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ABSTRACT
Kernel scripting is a technique to run an extension code in
a script language in an operating system kernel. Conven-
tional kernel scripting has two limitations. First, it affects
an entire system and only privileged users are allowed to
install a new script. This prohibits developers from running
their own application-specific code in the kernel. Second, its
performance is not sufficient for some time-sensitive applica-
tions. In this paper, we address these problems. Our system
call scripting allows developers to run their own application-
specific code in the kernel without the root privilege. Our
system call scripting runs with less overhead because we
use a Just-In-Time (JIT) compiler. To evaluate our idea,
we ported the LuaJIT compiler into the FreeBSD 10.1 x86
kernel. We modified Memcached to use system call script-
ing that processes multiple UDP GET requests at a time.
With one worker thread and under a high-load condition, we
achieved a 33% reduction in the average response time and
a 44% improvement in the throughput when the response
value size was small.

Categories and Subject Descriptors
D.3.3 [Language Constructs and Features]: Frameworks;
D.4.7 [Organization and Design]; D.4.8 [Performance]

General Terms
Design, Performance

Keywords
System call scripting, Scriptable operating systems, Kernel
scripting, Lua programming language, JIT compilers

1. INTRODUCTION
Kernel scripting is a technique to run an extension code in
a script language in an operating system kernel [18]. This
allows users to install scripts that, for example, control the
CPU frequency and extend the functionalities of packet fil-
ters.
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Kernel scripting should be a good tool for adding application-
specific code and kernel specialization. Since a typical kernel
provides general services for typical applications, it cannot
always meet the requirements of some applications, such as
I/O-based applications. Kernel specialization can solve this
problem. For example, if we can add specialized lightweight
system calls for a network cache server, we can fully uti-
lize the hardware capacity. Specialization should be easy
and will result in performance improvement compared with
using the standard interfaces.

However, conventional kernel scripting has two limitations.
First, it affects an entire system and only privileged users
are allowed to install a new script. This prohibits develop-
ers from running their own application-specific code in the
kernel. Second, its performance is not sufficient for some
time-sensitive applications. This is because a script is exe-
cuted by an interpreter.

In this paper, we address these problems. We extend the
concept of kernel scripting and propose system call script-
ing. Our system call scripting allows developers to run their
own application-specific code in the kernel without the root
privilege. Our system call scripting runs with less overhead
because we use a Just-In-Time (JIT) compiler.

To evaluate our idea, we ported the LuaJIT compiler into
the FreeBSD 10.1 x86 kernel. We modified Memcached to
use system call scripting that processes multiple UDP GET
requests at a time. With one worker thread and under a
high-load condition, we achieved a 33% reduction in the av-
erage response time and a 44% improvement in the through-
put when the response size was small.

The rest of this paper is organized as follows: Section 2 talks
about Lua, LuaJIT and system call scripting in Lua. Sec-
tion 3 evaluates our approach by using the results on Mem-
cached. Section 4 discusses the related work. We conclude
this paper in Section 5.

2. APPROACH
We used the Lua scripting language and the LuaJIT com-
piler to run application-specific kernel services. We modified
the LuaJIT compiler to be able to run in the kernel space
and make it a loadable kernel module. These infrastructures
provide developers with the ability to create their own sys-
tem calls on the basis of the existing ones. We call it system
call scripting.
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2.1 Introduction to Lua and LuaJIT
We chose the Lua language for running application-specific
code in a kernel for the following reasons: First, it is a small
scripting language designed to be embeddable into another
application. It is commonly used in game engines. Many ap-
plications such as Wireshark, Redis and MySQL Proxy also
support Lua scripting to provide additional functionalities.
Second, Lua has a JIT compiler. Developers often supply
scripts to the system which are in hot execution paths. We
intend to take advantage of the JIT compiler to reduce the
interpreter overhead.

LuaJIT[12] is a tracing JIT compiler of the Lua language.
When a code path is repeatedly executed for a number of
times, the tracing will start. During the tracing, the byte-
codes are recorded and translated into Static Single Assign-
ment Intermediate Representations (SSA IRs) [4]. After
tracing is done, LuaJIT carries out some optimizations such
as dead code elimination and constant folding. Finally, these
optimized SSA IRs are translated into a native code. When
the code path is going to be executed again, the interpreter
jumps to the compiled code instead of interpreting the byte-
codes.

When integrating into an application, the Lua engine and
the application communicate with each other with what is
called a“Lua state”. This is also the place where the compu-
tation is done. A Lua state is a kind of stack. A Lua script
and its arguments are pushed into the Lua state. Once the
execution is done, the result will be at the top of the stack
to be used by the application it is integrated into.

2.2 System call scripting
Writing application-specific system calls should be easy for
developers. To realize this concept, we propose the following
two system calls.

1. int register_lua_syscall(char *script,

size_t size)

2. int lua_syscall(int lua_fd, unsigned int

num_args, int arg1, ..., int arg8)

The idea behind these system calls is that it is possible to
encapsulate a Lua state in a file descriptor. The first system
call creates a Lua state, registers the necessary bindings,
loads the supplied script into the Lua state and returns a
file descriptor that points to the Lua state. The next sys-
tem call takes a file descriptor that points to a Lua state
and executes it with the given arguments. If the script is
successfully executed, developers can return values to the
user space. The current implementation limits the number
of arguments to eight. This system call looks for the run()

function from the supplied script and executes the function.
Since a Lua state is represented by a file descriptor, we can
use the existing close() system call for cleaning up.

Figure 1 shows the script that is used for receiving multiple
UDP packets. We will describe the details in Section 3. The
script takes six arguments namely a socket file descriptor,
a read buffer address, a struct sockaddr array address, a

1 function run(sfd , buf_addr , sockaddr_addr ,
sockaddr_len_addr , recv_uaddr , max_batch)

2 local recvfrom = syscall.recvfrom
3 local copyout = util.copyout
4 local nrecv_array = {}
5
6 local nreq = 0
7 while nreq < max_batch do
8 -- 1024 is the size of buffer
9 -- 16 is the size of struct sockaddr

10 -- 4 is the size of socklen_t
11 local buf_offset = nreq * 1024
12 local sockaddr_offset = nreq * 28
13 local sockaddr_len_offset = nreq * 4
14 local byte_recv = recvfrom(sfd ,
15 buf_addr + buf_offset ,
16 1024, 0,
17 sockaddr_addr + sockaddr_offset ,
18 sockaddr_len_addr + sockaddr_len_offset)
19 if byte_recv > 8 then
20 nreq = nreq + 1
21 nrecv_array[nreq] = byte_recv
22 elseif byte_recv > 0 then
23 -- do nothing
24 else
25 if byte_recv == -4 then
26 -- -4 is EINTR
27 -- do nothing
28 elseif byte_recv == -35 then
29 -- -35 is EAGAIN
30 break
31 else
32 return -1
33 end
34 end
35 end
36
37 if nreq > 0 then
38 copyout(nrecv_array , recv_uaddr , nreq)
39 end
40
41 return nreq
42 end

Figure 1: Script for receiving multiple UDP packets

sockaddr length array address, an array to hold bytes re-
ceived and the maximum number of batching. These values
are all from the user space. Lines 11 to 13 are pointer arith-
metic. Line 14 calls the system call function recvfrom().
If the data we receive are more than 8 bytes, we record the
value of the bytes received and try to receive more data. If
the script encounters EAGAIN which means no data, the op-
eration stops. If it receives at least a request, it copies the
array that stores the bytes received to where recv_uaddr

points to and returns the number of incoming requests.

2.3 Safe execution of Lua scripts in a kernel
Figure 2 illustrates how we restrict an execution of a script
in a kernel. An arrow indicates a memory access. The scope
of a script of a non-privileged user is a process. It does not
interfere with other processes. A Lua script running in a
kernel cannot access the kernel memory directly. It can only
access the kernel memory and user process memory through
bindings. The script in Figure 1 calls copyout(). The source
address of this function is limited to that of a table variable
in a Lua script. The destination address of this function is
limited to the user process that invokes lua_syscall().

Next, we provide safe bindings for non-privileged users. We
implement a system call module for the LuaJIT which con-
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Figure 2: Restricted execution environment

tains system calls bindings such as recv() family and send()

family. Further, we disallow user land programs to add new
bindings.

Our bindings simply pass the provided arguments to the
actual system call functions, for example, sys_recvfrom().
This also applies to the JIT compiler; it will just produce
codes that call the bindings. This means that the regular
protection mechanism of the operating system kernel works
well for the safe execution of a script. While a script runs in a
kernel, its memory access is limited. For example, if a script
passes an illegal address to sys_recvfrom(), the unmodified
sys_recvfrom() performs regular checking in the copyout()
function and returns EFAULT to the script.

To prevent resource exhaustion, in the current implementa-
tion, we modified the memory allocation function to check
whether the total memory exceeds a certain limit. If this
happens, the process is terminated. We also make use of
the FreeBSD’s callout API [7] to limit an execution time
of a script. If the script exceeds the time limit, the process
is terminated.

2.4 Experience of modifying LuaJIT
The environment in the kernel land is different from that in
the user land. This section gives you a brief overview of how
we modified the LuaJIT compiler to make it runnable in the
kernel as a kernel module.

Parsing The power operator was removed as it was not
necessary. The number parser was modified to avoid
generating floating point values.

Arithmetic Arithmetic-related functions, such as constant
folding, were modified to handle only integers. Divi-
sion and modulo operators were modified to support
only integers and follow the behavior of C language.

Memory allocation LuaJIT has its own custom memory
allocator. It was replaced with the kernel memory al-
locator.

Bytecode interpreter This is the trickiest part as it is
written in an assembly language. The interpreter uses

floating point operations and registers by default. We
modified its logic and code flow to perform operations
on integers and use only general-propose registers.

JIT compiler Like the interpreter, the JIT compiler emits
floating related SSA IRs by default. We ensured that
SSA IRs did not contain floating-related operations.

In addition, we implemented the system call bindings mod-
ule as described in Section 2.3. However, this is not suffi-
cient as these bindings cannot be compiled by the JIT com-
piler automatically. We added recording functions, which
are called during tracing, to record system call invocations.

The current limitation of our modification is that it works
only with the x86 kernel because of the LuaJIT internals.
While LuaJIT can run on x86-64 operating systems, it uses
32-bit pointers in many places internally.

3. EVALUATION
3.1 Experimental setup
We conducted an evaluation on Memcached [6], a distributed
memory object caching system. We were interested in the
scenario when GET requests are sent over UDP and SET
requests are sent over TCP. This scenario is used by Face-
book [11]. A request over UDP is represented by one UDP
packet. The original Memcached processes one UDP packet
at a time.

With our system call scripting, it is possible to receive mul-
tiple UDP packets or send multiple UDP packets in one
mode switch. We modified Memcached to use our system
call scripting that receives multiple GET requests over UDP
and sends their replies at a time. One of the scripts we use
is shown in Figure 1.

We used Memaslap [19] to generate requests. We modified
it to support the Facebook Test (multiple key GET requests
over UDP and SET requests over TCP) with a single key.
We made it run on four threads with 128 concurrencies to
generate a large load on Memcached. The ratio of GET-to-
SET requests was set to 9:1.

Both the original Memcached and our modified Memcached
were run with a single worker thread. They were fixed to
run on a CPU core. This was to avoid the effect of lock
contention and thread scheduling. Their memory object size
was set to 2 GB as we were interested in a no cache-miss
situation. We configured our Memcached to process at most
16 requests at a time.

The Memcached and Memaslap were run on different ma-
chines. Table 1 shows the specifications of these machines.
Hyperthreading and features such as TurboBoost were dis-
abled on both machines. These machines were connected
with a gigabit Ethernet cable. There were no other ma-
chines on the network.

We ran two tests in this evaluation. The first one measured
the average response time. In this test, Memaslap was set
to execute one million requests. The other test measured
the number of transactions per second (TPS). In this test,
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Figure 3: Average response time of GET requests

Memaslap was set to execute requests for a period of 30
seconds.

3.2 Experimental results
Figure 3 and Figure 4 show the average response time and
the number of transactions per second of GET requests with
various value sizes respectively. The error bars in these fig-
ures denote the standard deviation (Note that the standard
deviation of Figure 4 is very low compared to the value).
Both graphs show the results of the original Memcached, our
Memcached when running with only the LuaJIT interpreter
and our Memcached when the JIT compiler was enabled.

By comparing the original Memcached and our Memcached
running with only the interpreter, we found that system
call scripting reduced the average response time by about
30% and increased the throughput by about 37% when the
value size was small. When the JIT compiler was enabled,
our method further reduced the average response time by
about 33% and increased the throughput by about 44% as
compared to the original. As the value size increased to 1024
bytes, we found no significant difference between the original
method and our method. This was attributed to the system
limit.

We achieved these improvements because, under a high-
load situation, there were many UDP packets waiting in the
socket buffer. Our method allows draining the socket buffer.
This makes requests spend less time on waiting in the socket
buffer.

We can also see the effect of the JIT compiler in action in

Table 1: Server and client specifications
Server Client

CPU Intel i7 3820 3.6 GHz Intel i7 950 3.06 GHz

RAM 32 GB 12 GB

NIC Intel Ethernet Server I340 T4

OS FreeBSD 10.1 x86 Ubuntu 14.04 x86-64
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Figure 4: Transactions per second of GET requests

both Figure 3 and Figure 4. With the JIT compiler, we
found a 3% reduction in the average response time and a
7% improvement in the throughput when the value size was
small as compared to case with only the interpreter. Al-
though these look like small improvements, they are impor-
tant for latency-sensitive applications such as Memcached.
Reduction in the average response time means a better user
experience as a Memcached client, such as HTTP applica-
tion servers, spending less time waiting for responses.

3.3 Simplicity and usefulness
The script shown in Figure 1 is fairly straightforward to
write. For those who have experience in system program-
ming, it should not be difficult to write such code. The
trickiest part is the pointer arithmetic as seen in Lines 11 to
13. This is attributed to the fact that the Lua environment
treats these addresses as normal integers. It has no knowl-
edge about C data structures. We would like to provide a
better solution in a future.

Since we wanted to keep the modifications to Memcached to
a minimum, we implemented only the batch-receiving script
and the batch-sending script. Memcached heavily relies on
libevent [13]. It is a wrapper of event notification APIs such
as epoll, select and kqueue. Many applications rely on it
for portability reasons. We did not implement other combi-
nations such as kevent() and recvfrom(). Doing so would
require a large number of changes in Memcached.

System call scripting affects the way an application is writ-
ten. In case of Memcached, we had to make changes in some
data structures, functions and control flows to support the
processing of multiple UDP GET requests. For instance,
Memcached’s conn object contains fields that are related to
receiving and responding requests. To support the process-
ing of multiple requests, we had to decouple these fields from
the conn object. This was a little challenging for the appli-
cation. On the other hand, an application designed from
scratch should have no problem doing so.
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4. RELATED WORK
4.1 System call batching
System call clustering is the idea of batching a set of system
calls and performing them sequentially in just one mode
switch [14]. System call clustering relies on a simple sys-
tem call extension multi_call() that sequentially performs
all system calls it receives as arguments. It relies on com-
piler optimization that analyzes system call flows and groups
them into clusters. After the analysis, it transforms each
cluster into a single multi_call() system call.

Our approach can achieve system call clustering in a sim-
pler way. With system call scripting, developers can create
their own system calls explicitly on the basis of the exist-
ing system calls in a scripting language. In addition, our
approach allows for more flexible error handling. For exam-
ple, when bytes returned from recvfrom() on a UDP socket
are fewer than what an application expects, our approach
can ignore the received data without going back to the user
space. System call clustering cannot handle this situation.

Another approach to batch system calls is to make system
calls asynchronous. Syslet [10] was proposed for the Linux
kernel to support system call batching in an asynchronous
manner. A syslet consists of a chain of system calls. It sup-
ports branching and looping. Once a syslet is submitted,
it will be executed asynchronously. While Syslet still relies
on exception, FlexSC [17] eliminates this by separating sys-
tem call invocation from execution and system call memory
pages. FlexSC does not only avoid using exceptions which
cause cache pollution, it also makes system call batching
possible.

Rather than going asynchronous, we explore an alternative
approach by making system call batching possible while still
maintaining the traditional system call usage. We think that
this approach makes it easier to understand what is going
on as the traditional system call usage is well understood.
The Memcached we modified is still event-based with non-
blocking I/O. In Figure 1, the sfd file descriptor is non-
blocking. The script is called after kevent() returns.

Linux provides recvmmsg() and sendmmsg() that allow the
receiving and sending of multiple messages respectively in a
mode switch [15, 16]. These have performance benefits for
some applications. FreeBSD and NetBSD are now porting
these system calls [3, 9]. With our approach, we demon-
strate that it is possible to create the same functions using
recvmsg() and sendmsg() without implementing new sys-
tem calls.

4.2 Extensible operating systems
An extensible operating system is an operating system that
can improve its flexibility by allowing the use of extensions [2,
5, 8]. For example, SPIN Operating System [1] is an op-
erating system which applications are allowed to register
hooks to parts of the operating system in order to override
the default behaviors of the system for their own require-
ments. This research shares ideas that are similar to ours.
Its approach uses the compiled language Modula-3 while we
use the scripting language Lua backed with a JIT compiler.
SPIN allows multiple applications to register hooks to a part
of the system which can cause an overhead of determining

which hook to run. On the other hand, we allow an applica-
tion to run specialized code that affects a single application.

4.3 Scriptable Operating Systems with Lua
As mentioned in Section 1, Scriptable Operating System
with Lua [18] is the idea of using the Lua scripting language
to write extensions on an operating system. It exposes the
Lua engine as pseudo-devices. The research uses the orig-
inal Lua interpreter. It allows an easy implementation the
scripting facility on both Linux and NetBSD.

While the research focuses on making changes that have
system-wide effects, our research extends the idea and fo-
cuses on making application-scope kernel extension. To make
the Lua engine available only in an application, we encapsu-
late the execution environment in a file descriptor. We also
experiment with the idea of an in-kernel JIT compiler to
reduce interpretation overhead by porting the LuaJIT into
the FreeBSD 10.1 x86 kernel.

5. CONCLUSION AND FUTURE WORK
We have extended the kernel scripting mechanism and pro-
posed system call scripting that allows developers to create
their own application-specific system calls on the basis of the
existing ones. This allows the execution of multiple system
calls in one mode switch without root permission. We modi-
fied the LuaJIT compiler to run as a loadable kernel module
to provide the scripting engine in the FreeBSD 10.1 x86. We
evaluated our idea using Memcached. We modified Mem-
cached to be able to process multiple UDP GET requests
at a time by using system call scripting. We found that,
under a single worker thread and a high-load condition, our
approach with an interpreter reduced the average response
time by up to 30% and improved the throughput by up to
37% when the response value size was small. With the JIT
compiler, our approach reduced the average response time
by up to 33% and increased the throughput by up to 44%.
These improvements were done with two simple scripts and
minimal modifications to Memcached.

In the future, we intend to explore the application-specific
network stack specialization by using our scripting approach
and FreeBSD’s Jails virtual network stack.
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