
at same offset remain unchanged. Because of this variability
in address, applications cannot rely on just memory address
for identifying persistent data. Further, applications cannot
rely on offset within the persistent address space because
they cannot store offsets between power cycles. We employ
‘tags’ for identifying persistent memory. In this model, ev-
ery persistent memory allocation request is associated with
a name tag. A special table called ‘Tag Table’ keeps track
of the entries. Tag table is kept at a pre-defined offset in
FB-DRAM address space. Each entry in the table contains
the name-tag, offset at which the actual data is stored, and
its size. An entry is created for each successful allocation
request, and are removed when the memory is freed. A

snapshot of tag table is presented in Figure 2.

HashTable

PopBuffer

1024
256

20480x2000pHashTable
0x8000
0x16000pLEBTable

pPopBuffer

LEBTable

0x2000

0x8000

0x16000

TagTable
Tag Offset Size

Figure 2: Tag Table

Tag table helps to easily recover data after a power cycle.
Application can just request the data along with the name-
tag, and the data can be identified using the offset in tag
table entry. Furthermore, the table helps in defragmenting
FB-DRAM address space. By a mere scan of tag table, holes
in FB-DRAM memory space can be easily identified.

3.2.2 Data Access Operations
Based on the access granularity, we categorize the data

access operations into Direct Updates, Logging and Check-
pointing, and present abstractions for these operations. Each
of these are explained in the following sections.
Direct Updates: Direct updates are for small updates,
comparable to cache-line granularity. These updates oper-
ate directly upon the FB-DRAM memory. Such data objects
are allocated directly from the non-volatile memory. The up-
dates are ensured to be reliably reflected into FB-DRAM. As
discussed in Section 3.1, we need to make sure that every
memory update operation shall reach the DRAM associated
with FB-DRAM, because of the presence of caches. Thus we
need to flush the cache lines to memory. If the data spans
across multiple cache lines, all these cachelines are flushed
to memory.

We compared two approaches for ensuring reliability —
‘write-through’ cache, and ‘sfence+clflush’ instructions.
Our performance evaluations (Section 5) reveal that the
later approach provides lesser overhead, and we select this
in our implementation. As opposed to the simulation based
studies, we evaluate the performance and select the flushing
scheme. The flushing scheme selection is made configurable,
since the flush latency can be different on different platforms.
Logging: It is quite expensive to flush the data to FB-
DRAM in case of large updates. For such updates, we pro-
pose Logging based scheme. In this approach, actual data

is kept in main memory, but every update is logged to FB-
DRAM. The logs are assumed to be much smaller than the
actual update, and these are flushed to FB-DRAM using
sfence+clflush operations. Thus, the overhead during up-
date operation can be reduced significantly, while maintain-
ing persistence. During the recovery operation, these logs
can be replayed and the data structure can be restored to
the state before power loss.
Checkpointing: Checkpointing can be employed for data
structures, whose updates are large and frequent. Check-
pointing is usually used along with Logging. In this scheme,
checkpoints are made at regular intervals and are kept in
FB-DRAM. Such checkpoints are flushed to make sure that
they are reflected in FB-DRAM. All the logs prior to the
checkpoint are cleared after a successful checkpoint. During
recovery operation, the checkpoint is recovered and logs are
replayed on this checkpoint to restore the data structure to
the state before power-loss.

4. APPLICATION CASE STUDIES
We use the software abstracts presented in Section 3.2 to

redesign Flash Cache and SolidDB. We present these case
studies in this section.

4.1 Flash Cache
Flash Cache is an SSD-based caching layer used in enter-

prise storage systems (similar to the one used in IBM XIV
Storage System [12]), as represented by Figure 3. A software
layer called ‘Shim’ intercepts I/O from DRAM cache layer
to the RAID layer of HDD’s; and are redirected to ’Flash
Cache Manager.’ Flash cache manager implements caching
function using a series of SSD’s and takes care of garbage
collection of cold/invalid flash blocks, de-staging cold data
to HDD’s and reliability. It keeps a hash table to map be-
tween disk and flash addresses and keeps an array called the
‘LEB (Logical Erase Block) Array’ and records which pages
are modified with respect to data on the disk. For aggregat-
ing writes, flash cache manager keeps a set of buffers called
‘Populate Buffers’. New writes/updates from the Shim as
well as garbage collected data is buffered in these, before
being written to SSD. Once a buffer is full, it is written to
flash in an asynchronous manner.

Flash Cache Manager

Garbage
Collector

Reliability
LayerDestager

Cache Management
Hash
Table

Populate
Buffer

LEB
Array

Storage Subsystem
DRAM Cache

RAID Layer

SHIM
Flash
Cache

Manager

Disk Array SSD Array

HDDHDDHDD SSD

SAS/SATA SAS/SATA

Figure 3: Flash Cache Architecture

Even though the data is stored in persistent memory (SSD),
metadata information - such as the Hashtable, Populate
Buffers, and LEB array - is stored in the non-volatile mem-
ory (DRAM). Thus, system requires batteries to preserve

data in case of power loss. We redesigned flash cache us-
ing software abstractions described in Section 3 to achieve
persistence without batteries.

In Flash Cache, hashtable lookups/updates are very fre-
quent; it gets accessed during all I/O operations. So we em-
ployed Logging and Checkpointing to make it persistent. We
kept the hashtable in DRAM and every update to hashtable
is logged in persistent memory. After a predefined number
of log updates, the hashtable checkpoint is created in the
persistent memory. Populate buffer read/write frequency is
comparatively lesser. Thus, populate buffer and the associ-
ated metadata is kept in persistent memory (updates using
Direct Update). Similarly, the LEB arrays are also kept in
persistent memory. Every update to these regions is followed
by a flush operation.

On recovery, first the hashtable is recovered to latest state
by restoring the checkpoint and replaying the logs. Next,
populate buffers and the associated metadata are recovered.
Populate buffer data pages which were being filled up are
identified and the valid pages are written into SSD. Buffers
which were being written to SSD are re-written and those
which are already written are ignored. After this, popu-
late buffers are cleaned up and made available for aggregat-
ing future writes. LEB buffers, which are stored in per-
sistent memory, are up-to-date with the LEB states and
cache hit information. With these recovery steps, the flash
cache is just up-to-date with all the pages in SSD as if no
crash/power-failure had happened. In this work, we over-
look dealing with replication of metadata to protect against
node failure. We limit the scope to measure the impact of
changes needed to make memory persistent.

4.2 SolidDB
SolidDB is an in-memory database optimized for high

speed. It stores transaction logs in HDD or SSD and of-
fers two modes of durability: strict and relaxed as shown in
Figure 4(a). These modes depend on when a transaction is
marked as complete. In relaxed mode, a write is marked as
complete when the data is written to a write buffer. Obvi-
ously, if there is a system crash and the log records are not
written to the disk, the committed transaction will be lost
in this mode. In the strict durability mode, after creation
of each log record in the write buffer, a synchronous write
is issued to write it into the disk. After the disk write is
complete, the transaction is marked as complete.

Database Engine

Write Buffer

HDD

Strict
Durability

Relaxed
Durability

Flag as
committed

Flag as
committed

Asynchronous
Backup

(a) Original Design

Database Engine

Persistent Write Buffer

HDD

Strict/Relaxed
Durability

Asynchronous
Backup

Flag as
committed

(b) SCM Aware Design

Figure 4: SolidDB Commit Design

We enhanced the implementation of this database system
such that the write buffer is kept in persistent memory. This

provides the same durability level as that of strict mode
while achieving performance similar to that achieved with
relaxed mode. Figure 4(b) illustrates this design. Every
write to write buffer is flushed into FB-DRAM to guarantee
ordering and persistence. This design uses Logging abstrac-
tion described in Section 3.2.2. As log records are written
to the persistent write buffer, a background thread moves
them to the log files stored on the main storage.

During the recovery phase, SCM memory is restored to
its content before the crash. Log records from write buffer
which are not transferred to main storage are identified and
written to main storage. Care is given such that potential
crashes during recovery are detected. For example, during
the recovery process the FB-DRAM is automatically set not
to save and restore the content of the memory if another
crash occurs.

5. EXPERIMENT RESULTS
Experiment Platform: We used an eight core AMD

Opteron node for our evaluations. It consists of 32 GB of
DRAM memory, with 1.3 MHz speed and 4 GB flash backed
DRAM (1.3 MHz). It is equipped with a 240 GB Sandisk
SSD and 500 GB Toshiba HDD. The operating system used
is Debian Linux with kernel version 2.6.32.

5.1 FB-DRAM Performance Analysis
We use Rambench benchmark [17] for FB-DRAM perfor-

mance evaluation. The benchmark spawns multiple threads
and each thread issues memory write operations. Memory
access width is configured as 64 bits. We vary the number
of threads from 1 to 16, and the bandwidth results are re-
ported. Performance results of sequential and random write
accesses are presented in Figure 5. Since the memory reads
are directly operated upon the DRAM of FB-DRAM, the
read performance is exactly the same as that of normal
DRAM. Thus we present only the write performance results.

In Figure 5, we compare the performance of normal DRAM
with that of FB-DRAM. For normal DRAM, we flush every
write operation using sfence+clflush instructions. This is
indicated as ‘RAM (flush).’ We present the FB-DRAM per-
formance evaluations with two configurations: flush every
write using sfence+clflush instructions (indicated as ‘FB-
DRAM (flush)’, and FB-DRAM in ‘write-through’ mode (in-
dicated as ‘FBDRAM (WT)).’

The bandwidth increases with increase in number of threads
and finally saturates. It can be observed from the results
that the sequential write bandwidth of RAM (flush) satu-
rates at around 0.25 GB/s. However, the FB-DRAM with
the same configuration saturates at a lower bandwidth of
about 0.21 GB/s. Results indicate higher overhead for FB-
DRAM configured in write-through mode. The same pat-
tern is observed for random write experiment as well. We
choose this ‘FB-DRAM (flush)’ as the configuration in our
application case studies, since it provides best performance
for FB-DRAM. There is a slight performance difference be-
tween FB-DRAM and normal DRAM, with the fence+flush
operation. We believe that this is because these DRAM’s
(main memory and DRAM in FB-DRAM) are from differ-
ent vendors.

5.2 Flash Cache Performance Analysis
We used a synthetic benchmark to evaluate Flash Cache

performance. In this benchmark, multiple threads are launched

and each thread issues I/O requests. The benchmark reports
the total execution time and the number of I/O operations
per second. For this experiment, we configured number of
I/O threads to be 8 and total number of operations to be
80,000 with read-write ratio of 1:1.

Performance results shown in Figure 6 report both exe-
cution time and the number of I/O operations per second
(IOPS). ‘Base Version’ denotes the unmodified flash cache
version. For the persistence enabled versions, we ran the ex-
periment under two configurations - a) FB-DRAM in ‘write-
back’ mode and every write is followed by flush operation
(‘FB-DRAM (flush)’) and b) FB-DRAM in ‘write-through’
mode (‘FB-DRAM (write-through)’). We did this to confirm
that the performance results shown in FB-DRAM evaluation
benchmarks matches even at application level. The execu-
tion time reported for Base Version, FB-DRAM (flush) and
FB-DRAM (write-through) are 603, 615 and 622 seconds re-
spectively. This indicates that the Flash Cache design using
FB-DRAM is able to achieve persistence with less than 2%
degradation in performance.

5.3 SolidDB Performance Analysis
We used a synthetic benchmark to measure average la-

tency and bandwidth for a group of transactions with SolidDB.
These comprise of create, update and delete operations. Since
the performance of original design depends on disk drive per-
formance, we present the performance results with different
types of drives (Table 1). In particular we used a traditional
hard disk drive, a FusionIO ioDrive (SLC) [9], and an ex-
perimental PCM prototype drive (SLC) [3]. These are rep-
resented as ‘Standard HDD’, ‘FusionIO ioDrive’ and ‘PCM
Drive’, respectively. Enhanced SCM aware design is repre-
sented as ‘FB-DRAM’. It can be observed that the enhanced
design using FB-DRAM reduces operation latency by a fac-
tor of two when compared to the original design even with
the fastest SSD’s.

Table 1: SolidDB Update Operation Latency (µs)
Standard
HDD

PCM
Drive

FusionIO
ioDrive

FB-
DRAM

Latency 46948.5 415.0 267.6 141.3

We also measured SolidDB throughput with same config-
urations (Figure 7). The performance achieved for enhanced
SCM aware design in strict durability mode is almost twice
that of the fastest storage devices. The performance of the
system with relaxed durability is not shown in the figure as it
is practically identical with that of system with Flash-backed
memory and strict durability. Thus, we could attain the
performance achievable in relaxed durability mode, while
providing the strict durability required by many database
applications.

6. VALIDATION
We validated both the applications for correctness and

persistence. For persistence validation, we pulled the power
cable during the operation to simulate real power failure,
and verified that the data is persistent after power is re-
turned. We conducted this experiment multiple times, and
ensured that persistence and correctness are maintained.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 2 4 6 8 10 12 14 16

B
a
n

d
w

id
th

 (
G

B
/s

)

No. of Threads

RAM (flush)
FB-DRAM (flush)
FB-DRAM (WT)

(a) Sequential Write

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 2 4 6 8 10 12 14 16

B
a
n

d
w

id
th

 (
G

B
/s

)

No. of Threads

RAM (flush)
FB-DRAM (flush)
FB-DRAM (WT)

(b) Random Write

Figure 5: FB-DRAM Write Performance

!"

#!"

$!"

%!"

&!"

'!!"

'#!"

'$!"

!"

'!!"

#!!"

(!!"

$!!"

)!!"

%!!"

*!!"

+,-."/.0-123" 4+56789":;<-=>" 4+56789":?@>"

AB
CD
"

@1
E
."
:-
.F
>"

ABC-"
@1E."

Figure 6: Flash Cache Performance Results

 0

 20

 40

 60

 80

 100

 120

 140

 160

 1 2 4 8 16 32 64 128

T
h
o
u
sa

n
d
s

o
f

O
p
er

at
io

n
s

p
er

 S
ec

o
n
d

No. of Threads

FB-DRAM Design
Standard HDD

PCM Drive
FusionIO ioDrive

Figure 7: SolidDB Operation Throughput Results

7. RELATED WORK
Storage Class Memory and its applicability in different

software stacks have been actively researched and it has re-
sulted in valuable studies. NV-Heaps [5] is a light weight
persistent object system that provides transactional seman-
tics and provides a persistence model. BPFS [6] presents a
persistent file system, which is designed around the prop-
erties of persistent byte addressable memory. Both these
studies throws light into the design of efficient SCM aware
applications and provides valuable insights about SCM us-
age. In fact, many of our design considerations are inspired
by these studies. However, these studies assumed special
hardware support such as epoch barriers for ordering writes,
where as our design relies of fence operation for ensuring or-
dering.

Mnemosyne [19] is another valuable study, which presents
a simple interface for programming with persistent memory.
It also throws light into the issues associated with redesign-
ing applications with SCM features. Mnemosyne requires
modifications to Linux kernel for allocating and virtualizing
SCM pages. Fang, et. al studied the use of SCM for high
performance database logging in DBMS, and presented good
insights about SCM aware application design. Several other
studies (STeTSiMS [16], [14]) enables designers to explore
the potential of recent SCM designs and adjust the perfor-
mance without needing a detailed understanding of under-
lying SCM technology. Narayan et. al. studied the whole
system persistence using NV-RAM [13]. Their approach was
to provide persistence at the system level than at the appli-
cation level. Keeping the entire system memory may lead
to permanent (unrecoverable) corrupted state. Also, they
flush data only during power failure and do not consider
write re-ordering, which can lead to corrupt system state.

However, all these studies considered only simulations or
theoretical models of SCM, because of lack of real SCM
hardware. We present our experiences with redesigning ap-
plications using real SCM that is available. We unearth
new design challenges, and design an initial prototype for
abstracting SCM memory, and re-design applications using
this.

8. CONCLUSION AND FUTURE WORK
In this paper, we presented our initial experiences with

Flash-backed DRAM’s for enabling persistence. We described

the system issues involved in achieving true non-volatility
and propose software abstractions for redesigning software
systems. We redesigned Flash Cache and SolidDB using
these abstractions to enable persistence. Experiment evalua-
tions reveal that the Flash Cache system was able to achieve
persistence with less than 2% degradation in performance
and the SolidDB performance was improved by a factor of
two. For both these applications, we verified our persistence
design by pulling the power cable during the operation and
verified that the data is persistent after power is returned.

We plan to continue working along this direction. We plan
to improve our prototype to support multiple applications si-
multaneously, and to support dynamic memory objects such
as linked lists, without the need for name-tag. We aim to
consider efficient memory defragmentation schemes without
hindering application performance. We would also like to re-
design more applications with different characteristics and
enable persistence.

9. REFERENCES
[1] Agiga Tech. Finding the Perfect Memory.

http://www.agiga
tech.com/pdf/pdf WhitePaper FindingPerfectMemory.pdf.

[2] H. Akinaga and H. Shima. Resistive Random Access
Memory (ReRAM) Based on Metal Oxides.
Proceedings of the IEEE.

[3] M. Athanassoulis, B. Bhattacharjee, M. Canim, and
K. A. Ross. Path processing using Solid State Storage.

[4] E. Chen, D. Apalkov, Z. Diao, A. Driskill-Smith,
D. Druist, D. Lottis, V. Nikitin, X. Tang, S. Watts,
S. Wang, S. Wolf, A. Ghosh, J. Lu, S. Poon, M. Stan,
W. Butler, S. Gupta, C. Mewes, T. Mewes, and
P. Visscher. Advances and Future Prospects of
Spin-Transfer Torque Random Access Memory. IEEE
Transactions on Magnetics, 2010.

[5] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp,
R. K. Gupta, R. Jhala, and S. Swanson. NV-Heaps:
Making Persistent Objects Fast and Safe with
Next-generation, Non-volatile Memories. SIGARCH
Comput. Archit. News.

[6] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee,
D. Burger, and D. Coetzee. Better I/O through
Byte-addressable, Persistent Memory. In Proceedings
of the ACM SIGOPS 22nd symposium on Operating
systems principles.

[7] R. Fang, H.-I. Hsiao, B. He, C. Mohan, and Y. Wang.
High Performance Database Logging using Storage
Class Memory. In 2011 International Conference on

Data Engineering.

[8] R. F. Freitas and W. W. Wilcke. Storage-Class
Memory: The Next Storage System Technology. IBM
Journal of Research and Development, 2008.

[9] Fusion IO. Fusionio Drive Specifications.
http://www.fusion
io.com/load/media-
docsProduct/kcb62o/Fusion Specsheet.pdf.

[10] W. Gallagher, D. Abraham, and et. al. Recent
Advances in MRAM Technology. In VLSI Technology,
2005. (VLSI-TSA-Tech). IEEE VLSI-TSA
International Symposium on, 2005.

[11] Hewlett Packard. Flash DIMM Technology.
http://www.stethos.com/flashmemory/data/paper.pdf.

[12] IBM XIV Storage System. http://www-
03.ibm.com/systems/storage/disk/xiv/index.html.

[13] D. Narayanan and O. Hodson. Whole-System
Persistence. In Proceedings of the Seventeenth
International Conference on Architectural Support for
Programming Languages and Operating Systems,
ASPLOS XVII, 2012.

[14] M. K. Qureshi, S. Gurumurthi, and B. Rajendran.
Phase Change Memory: From Devices to Systems.
Synthesis Lectures on Computer Architecture. 2011.

[15] S. Raoux, G. W. Burr, M. J. Breitwisch, C. T.
Rettner, Y.-C. Chen, R. M. Shelby, M. Salinga,
D. Krebs, S.-H. Chen, H.-L. Lung, and C. H. Lam.
Phase-Change Random Access Memory: A Scalable
Technology. IBM Journal of Research and
Development, 2008.

[16] C. W. Smullen, IV, A. Nigam, S. Gurumurthi, and
M. R. Stan. The STeTSiMS STT-RAM simulation
and modeling system. In Proceedings of the
International Conference on Computer-Aided Design,
ICCAD ’11, 2011.

[17] T. Kaldewey, A. Blas, J. Hagen, E. Sedlar, S. Brandt.
Memory Matters. In Work in Progress in the 29th
IEEE Real-Time Systems Symposium (RTSS).

[18] S. Venkataraman, N. Tolia, P. Ranganathan, and
R. H. Campbell. Consistent and Durable Data
Structures for Non-volatile Byte-addressable Memory.
In Proceedings of the 9th USENIX conference on File
and stroage technologies.

[19] H. Volos, A. J. Tack, and M. M. Swift. Mnemosyne:
Lightweight Persistent Memory. In Proceedings of the
16th international conference on Architectural support
for programming languages and operating systems,
ASPLOS ’11.

