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INTRO DUCT I0N 

A number of anthors (cf. [12],[6], 
[7],[3],[11],[4],[5],[9]) have recently 
been concerned with scheduling problems 
associated with a certain model of an 
abstract multiprocessing system (to be 
described in the next section) and, in 
particular, with bounds on the worst-case 
behavior of this system as a function of 
the way in which the inputs are allowed 
to vary. In this paper, we introduce an 
additional element of realism into the 
model by postulating the existence of a 
set of "resources" with the property 
that at no time may the system use more 
than some predetermined amount of each 
resource. With this extra constraint 
taken into consideration, we derive a 
number of bounds on the behavior of this 
augmented system. It will be seen that 
this investigation leads to several 
interesting results in graph theory and 
analysis. 

THE STANDARD MODEL 

We consider a system composed of 
(usually n) abstract identical processors. 
The function of the system i~ to execute 
some given set ~ = {T,,...T ° of tasks. 
However, ~ is partially ordered by some 
relation* ~ which must be respected 
in the execution of ~ as follows: If 
T i ~ Tj then the execution of T i must 

be completed before the execution of 
Tj can begin. To each task T i is 

associated a positive real number ~i which 

represents the amount of time T i requires 
for its execution. 

thus, < is transitive, antisymmetric 
and irreflexive. 

The operation of the system is assumed to 
be nonpreemptive, which means that once 
a processor begins to execute a task T., 

it must continue to execute it to 
completion, ~. time units later. Finally, 
the order in ~hich the tasks are chosen 
is determined ~s follows: IA permutation 
(or list) L . . . . .  ~ of ~ is 

LTii' 'Tlr 

given initially. At any time a processor 
is idle, it instantaneously scans L from 
the beginning and selects the first task 
T k (if any) which may validly be executed 

(i.e., all T i ~ T k have been completed) 

and which is not currently being executed 
by another processor. Ties by two or 
more processors for the same task may 
be broken arbitrarily since the processo~ 
are assumed to be identical. 

The system begins at time t = 0 and 
starts executing 7- The finishing time 
is defined to be the least time at wnicb all 
tasks have been completed. Of course, 
is a function of L, ~, n aNd, the ~$;~ It 
is known [7] that if ~l = {Ti,;. 2 r" 

! t 

with Ti~ T j ~::> Ti~ T j and T i < T i for 

all i and j, and ~' is executed by the 
system using a list L', then the 
corresponding finishing time ~' satisfies 

~t 1 
(o) ~ ! 2 - F 

Furthermore, this bound is best possible. 
Efficient procedures are known [3],[4], 
[9] for generating optima.] lists when all 
the ~. are i and either ~[viewed as a 
directed graph in the obviously way) is 
a tree or n = 2. However, Ullman [12] 
has recently ~how~ that even the case of 
n = 2 and ~i¢Ii,2~ for all i is 

polynomial comolete* and therefore, 
Drobably has no efficient solution in 
general. 

cf. Ii0] for a definition of this term. 
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THE AUGMENTED M(~DEL 

Before proceeding to a descriptign 
of the new model we first introduce some 
notation which will make the ensuing 
discussion mathematically more conveD~en~. 

For a given list L, let F:~ ~ 2[ U,e) 
be defined by F(Ti) = [~i,~i+~i ) where ~i 

is the time at which the execution of T. 

was started. Let f:[0,~) ~ ~ be defined 
by f(t) = ITie~:tcF(Ti)~. Thus, f(t) is 

just the set of tasks which are being 
executed at time t. The restriction that 
we have at most n processors can be 
expressed by requiring If(t)I < n for all 
t ¢[O,m). 

Assume now that we are also given a 
set of resources ~ = {~ ..... ~ } and that 
these resources have th~ foll~wing 
~roperties. The total amount of resource 
~. available at any time is (normalized 
without loss of generality to) i. For 
each j, the task T. requires the use of 
Pij units of resource ~i at all tSmes_ 

during its execution, where 0 ~ 9i j ! i. 

For each te[O,e), let r,(t) denote the 
total amount of resourc@ ~. which is 

1 
being used at time t. Thus, 

ri(t) = ~ Pij 

Tj~f(t) 

In this new model, the fundamental 
constraint iS simply this: 

ri(t) ! 1 for all t¢ [0,~). 

In other words, at no time can we use 
more of any resouTce than is currently 
available. 

The basic problem we shall consider 
is to what extent the use of different 
lists for this model can affect the 
finishing time e. 

SUMMARY OF RESULTS 

There are essentially three results 
which will be proved in this paper. 
They all are derived from the following 
situation W~ assume ~e are given a set 
of tasks ~ = IT I ..... T~, execution times 

~i' a partial order-~ on ~, a set of 

resources ~ = {~i,~..,~ _ , task resource 

usage coefficients Pij' and a positive 

integer n. Suppose, for two arbitrary 
lists L and L', the (augmented) system of 
n processors executes ~ with the result- 
ing finishing times ~ and ~', respectively. 

Note that the use of n > r processors 
is equivalent to having--an unlimited 
number Of processors available since 
clearly there can never be more than 
r processors active ~t @ny given time. 
Theorem I. For ~ = - ~i 

(i) ~, i n . 

Theorem 2. For ~ = {~i } and~empty, 

(2) ~ 1 ~, ! 3 - ~ • 

Theorem 3. For ~ = {~i,~2, .... kS}, empty 

and n > r, 

(3) ,~, <_ s + i. 

By way of comparison, the following 
result is proved in [7]. 
Theorem O. For ~ = ~, 

c~ 1 ~, <2-~, 

Furthermore, as in the case of Theorem 
O, examples will be given to show that 
each of these results is essentially best 
possible. 

Thus, the addition of limited 
resources into the standard model causes 
an increase in the worst-case behavior 
bounds, as might be expected. What is 
somewhat surprising, however, is the 
significant effect the partial order 
-~ can have on these bounds. This is in 
contrast to the previous case of ~ = 
in which the upper bound 

1 ~, _< 2 - --n which holds for arbitrary-C, 

could, in fact, be achieved by examples 
with ~empty. Also significant is the 
apparent need for somewhat more 
sophisticated mathematical techniques 
than were required previously. 

PROOF OF THEOREM I 

The proof of (i) is immediate. 
merely need to observe that 

r 

i=l 

We 

since at no time before time ~ are all 
processors idle when using list L, and 
the number of processors busy at any 
time never exceeds n. 

More interesting is the following 
example, which shows that (i) is best 
possible. 

as described in the preceding section. 
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Example i 

{T I, Tn,T' I, ,T' n {~ T = " . . . . . . .  f g =  1 

t 
T. = i, T. = ~ > O, 

1 1 

I 

~l(Ti) = ~, ~l(Ti) = l, i ! i ! n. 

~ i s  d e f i n e d  b y  
1 

Ti~Tj for i ~ i ~ J ~ n. 

I I 

L = (T I ..... Tn, T 1 .... ,Tn), 

I I 

L' = (T I ..... Tn,T I .... ,Tn). 

A simple calculation* shows that 

o~ =n + ns, ~' = I + 'ne. 

Thus 

n+ns 
-- = -~n as £ -~ 0 o~' I~ 

which shows that (i) cannot be improved. 

PROOF OF THEOREM 2 

Let ~ denote ordinary Lebesque 
measure on the real line.** Without loss 
of generalitY , we can assume ~' = I. 
Hence, i 

rl(t)dt ! ~' = 1 
0 

where we recall that rl(t ) denotes the 

total amount of resource ~i being used 

at time t. I Suppose e > 3 - ~ • We shall 
eventually derive a Contradiction. Let 
I < [O,e) denote the set of times during 
whTch all n processors are busy, i.e., 

I = - - - . , , . ~ t ~ [ O , ~ ) : I f ( t ~ l  = n 

Let T = [0,e) - I. 

*The reader will probably find it helpful 
to construct a timing diagram to under- 
stand the behavior of this (and succeed- 
ing) examples. 

Since, in all of our applications, the 
subsets X of [0,e] under consideration 
are finite unions of disjoint half-open 
intervals, then A(X) is just the sum of 
the lengths of these intervals. 

Fact i. l(I) < 1 - ! 
-- n 

To see t h i s ,  s u p p o s e  ~ ( I )  > 1 1 
n 

Since I f ( t ) l  >_ 1 for  a l l  te[O,c~l then 
r 

Z ~i  >- n~,(I) + 1 . (~ -x ( I ) )  
i = l  

> > n 

which is impossible since e' = i implies 

~i in " 
i=l 

Thus, 

A(T) : ~ - l(I) > 2 . 

Fact 2. If tl,t2eT and t 2 - t I ~ I then 

rl(tl) + rl(t2) > I. 

Proof: Certainly we have f(tl) ~ 6, 

f(t2) / 6 and f(tl)l-~ f(t2) = 6, since 

~i !~t = i for all i. Thus, for Tief(t2~ 

the only reason why it was not executed at 
time t I or sooner must have been because 

the demand on the resource ~i would have 

exceeded the amount available then, i.e., 

~l(Ti) + rl(tl) > i. 

But, since rl(t2) h ~l(Ti ) then (4) holds 

as asserted 

For t¢'[0,oo] define* g(t) by 

g(t) -z inf{x:A(Yr~ [t,xl) = !}. 

Thus, if g(t) < oo then ~(TA[t,g(t)l ) : 1 
and so g(t) - t > i. Note that 

g: [o,g(o)) ~ [g(o),~) 

since Z(T) > 2. Therefore 

1 > rl(t)d t ~ rl(t)dt 
-J o T 

~T rl(t)dt 

A[O,g(g(O))) 

since g(g(O)) < sup T = 

=~I rl(t)dt + 
n[o,g(o)) 

+'~I rl(~dt 
~[g(o),g(g(o))) 

*where inf 6 is defined to be ~ . 
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=ITf_~[O,g(O)l(rl (t) + rl(g(t)))dt 

dg since ~ = I a.e. 

>[ l.dt > l(Y('h[0,g(0)) = I 

~r n[o,g(o)) 
since we are integrating a step function 
> 1 over a set of positive measure. 
Since this is impossible then the assump- 

tion that co > 3 - I is untenable and the 
n 

theorem is proved. 
With a slightly more careful analysis 

it can be shown that 

co 3 
~, <3-~ 

for n sufficiently large. In the other 
direction, the following example shows 
that (2) is not far from best possible. 
Example 2. 

, ,, ,, )~ 
T _Ti,T2,T ± ..... Tn_ I, T I ..... Tn(n_ 2 , 

-~ is empty, n > 2, 
i ' i 

~I = i, ~2 = I - ~, ~i = ~' i <_ i <_ n - I, 

" 1 1 
~i = n ~, 1 _< i _< n(n-2), 

n 

l) 2) ) =m 
l<i<n- I, 

H 

~(Ti) = 0, 1 <_ i <_ n(n-2), 

L = T 1 , . . . , T n ( n _ 2 ) , T 2 , T 1 , . . . , T n _ I ,  

L = , . .  ° ' "  ( h -  

A straightforward calculation shows that 

2 co' = i. co = 3 - [+-Z' 
n 

PROOF OF THEOREM 3 

In this case~ we assume 
= {~l,~2,''',~s-, ~ is empty and n >_ r. 

The proof will require several preliminary 
results. The meaning of undefined 
terminology in graph theory may be found 
in [8].  

Let O denote a graph with vertex set 
V = V(G) and edge set E = E(G). By a 
valid labelSng L of G, we mean a function 
L:V -~ [0,oo) which satisfies 

(5) For all e = {a,b}¢E,L(a) + L(b) h i. 

Define the score of G, denoted by S(G), 
by 

S(G) = inf L L(v) 
L veV 

where the inf is taken over all valid 
labelings L of G. 
Lemma i. For any graphrG, th@re exists 
a valid labeling L:V ~ iO,½,1k such that 

s(~) Z ~(v). 
veV 

Proof: For the case of a bipartite graph 

KBnig'S theorem[8] states that the number 
of edges in a maximum matching equals the 
point covering number.* Thus, for any 
bipartite graphrG , @here exists a valid 
labeling L:V ~ iO,ik such that 

s(G) = ~ L(v). 
veV 

For an arbitrary graph G, we 
construct a bipartite graph G B as follow~ 

For each vertex veVIG ) we have two 
vertices Vl,V2eV(GB) ; for each edge 

{U,V}eE(G) we have two edges {Ul,V 2} 

lu2,vl~¢E(GB). It is not difficult to 

verify that S(G_) = 2S(G) and furthermor~ 

if LB:V(GB] ~ {0, i} is a valid labeling 

of G B then L:V(G) ~ {0,½,1} by 

L(v) = ½(L(Vl) + L(V2) ) is a valid 

labeling of G. 
For positive integers m and s, let 

~(m,s) denote the graph with vertex set 
0,i ..... (s+l)m-l~ anj edge set consist- 

ing of all pairs {a,b} for which la-bl > 
Lemma 2. Suppose G(m,S) is partitioned 
Into s subgraphs** Hi, 1 ~ i ~ s. Then 

(6) max {S(Hi)} ~ m. 
l<i<s 

Proof: Assume the lemma is false, i.e., 
e~existsa partition of G(m,s) into 
Hi, I ! i ! s, such that S(Hi) < m for 

i < i < s. Thus, by Lemma i, for each i 
there ~xist9 a va$id labeling 
Li:V(Hi) ~ iO,½,1~ such that 

(7) ~ Li(v ) = S(Hi) < m. 

v~v(s i) 

@ 

i.e., the cardinality of the smallest 
set of vertices of G incident to every 
edge of G. 

**where V(H~) = V(G(m,s)) and E(Hi) C E 
(G(m,s)) for a l l  i .  

107 



Let A = {a I < . . .  < ap: L$(aj) i ½ for 

all i, 1 < i < s~ and 
let S* denote 

s 

Z S(Hi). 
i = l  

T h e r e  a r e  t h r e e  c a s e s .  
(i) p < m. In this case we have 

S* > m (s+l) - p > m (s+l) - m = ms 

which contradicts ( 7 ). 

(ii) m < p < 2m + i. For each edge 

~aj,am+j}, I < j ! P - m, there must exist 

an i such that Li(aj) + Li(am+j) > I. 

Thus, 

S* >_ m(s+l) - p + (p-m) = ms, 

again contradicting (7). 
(iii) p > 2m + I. We first note that 

for each vertex VcV(G(m,s)), there exists 
an i such that Li(v ) >_ ½. For suppose 

Li(v ) = 0 for 1 <_ i < s. Then there must 

be some aj such that laj-v I > m. But 

since L~(a.) < ½ for all i, then 1 j -- 
Li(aj) + Li(v ) < ½ for all i which is a 

contradiction. 
For each i, let n i denote the number 

of vertices v such that Li(v ) = I. Then 

l{v:Li(v) > o}l < 2m - 1 - n. 
-- 1 

since otherwise, 

Li(v ) > ni'l + (2m-2ni)" ½ = m 

v~V(H i) 

which contradicts (7). Therefore 
S 

(8)~ I{v:Li(v ) > 0}I < (2m-l)s - Z ni 

i=l i=l 

Let q denote the number of vertices v such 
that there is exactly one i for which 
Li(v ) > O. Then 

S 

(9) Z I{v:Li(v) > 011 >- 2(m(s+l)-q) + q. 

i=l 

Combining (8) and (9) 
S 

(lO) q > 2m + S + ~ n i 

i=l 
Of course, we may assume without loss of 
generality that if Li(V) = 1 then Lj(v)=O 

for all 

J # i. Hence, by the definition of ni, 

there must be at least 2m + s vertices, 
say, b I < ... < b2m+s , such that 

S 

L i ( b j )  = ½, i . e .  
i = l  

for each b. there is a unique L. such th~ 
ij l 

Li(bj) = ~ and Lk(bj) = 0 for all k ~ i. 

Thus, if Ibj-bkl ~ m then for some i 

Li(bj) Li(bk) = ½. Since Ibl-b2m+s 1 >m, 

let i 0 be such that Lio(bl) = Li~b2m+s)=½. 

But, by the same reasoning we must also 
have Lio(bm+j) = Lio(bl) = ½ and 

Lio(b2m+s) = Lio(bj) = ½ for 1 ! j ! m +s. 

Therefore 

S(Hio) = ~ Lio(V) h (2m+s)'½ h m 

v~V ( H i o )  

w h i c h  i s  a c o n t r a d i c t i o n .  T h i s  c o m p l e t e s  
t h e  p r o o f  o f  Lemma 2 .  

Recall that when ~ is executed using 
the list L, F(Ti) is defined to be the 
interval [oi, oi+Ti ) where o i is the time 

at which T. starts to be executed and 
°i + ~i islthe time at which Tiis finished. 

Note that because of the way in which the 
operation of the system is defined, each 

is a sum of a subset of the ~j's. 

We may assume without loss of 
generality that ~' = 1. Assume now that 

> s + 1. Furthermore, suppose each 
~i can be written as 

k i 
~i = -m- where k i is a 

positive integer. Thus, k i ! m, since 

~i ! e' = 1. Also, for 1 ! i J s, each 

ri(t ) is constant on each interval 

--k __~k+l this value being ~ ' m~' ri~,~-- An 

Tmportant fact to note is that since 
is empty and n > r then, for 

tl,t2¢[0,~ ) with T2-t I ~ i, we must have 

max {ri(tl)+ri(t2)}_ > i. 
l<i<s 

For otherwise, any task being executed at 
time t_ should have been executed at time 
t I or ~ooner. Thus, for each i, l<i< s, 

we can construct a graph H i as follows: 

V(Hi) = {0, i ..... (s+l)m-l} ; 

(ii) {a,b} is an edge of Hiiff 

r b 
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Note that if la -b l  > m then { a ,b }  is  an 
edge of at least on~ H i, I ~ i ~ s. 

Hence, it is not difficult to see that 
GmC ?'_ H i. Note that by (ll~ the mapping 

LI:V(Hi) ~ [0,~) defined by Li(a ) = ri(~) 

is a valid labeling of H.. Since G ~ G ~ 

implies S(G) < S(G ~) and the condition on 
the r i in (ii~ is a strict inequality then 

that , follows by Lemma 2 it 

max r i = m~x Li(v ) 

i k=O " v~V('H i ) 

(12) > max{S(Hi)} ~ m. 
i 

But as we have already remarked, we must 
have 

(s+l~m-i i~ ~c~ 
_i m r k <--j 

k=O " 0 
(13) I < i <_ s, 

i.e., 

ri(t)dt ! i, 

(s+llm-i i~k~ < m, i < i < s 

k=O 

This is a contradiction and Theorem 3 is 
k. 
--~ where proved in the case that T. = 

1 m 
k i is a positive integer for I < i < r. 

Of course, it follows immediately that 
Theorem 3 holds when all the T. are 

m 
rational. The proof of Theorem 3 will be 
completed with the establishment of the 
following lemma. 
Lemma 3. Let • = (~i ..... ~r) be a 

sequence of positive real numbers• ,The~{ 
for any s > O, there exists T* = (Tr...,T r) 

such that : 

(i) l~i-~il < ~ for 1 <_ ± i r; 

(ii) For all S,T~ {i, .... r}, 

~. ~S <-- ~ ~t if and only if 

s~S teT 

Z Z" ~*s -- < ~t ; 
s~S t~T 

(lii) All ~i are positive rational 

numb e r s. 

Remark : 

The importance of (ii) is that it 
guarantees that the order of execution 
of the T. using the list L is the same 
for T an~ T*. Thus, if L is used to 
execute [, once using execution times 
Ti and once using execution times Ti then 

the corresponding finishing times ~ and 
satisfy 

I~ -~*I < rE. 

Hence, if there were an example [ with 

irrational, ~, > s + 1 and some of the ~i 

then we could construct another example 
* by slightly changing the ~i to 

rational ~. so that the corresponding 
i 

new finishing times ~* and ~,. satisfy 

i~ - ~*I ! r~, I~' - ~'*I! r~ 

and, therefore, if s is sufficiently 
small, we still have 

e,, > s + i. However, 

this would contradict what has already 
been proved• Lemma 3 is implied by the 
following slightly more general result• 
The proof we give here is due to V.Chvat~ 
(personal communication). 
Lemma 3' Let S denote a finite system 
or inequalities of the form 
r ~ 

six i ~ a O or six i > a 0 
i=l i=l 
where the a i are rational. Then, for any 

£ > O, if S has a real solution (x I .... Xr) 

then S has a rational solution (x~ ..... x~ 

with Ixi-x~I_ < s for all i. 

Proof: .We proceed by induction on r. For 
r =T-the result is immediate• Now, let 
S be a system of inequalities in r > i 
variables which is solvable in reals. S 
splits into two classes: SO, the subset 
of inequalities not involving Xr, and S1, 
the subset of inequalities involving x 

r 
Each inequality in S I can be written in 

one of the following four ways: 
r.-I 

(a) ~0 + ~ ~ixi ! x r, 
i=l 

r-i 

(b) ~0 + ~ ~ixl < Xr' 
i=l 

r-I 

(c) ~o + ~ ~ixi ~Xr, 
i=l 
r-i 

(d) ~0 + ~ ~i~i > Xr" 
i=l 
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For each pair of inequalities, one of type 
(a) and one of type (c), we shall consider 
the inequality 

r-i r-1 

(e) ~0 + Z ~ixi <- ~0 + Z ~ixi~ 
$=i i=l 

Similarly, the,pairs types {(a),(d)}, o~ 
(b),(c)~ and i(b),(d)~ give rise to 

inequalities 

(f) ~0 + rf ~ixi < ~0 + r~ 61xi • 

i =i i=l 

Let S* be the set of all inequalities of 
type (e) and (f) we obtain from S.. Since 
by hypothesis, S = SoWS 1 has a re~l 

solution (Xl,...,Xr) then SOS* has the 

real solution (Xl,...,Xr_l). But S~S* 

only involves r - 1 variables so that, by 
the induction hypothesis, S~S* has a 

rational,, solution (Xl,...,Xr_l) with 

Ixi-x~ I± < e' for all i and any preassigned 

a' > 0. Substituting the x i into (a),(b), 

(c) and (d) we obtain a set of inequalitlss 

_ d * > x  b* < Xr, c* > x r, r (g) a* < Xr, 

where the a*,b*,c* and d* are rational. 
Since the x i satisfy (e) and ('f), we 

have a* < c*, b* < c*, a* < d*, b* < d*. 
Thus, fo~ any e > O, if s' is chosen to 
be suitably small, then there is a ra~ion~ 
X*r satisfying (g) and with IXr-X~l < E, 

completing the proof of Lemma 3'.' This 
proves Lemma 3, and hence, Theorem 3. 

The following example shows that the 
bound in Theorem 3 cannot be Impoved. 
Example 3 

< = ~, n Z s ( N + i )  + 1 : r ,  
l 

~ i  : l ,  l ~ i ~ s + i ,  ~ i  = l / N ,  l ~ i ~ s N ,  
1 i 

Ri(T i) : 1 - ~, Ri(Tj) = ~, j ~ i, l~i~s, 

t 1 
Ri(Tj) : ~, 1 ! J ! sN, 1 ! i ! s, 

' ! t ! 

L = (Ti,Ti,...,TN,T2,TN+i,...,Tk+i,TkN+i, 
! # # 

TkN+2 .... ,T(k+i)N, Tk+ 2, .... TsN, Ts+ ~ 

l # 

L' = (T1,T2,...,TsN,T1,T2,...,Ts+i). 
It is easily~checked that for this case 

s = s + i, ~' = i + 

so that ~/~' is arbitrarily close to s +i 
for N sufficiently large. 

Concluding Remarks. 
The results which have been discussed 

in this paper lead naturally to a number 
of possible extensions, several of which 
we mention here. 

We first note that for the case 
= {~}, n > r, and gene~al-~, example 1 

mav be±used ~o show that ~. can be 
arbitrarily large. ~" 

Regarding Lemma I, an algorithm can 
be given which determines S(G) (.and a 
corresponding valid labeling as well) in 
at most 

operations. A similar algorithm may be 
used for the following dual problem: 
Given a graph G, determine 

max ~ L*(e) 
L* eeE 

where the max ranges over all functions 
L*: E -~ [0,~) such that for all vaV, 

L*(e') i l 
e'eE(v) 

where E(v) is the set of all edges inci- 
dent to v. It would be interesting to 
investigate the analogous questions for 
hypergraphs. 

The following result follows more or 
less directly from Lemma 2: 
COROLLARY: For a positive integer n, let 
fi:[O,n+l)" -~ [0,~)', 1 <_ i <_ n, be 

(Lebesque) measurable functions satisfying 

( i )  I f  t l , t 2 s [ 0 , n + l  ) with Itl-t21 >_ l 
then 

max Ifi(tl)+fi(t2)~___ > 1. 
l<i<n 

Then 

(ii) max fidk ~ i 
l<_i<_n J [ o ,  n + l  ] 

It is interesting to note that, 
at present, no purely analytical proof 
of the Corollary is known. 

The techniques of Lemma 2 may also 
be used to derive several new results in 
graph theory. In particular, it follows 
that if m is a positive integer and G 

m 
denotes the graph ~ith vertex set 
V = ~0,1,...,3m-l~ and edge set 
m 

E m = {{a,b}~ Vm:min{a-b,3m-a+b} ~ m} 

then any 2-colorlng of E m contains m 

disjoint edges having the same color. 
The corresponding general conjecture 

is that for a fixed s~> l, 
V = 10,1,...,(s+l)m-1}-- and 
m 

E m = {{a,b}~Vm:min{a-b,(s+l)m-a+b} h m} 

and it is required to show that any 
s-coloring of E contains m disjoint 
edges having th~ same color. At present, 

II0 



this conjecture is still open. If true, 
it is close to being best possible since 
there exist s-colorings of the edges of 
the complete graph on (s+l) m - s vertices 
which have no set of m disjoint edges 
having a single color (cf.[1],[2]). 

Finally, it is natural to inquire 
under what restrictions do there exist 
efficient algorithms for determining 
optimal schedules for problems of the 
type considered herein(e.g.,el. Y6],[12]). 
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