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TNTRODUCTTON

A number of suthors (ecf. [12],[6],
(71,031,0217,[47,[51,[9])) have recently
been concerned with scheduling problems
associated with 2 certain model of an
abgtract multiprocessing system (to be
described in the next section) and, in
particular, with bounds on the worst-case
behavior of this system as a function of
the way in which the inputs are allowed
to vary. In this paper, we Introduce an
additional element of realism intec the
model by postulatlng the existence of a
set of "resocurces" with the property
that at no time may the system use nore
than some predetermined amount of each
resource, With this extra constraint
taken into consideration, we derive a
number of bounds on the behavior of this
augmented system., It will be seen that
this investigation lesds to several
Interesting results in graph theory and
analysis,

THE STANDARD MODEL

We consider a system composed of
(usually n) sbstract identical processors.
The function of the system is to execute
some given set J = ..T of tasks,
However, J 1s partlally ord¥red by some
relation* € which must be respected
in the execution of J as follows: IT
Ti‘< Tj then the execution of Ti must

be completed before the executlon of
Tj can begin, To each task T is

associated a positive real number Ty which

represents the amount of time Ti requlres
Tor its execution.

thus, < 1s transitive, antlsymmetrlc
and irreflexive,

The operatlon of the system is assumed to
be nonpreemptive, which means that once
a processor begins to execute a task Ty

it must continue to exescute it to
completion, 7, time units later. Finally,
the order in ®hich the tasks are chosen
is determined gs follows: .4 permutation
(or 11sb) T = dm v om Foobg is

4 1r
given initially. At any time a processor
is idle, it instantanecusly scans T from
the beginning and selects the first task

Tk (if any) which may validly be executed

{i.e,, all Ti-< T, have been completed)

and which is not currently belng executasd
by another processcr, Ties by two or
more processors for the same task may

be broken arbitrarlly since the processors
are assumed to be identical.

The system beging at time £ = O and
starts executing J. The finishing time o
is defined to be the Icast time at which all
tasks have been completed. Of course,
is a function of L, «, n and the 11, Tt
is known [7] that if (J! ?

with T, <TJ = T, <TJ and'r (’Ti for

all 1 and J, and U' is executed by the
system using a list Lf, then the
corresponding finishing time w’ satisfies

w? 1
(0) 5 $£2-3

Furthermore, this bound is best possible.
Efficient procedures are known {3],[4],
[g] for generating optimal lists when all
the 7, are 1 and elther = (viewed ac a
directed graph in Lhe obviously way) is

a tree or n = 2. However, Ullman [12]
has recently showp that even the case of
n =2 and T€ 1,2+ for all 1 is

polynomial complete* and therefore,
probably has no efficient sclution in
general.,

—_—
Cf.[lO] for a definition of this term,



THE AUGMENTED MODEL

Before proceeding to a descriptign
of the new model we first introduce some
notation which will meke the ensuing
discussion mathematically more conve?%eng.

For a glven list L, let F:J — 2lYs®
be defined by F(T,) = [oy,0,+7;) where g,

15 the time at which the execution of Ti

was starte?. Let £:[0,p) = 2 be defined
by £{t) = TidI:teF(Ti)?. Thus, f{t) is

Just the set of tasks which are being
executed at time t. The restrictlion that
we have at most n processors can be
expressed by requiring |[f{t)| < n for all
t el0,0).

Assume now that we are algo given a
set of resources b = e f and that
these resources have thd follgwing

roperties. The total amount of resource
available at any time is (normalized
without loss of generality to) 1. For
each j, the task T, reqguires the use of
pyj units of resoutce ; @t all times

during its execution, where O < pij < 1.
For each tel0,w), let r,(t) denote the

total amount of regsourcs Ri which is
being used at time t. Thus,

Tjef(t)

In this new model, the fundamental
constraint 18 simply this;

ry(t) £ 1 for all te [0,m).

In other words, at no time can we use
more of any resource than is currently
available.

The basic problem we shall consider
is to what extent the use of different
lists for this model can affect the
finlshing time w.

SUMMARY OF RESULTS

There are essentially three results
which will be proved in this paper.
They all are derived from the following
situation. We assume we are given a set
of tasks J = Tl""’Tﬁ.’ execution times

Tis @ partial order~ on dJ, a set of

resources B = {Rl,...,ﬂgl, task resource
*

usage coefficients pij’ and a positive

Integer n, Suppose, for two arbiltrary
lists L and L’, the (augmented) system of
n processors executes J with the result-
ing finishing times @ and w’/, respectively

*
as described in the preceding section,
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Note that the use of n > r processors
is equivalent to having an unlimited
number of processors available since
clearly there can never be more than

r processors active gt any given time,
Theorem 1. For R = ? li’

a
(1) m? S no.

Theorem 2, TFor R = {Rl} and = empty,

w 1
(2) 5'33—5.
Theorem 3. For R = {ﬁl,ﬂg,...,ﬁs}, empty
and n > r,
(3) %, <s + 1,

By way of comparison

the following
result is proved in fT]

Theorem 0. TFor R = @,
W 1
L7

Furthermore, as in the case of Theorem
0, examples will be given to show that
cach of these results is essentially best
possible.

Thus, the addition of limlted
resources into the standard model causes
an increase in the worst-case behavior
bounds, as might be expected., What is
somewhat surprising, however, is the
significant effect the partial order
< can have on these bounds. This is in
contrast to the previous case of R =
in which the upper bound
S, <2 - %which holds for arbitfrary =,
could, in fact, be achieved by examples
with <€ empty. Also significant is the
apparent need for somewhat more
sophisticated mathematical techniques
than were regquired previously.

PROOF OF THEOREM 1

The proof of (1) is immediate.
merely need to observe that

r
@ < Ei Ty < mwf
i=1

gince at no time before time w are all
processors idle when using list L, and
the number of processors busy at any
time never exceeds n.

More interesting is the following
example, which shows that (1) is best
possible.

We



Example 1

T = {T ,Tn,T’

12

aQ
1]
&
a
1]
m
\%
S

l ?
Ry(Ty) =2, R (Ty) =1, 1< 1 <.

=< is defined by

P
=

4
Ti-<TJ. for 1 ¢ 1< j

L

!
(Tqs-nsT ,Tl,...,Tn),
4 4
L= (TyseensTTyn T ).

A simple calculation* shows that

w=n+ne, w =1+me.
Thus
® n+ne
2 = -Snas e
w? I+ne 580

which shows that (1) cannot be improved.

PROCF OF THEOREM 2

Let A denote ordinary Lebesgue
measure on the real line,=** Without loss

of generality, we can assume o' = 1,
Hence,
1
j) rl(t)dt o =1
o A

where we recall that rl(t) denotes the
total amount of resource @l being used

at time t. 1

Suppese w > 3 -~ = . We shall
eventually derive a cdontradiction. Let
I< (o, w) denote the set of times during
which all n processors are busy, i.e.,

= {telo,@): [£(t)] =n}.

Let T = [0,w) - I.

e
The reader will probably. find 1t helpful
to construct 2 timing diagram to under-
stand the behavior of this (and succeed-

ing) examples.
*
" Since, in all of our applications, the

subsets X of [0,a) under consideration
are finlte unions of disjoint half-open
intervals, then A(X) is just the sum of
the lengths of these intervals.

1
Fact 1. A(I) <1 - & .

To see this, suppose »(I) > 1 - % .

Since |£{t)] > 1 for 211 tel[0,w) then
xr

Z T, > I(T) + 1+ (@-A(I))

1=1
> (n—l)(l - %} + (3 - %\ =nil>n

which is impossible since w/ = 1 implies

Thus,
MI) =w - 2 (I) > 2 .

Fact 2. If t,,t,eT and t, - t; > 1 then

ro(t) + rl(tg) > 1.
Proof: Certainly we have f(tl) £ 8,
£(t,) # 6 and f(tl)fW £(t,) = @, since
7y L@ =1 for all i. Thus, for Tief(tEL

the only reason why it wasg not executed at
time tl or sooner must have been because

the demand on the resource Rl would have
exceeded the amount available then, i.e.,

Rl(Ti) + rl(tl) > 1.
But, since rl(tg) > ®,(T;) then (4) holds
as asserted
For tel0,0) define* g(t) by
g(t) = inf{x:n(TO [t,x]) = 1}.

Thus, if g{t) < = then MTM[t,g(t)j) = 1
and so g(t) - t > 1. Note that

g:[0,g(0)) = [g(0),w}
since A(T) > 2. Therefore
e

1 ZJ r, (b)at >J1 Ty (t)de

I v (£)dt
TM00,8(g(0))]
since g(g(O)) < sup I =

j; ro(t)dt +
TM[0,g(0))

+I; r, (tat
‘Iﬁ

[g(0),&(a(0)))

— e
where inf @ is defined to be o
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= ( (t) + rl(g )\dt
TM0,g(0)]
since Q% =1 a.e,.
> 1-at > MTM0,g(0)) = 1
ITMla,g(0))

slnce we are Integrating & step function

> 1 cver a set of positive measure.

Since thils 1s impossible then the assump-

tion that o > 3 - %

theorem is proved.
With a slightly more careful analysis

it ean be shown that

1s untenable and the

® 3
o <3 " q

for n sufficiently large. In the other

directicn, the following example shows

that (2) is not far from best possible,

Example 2.

7 ={1,,7,,7! A T 1
TosT1rtedt1t i tn-1” 1Yt n(n-2) 7
< 1s empty, n > 2,
- T S i -
Ty =1l T, =l -5ty =5 11 dn -1,
n 1 l
Ti=5——2, 1<i<n(n—2),
n
1 1 ' 1
R(ry) =5 R(T) =1 -5 &(T) =5
1<1<n-1,
”
R(Ty) =0, 1 < i< n(n-2),

" " - t ’ )
L= Tl""’Tn(n-ej’ Q’Tl""’Tn-l’%
! r T " T n w
L Tl’Tl""’Tnul’ E’Tl""’ n(n—@
A straightforward calculation shows that

I

- 2 -
—3—-1’-1--4-?, W = 1.

PROQOF OF THEQREM 3

we assune

In this case
os s} =< is empty and n > r,

R = {R,R,,..
The proof will require several preliminary
results., The meaning of undefined
ter?i?ology in graph theory may be found
in [8].

Let G denote a greph with vertex set
V = V(G) and edge set E = E(G). By a
valid labeling L of G, we mean a functim
L:iV — [O,0 } which satisfies

(5) Tor all e = {a,b}eR,L(a) + L(b) > 1.

Define the score of G, denoted by S(G),
by
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**
where V(H

§(G) = inf Ez L{v)

L veV

where the inf is takeﬁ over all valid
labelings L of G,

Lemma 1. TFor ahy graph G, there exists
& valid labeling L:V — 10,1,1F such that
5(6) }: L{v).
veV

Proof: TFor the case of a bipartite graph

Kdnig's theorem[8] states that the number
of edges in a maximum matching equals the

point covering number.* Thus, for any
bipartite graph G, here exists a valid
labeling L:V — {0,1} such that
S3(G) = E: L(v).
veV
For an arbitrary graph G, we

construct a bipartite graph G, as followa

B
For each vertex veV(G) we have two
vertices vl,v2€V(GB), for each edge

{u v}eE we have two edges {ul,v }
{ug,v }eE(G ). It is not difficult to
verify that 5(Gg) = 23(G) and furthermers,
if L V(G ) —a{O 1} is a valid labeling
of G then L:V(G) - {0,%,1} by

L(v ) = 3(L(vy) + L(v,)) 1s & valld

labeling of G.

For positive integers m and s, let
?(m, denote the graph with vertex set
o,1,. ,(s+l)m-1§ and odge set consilst-
ing of all pairs 1a,br for which —b|> m,
Lemma 2. Suppose G(m,sg) 1s partitioned
Intc s subgraphs+*» Hi’ 1 <1< 8. Then

max {S(H } 2 m.
1<i<s

(6}

Proof; Assume the lemma is false, 1,e.,
There existsa partition of G(m,s) into
By, 11 < s, such that S(Hi) < m for

1< i< s. Thus, by Lemma 1, for each 1
there Bxists a valid labeling
L (V(E ) — 10,4,1t such that

(7) }j

VeV(Hi)

L,(v) = 8(K,) < m.

*

i.e., the cardinality of the smallest
set of vertices of G incident to every
edge of G.

V(G (m,

(G(m,s)) fgr all 1. ?)) and E(

) CE



Let A = {al < ... < agt L (aj) < % for
all 1, 1 <1< Si and

let S* denote -
s
2 S(Hy).
i=1

There are three cases.

(i) p < m., In this case we have
S*>m (s+l) - p > m (s+l) - m = ms

which contradicts ( 7 ).

{ii) m < p < 2m + 1. For ecach edge
{aj’am+j}’ T <7< p-m there must exist
an i such that Li(aj) + Li(am+J) > 1.
Thus,

8# > m(s+1) - p + (p-m) = ms,

again contradicting (7).
(ii1) p > 2m + L. We first note that

for sach vertex vev(G(m,s)), there exists
an 1 such that Li(v) > 4. For suppese

Li(v) =0 for 1 <1< s.
be some a, such that #aj-vl > m,
since Li(a.) < % for all i, then

Li(aj) + L (v) < 3 for all i which is a

contradiction.
For each 1, let ny denote the number

Then

Then there must
But

of vertices v such that Li(v) =1,
{v:r (v) > ofl <am - 1 - n,

since otherwise,

E: Ly(v) >2n,'1 + (2m-2n4)+% =m
VeV(Hi)

which contradicts (7). Therefore

8

(8)? ]{V:Li(v) > oM < (2m-1)s - Z ny
i=1 1=1

Let ¢ denote the number of vertices v such

that there 1s exactly one i for which
Li(v) > 0. Then

(9) Ej F{V:Li(v) > O}j > 2(m(s+l)-q) + q.
i=1

Combining (8) and (9)
5

q 2 2m + s + Ej n,

i=1
Of course, we may assume without loss of
generality that if Li(v) = 1 then Lj(v)=0

for all

(10)

108

j# i, Hence, by the definition of ny 5
there must be at least 2m + s vertices,

say, bl < L. < b2m+s’ such that

), Litey) -

1=1
for each b, there 1s a uniqgue Li such that

J
= 1 -

Ly(b;) = $7and T, (b,) = 0 for all k # 1.

Thus, if |bJ-bk| > m then for some i
= = i -

Li(bj) = I,(b,) = 4. Since Ibl LT :

let i, be such that Lio(bl) = Liéb2m+s)=?'

But, by the same reasoning we must also

i, 1.e.

| >m,

/ = =1
have Lio(bm+j) = Lio(bl) = % and

= =1 ;
Lio(b2m+s) = Lio(bj) =1 for1<j<m +s
Therefore

(B, )= ) L (V)2 (2mse)d
8] . 0
veV(H, )
0

which is a contradiction,
the proof of Lemma 2,
Recall that when J 1s execcuted using
the 1list L, F(Ti) 1s defined to be the
interval {ci,ci+1i) where o, is the time

at which T, starts to be executed and

o, + T, istthe time at which T,1s finished.

Note that because of the way 1n which the
operation of the system is defined, each
a, is a sum of a subset of the 7T.'s.

This completes

We may assume without loss of
generality that o/ = 1. Assume now that
w > & + 1, Furthermore, suppose each

Ti ¢an be written as K

.1 .
Ty Y@ where ki is a

positive integer. Thus, ki < m, since
Ty Lwf = 1. Also, for 1 <1< s, each
ry(t) is constent on each Interval

Tk k+l (%‘)
oo Tmo e this value being ri . An

important fact to note is that since
1s empty and n > r then, for
tl,tzefO,w) with $,-t, > 1, we must have
max {r,(t, )+r, (t)} > 1.
1<i<s 1l it e

For otherwise, any task belng executed at
time t. should have been executed at time

tl or gooner. Thus, for each 1, 1<{id s,

we can construct a graph Hi as follows:

V(Hy) = {0,1,...,(s+1)m-1} ;
(11) {a,b} is an edge of H

a {b\.
ri(ﬁ‘) * ri(#) > 1.

iiff



Note that if |a-b] > m then {a,b} is an
edge of at least one Hi’ 1 <1 <«gs.

Hence, it is not difficult fto see that
G ggf H;. Note that by {11), the mapping

m a
Ll:V(Hi) - [0,») defined by Li(a) = ri(ﬁ)
is a valid lsbeling of H,. Since GC o

implies 8(G) < 8(G’) and the condition on
the ry in (117 is & striet inequality then

by Lemma 2 it follows that
(s+1Jm-1
max r (E) Z T, (v)
iNm 1
k=0 VEV(Hi)
(12

> mgx{S(Hi)} > m.

But as we have already remarked, we nust
have
(s+1)m-1 N
L 2 (5 ¢ (et g
m Am/ = i = =
k=0 -0
(13) 1<14<s,
l.e.,
(s+1)m-1
( ‘) L1 <s,

Thig is a contradictlion and Theorem 3 is
k,
proved in the case that Ty = H% where

k; 1s a positive integer for 1 {1 £ r.
Of course, it Tollows immediately that
Theorem 3 holds when all the Ti are

rational. The proof of Theorem 3 will be
completed with the establishment of the
following lemma,

Lemme 3. Let © = (T4,...

gequence of positive real numbers. LIhen
for any & > 0, there exists T#* = (T T 5

such that:

,T ) be a

i|<afor1gigr

(11) For a11 5,7C {1,...,1},

Ei Tq < ET Ty if and only if

sa 8 teT

Z * z =
Ty S Ty d
se8 teT

*
(111) All 7,
numbers.

1 ITT~T
(1) I7]

we

are positive rational

Renark:
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The importance of (ii) 1s that it
guarantees that the order of execution
of the T, using the Tist L is the same
for T an¢ T*. Thus, if L is used to
execute JJ, once using exscution times

Ti and once using execution times Ty then

the corresponding finishing times w and &b
satlsfy

o - wx| < re.

Hence, 1if there were an example J with
W
o’
then we could construct another example
J* by slightly changing the Ty to

rational T; so that the corresponding
new finishing times w* and w’* satisfy

> 8 + 1 and some of the Ty irrational,

lo - w*] < re, o - wr*|< re

and, therefore, if € is sufficiently
small, we still have
*

E)'ED,—;>S+1.

this would contradict what has already
been proved. Lemma 3 1s implied by the
followlng slightly more general result.

The proof we give here 1lg due to V,Chvatsdl
(personsl communication).
Lemma 37 Let S denote a finite system
of 1nequalities of the form
r

or
Z ByXy 2 8y iaixi > ag

i=1 i=1
where the ay are rational.

However,

Then, for any
€ > 0, 1f $ has a real solution (xl,...xr)
then S has a rational solution (x{,...,xi}
with Ixi-xI[ < & for all 1.

Proof: .We proceed by Induction on r. For
T = T the result is immediate, Wow, let
S be a system of inequalities in r > 1
varisbles which is solvable in reals. 8
splits into two classes: Sgp, the subset
of inequalities not involving X,y and Sl,
the subset of inequalities involving X
Each inequality in Sl can be written in

one of the following four ways;

r-1

(a) ao + e < Xpr
i=1
r-1

() Ay Qpxy < Xy
i=1
r-1

(e} By + C Byxy 2%y,
i=1
r=1

(d) BO + Bi}si > XI‘-
i=1



For each palr of inequelities, one of type
(a) and one of type (¢), we shall consider
the inequality

r=1 r-1
(e) a, + 5: ay Xy < 50 + Bixi=
i=1 1-1
imilarly, the pairs of types {(a a)}
?(b),(c)¥ and (b),(d)f glve rise)ig s
inequalities
éi% iif
(£} ao -+ uixi < 50 + ﬁixi .
=1 i=1

Let S* be the set of &ll inequalities of
type (e) and (f) we obtain from S.. Since

by hypothesis, § = SéJsl has a redl

solution (xl,...,xr) then SéJS* has the
real solution (xl,...,xr_l). But SéJS*

only involves r - 1 variables so that, by
the induction hypothesis, 8618* has a -

-+ -+
n 19+ +1%,._q) with
-!xi-xi] < £t for-all i and any preassigned

*

e’ > 0. Substituting the x, info (2),(b),
(¢) and (&) we obtain a set of inequalities

(&)

rational solution (x X

a* L Xy D* X, €% 2 X, dF D> X,

where the a*,b*,¢c* and d* are rational.
S8ince the x, satlsfy (e) and (), we

i

have a* < ¢*, b* { ¢*, a* { d*, b* { d~,
Thus, for any € > 0, 1f £f is chosen to

be suitably small, then there 1s a rationd

x% satisfying (g) and with Ixr-x;| < e,

completing the proof of Lemma 3’.* This
proves Lemma 3, and hence, Theorem 3.

The following example shows that the
bound 1n Theorem 3 cannot be impoved.
Example 3

# r !
T =Ty Tps ey T 0T s e, Ty
<=6, n>s(N+1) +1=r,
T =1, 1<1<s+1, 1y = /N, 1igsN,
1 _ 1
Ry (Ty) =1 -5 Ri(TJ) =g 4 # 1, 1<igs,
' 1
Ri(TJ) =5 1<J<eN, 1<1Ls,
I !’ r 1
Lo= (TP e s Ty Tos Ty oo v oo T T s
’ r 7
Tewene T )w, Tesz? -1 Tene Tod)
f r ’
L7 = (TyaThsee s T g T Tose s Tg g )
It 1s easily -checked that for this case
w =135+ 1, w =1+ %
so that w/w’ is arbitrarily close to s +1

for ¥ sufficlently large.
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Concluding Remarks.

The results which have been discussed
in this paper lead naturally to a number
of possible extensions, several of which
we mention here.

We first note that for the
R = {Rl}, n > r, and geneyal=<(, example 1
EH1R5.455 T3, 5000 thef 5, can be

Regarding Temma 1, an algorithm can
be given which determines S(¢) (and a
corresponding valid labeling as well) in
at most

0 (JEIvﬂTﬂﬁ

aperations., A similar algorlithm may be
used for the following dusl problem:
Given a graph G, determine

Z L*{e)

ecE

case

max
L*

where the max ranges over all functions
L*: E » [0,»] such that for all veV,

I*(e’) < 1
e’sE(v)
where E(v) 1s the set of all edges inci-
dent to v, It would be interesting to
investigate the analogous questions for
hypergraphs.
The following result follows wmore or

less directly from Lemms 2:
COROLLARY: For a positive integer n,

fflo,n+1)'—;[o,m), 1<1<n, be

(Lebesque) measurable functions satisfying

let

(1) If t,,6,e(0,n+1) with [t -t | > 1
then
12;§ﬂ {fi(tl)+fi(t2)} > 1.
Then
(11) mex fidk >1

1<i<n J[O,n+1]

It is intereszsting to note that,
at present, no purely analytical proof
of the Corollary i1s Known.

The techniques of Lemma 2 may also
be used to derive several new results in
graph theory, In particular, it follows
that if m is a positive integer and Gm

denotes the graph ypith vertex set
V. =140,1,...,3m-17f and edge set
E, = {{a,b}c; Vm:min{a—b,3m-a+b} > m}
then any 2-coloring of Em containa m
disjoint edges having the same color.

The corresponding general conjecture
is that for a fixed s > 1,
vV = ?0,1,...,(s+1)m-1} and
E = {{a,0} gg'vm:min{a—b,(s+1)m-a+b}2_nﬂ
and it is required to show that any

s-coloring of E_ contains m disjoint
edges having th® same color. At present,



this conjecture is still open. If true,

it is close to belng best possible since

there exist s-colorings of the edges of

the complete graph on (s+l) m - s vertices

which have no set of m dis?oint edges

having a single color (cf.l[13,[21).
Finally, it is natural to inguire

under what restrictions do there exist

efficlent algorithms for determining

optimal schedules for prcblems of the

type considered herein(e.g.,cf.[6},{12]).
The authors take pleasure in ackncw-

ledging the resourceful suggestions of

S, A, Burr, J. C., Cheng, V., Chvatal,
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