
A Comparison of Two Network-Based File Servers 
(Summary) 

James G. Mitchell 
Xerox Palo Alto Research Center 

3333 Coyote Hill Road, Palo Alto, CA 94304 

Jeremy Dion 
Cambridge University Computer Laboratory 

Corn Exchange Street, Cambridge, UK ~B2 3QG 

1, Introduction 

This paper compares two working file servers in terms of 
their design goals, implementation issues, performance, and 
service experience, One server, the Xerox Distributed File 
System (X[~FS) [10], was built at the Xerox Palo Alto Research 
Center; the other, the Cambridge File Server (CFS) [2, 3, 4], was 
built at the Cambridge University Computer Laboratory, 

Both file servers support concurrent random access to files 
over a network, and each offers an atomic transaction 
mechanism covering modifications to files, 

2, Underlying Hardware and Software 

The XDFS was written in Mesa [6], runs on an Alto 
minicomputer [11], and communicates with its clients using an 
Ethernet.1 communications system [5], The CFS was written in 
BCPL [9], runs on a Computer Automation LSI4/30 
minicomputer, and uses the Cambridge Ring [12] as the 
communication medium, The servers use similar disk units, 

3, General Design Choices 

The cFs was originally conceived as a replacement for the 
backing store management of the CAP com'puter at the 
Cambridge University Computing Laboratory, It was required to 
provide rapid access in a style suited to a virtual memory 
system which would swap entire segments across the network. 
This concentration on serving operating system clients 
efficiently has led to restrictions in the interest of simplicity. For 
example, the CFS locks entire files at a time with multiple.reader. 
single-writer interlocks for the duration of a transaction and 
allows only one file to be updated atomically in a single 
transaction. 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct 
commercial advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by 
permission of the Association for Computing Machinery. To copy 
otherwise, or to republish, requires a fee and/or  specific permission. 

© 1981  A C M  0-89791-062-1-12/81-0045 $ 0 0 . 7 5  

The XOFS was intended to provide a basis for data base 
research. An XDFS transaction can cover updates to a number 
of files so that the atomicity of a higher level database operation 
can be maintained, 

The CFS provides access control based on capabilities. The 
XDFS uses identity-based access control on the names of files. 

An unstructured set of files identified only by UfDS provides 
the basic interface to each file server, but leads to the 
possibility for lost and undeletable files, since clients must be 
trusted to delete files explicitly, The XDFS provides only a partial 
solution to this problem while the CFS'S structures enable it to 
use garbage collection to delete files that are no longer 
accessible by clients, 

The differences between the CFS'S and the XDFS'S network 
protocols stem almost totally from the following differences in 
the servers: 

o the CFS assumes that transmission is over a local, 
extremely reliable network only, in contrast with the 
XDFS, which assumes that transmission is over a non- 
local, mostly reliable internetwork. 

o the XDFS is prepared to process more than one request 
at a time, whereas the CFS handles exactly one request 
at a time, which makes resource utilization more 
predictable. 

4. Comparison of Implementations 

In the CFS, the information needed to map a (file identifier, 
page number) pair into the disk address of the page is recorded 
in a tree of disk pages per file. The upper levels of these trees 
are disk pages containing arrays of disk addresses, and only 
the leaf pages contain the actual data of the file or index. 

The XDFS uses a B-tree [1] to translate a (file identifier, page 
number) pair into a disk address, There is a single B-tree per 
disk pack, and it records the allocations of pages to files for all 
files on the pack. 

Though the two servers use quite different representations 
for files, both obey two rules when performing disk writes so 
that the consistency of disk information can be maintained 
across failures: 

45 



(1) Any page which will be returned to the free pool in the 
event of a failure can be written without precautions. All 
data pages of client files fall into this category; rather 
than overwriting the current page of a file with changed 
data, both the CFS and the XDFS allocate a new shadow 
page for the data and record the fact that a modification 
to the file accessing structures will be needed if the 
transaction completes successfully. In the event of a 
failure, these shadow pages are released, 

(2) All other pages must be redundant at the time of writing: 
either their old contents or their intended contents must 
be reconstructible only by examining other disk blocks. 
In this category fall all the server's structural pages: the 
XDFS B.tree and free page map, and the CFS object trees 
and cylinder maps to be described below, 

The XDFS provides this structural redundancy using an 
abstraction called stable storage [10]. Pages of essential 
information, such as those of the B-tree or the page-allocation 
bit map, are recorded redundantly on disk. A write to a page of 
stable storage must be done carefully: writing on the second 
page must not start uctil it has been verified that the first has 
been written successfully. It is assumed that a crash while the 
write heads are actually turned on will leave a page detectably 
bad; i,e,, future attempts to read it will fail because of CRC or 
ECC errors. 

In the CFS, this structural redundancy is built into the disk 
representation at a higher level, On each disk, one block per 
cylinder is reserved as a cylinder map, an array of entries 
indexed by sector number, with one entry for each disk page on 
the cylinder. Each entry contains both the allocation state of 
the page, and, if it is currently in use, the UID of the object to 
which it belongs and the tree address it occupies within that 
object, 

Cylinder maps and the pointer pages of object trees are 
mutually redundant: The current use of each disk page is 
described both by its cylinder map entry and by its presence in 
an object tree, As long as the server is careful to write a 
cylinder map only when the set of object maps is consistent and 
an object map only when the set of cylinder maps is consistent, 
the redundancy of each disk page of structural information is 
maintained. 

6. Suggestions for Future File Servers 

There is one obvious area for investigation in the design of 
future file servers, The requirement to survive the failure of a 
disk transfer has exacted a substantial cost in complexity and in 
actual transfers per transaction in both the CFS and the XDFS. 
Maintaining this level of robustness requires a doubling of the 
number of disk writes to structural pages. 

An attractive solution to this problem is to make some of the 
server's memory non-volatile, so that it will survive all arbitrary 
halts by the processor, even a power failure during a disk write 
[71. 

Both the CFS and the XDFS present a "flat" view of 
transactions, in that a transaction cannot contain any others. 
Reed has proposed a scheme which allows nested transactions 
[6], In many circumstances, the simple steps in a transaction 
will normally cause the entire transaction to fail in turn. Nested 
transactions may turn out to be advantageous, however, if the 

failure of a particular subtransaction can be dealt with by trying 
an alternative subtransaction which might lead to eventual 
success. More experience is needed to decide which of these 
two views is most generally appropriate, 

References 

[1] R. Bayer and E.M. McCreight, "Organization and 
Maintenance of Large Ordered Indexes", Acta Informatica, 
1, pp, 173-189, 1972, 

[2] A.D. Birrell and R.M. Needham, "A Universal File Server", 
IEEE Trans Sottware Eng, SE-6(5) pp. 450-453, Sept. 
1980. 

[3] J, Dion, "The Cambridge File Server", Op Sys Rev, 14(4), 
pp. 26-35, Oct. 1980. 

[4] J. Dion, "Reliable Storage in a Local Network", Ph.D. 
Dissertation, Cambridge University, February 1981, 

[5] R.M. Metcalfe and D.R. Boggs, "Ethernet: Distributed 
Packet Switching for Local Computer Networks", CACM, 
19(7), pp, 395-404, July 1976, 

[6] J.G. Mitchell, W. Maybury, and R.E. Sweet, "Mesa 
Language Manual", Report CSL.79-3 Xerox PARC, Palo 
Alto, CA, April 1979, 

[7] R.M. Needham, J.G. Mitchell, and A.J. Herbert, "How to 
Connect Stable Memory to a Computer", Op Sys Rev to 
appear, 

[8] D.P. Reed, "Naming and Synchronization in A 
Decentralized Computer System", Ph.D. Dissertation, 
Massachusetts Institute of Technology, Dept, of Electrical 
Engineering and Computer Science, Sept. 1978. Also 
available as MIT Laboratory for Computer Science 
Technical Report TR-205, Sept, 1978, 

[9] M. Richards, "BCPL: A Tool for Compiler Writing and 
System Programming", AFIPS SJCC Conference 
Proceedings, 35, pp, 557-566, 1969, 

[10] H.E. Sturgis, J.G. Mitchell, and J. Israel, "issues in the 
Design and Use of a Distributed File System", Op Sys Rev, 
14(3), pp, 55-69, July 1980, 

[11] C.P. Thacker, E.M. McCreight, B.W. Lampson, R.F. 
Sproull, and D.R. Boggs, "Alto: A Personal Computer", 
Report CSL-79-11 Xerox PARC, Palo Alto, CA, Aug, 1979, 

[12] M.V. Wilkes and D.J. Wheeler, "The Cambridge Digital 
Communications Ring", Proc Local Area Communications 
Network Symp, Boston, May 1979, Nat. Bur. Standards 
Special Publication. 

46 


