
Proceedings of Sixth ACM Symposium on Operating Systems Principles (November 1977) 125-131.

ANALYSIS OF DEMAND PAGING POLICIES WITH

SWAPPED WORKING SETS

Dominique Potier

IRIA-LABORIA
BP 105

78150 Le Chesnay

FRANCE

The performance improvements brought by demand paging policies with swapped working-sets depend on
several f=ctors, among which the scheduling policy, the behaviour of the programs running in the system and
the secondary memory latency characteristics are the more noticeable. We present in this paper a modelling
approach to quantify the effects of these factors on the performance of a system running with a swapped
working-sets policy. A preliminary analysis, conducted in the virtual time of the programs, shows their
influence on the paging behaviour of programs. The results of this analysis are then used within a detailed
queueing network of a multiprogranmned system. Computationnaly simple expressions for the CPU time spent in
user state and in supervisor state are obtained for a class of paging policies ranging from pure demand
paging to demand paging with swapped working-sets. Numerical examples illustrate the analysis, and these
results are compared with measurements made on a real system running with swapped working-sets policies.

Key words and Phrases : paging algorithms, demand paging algorithms, working-set memory management,
swapping, program behaviour, virtual memory, semi-Markov model, queueing network
model.

CR categories : 4.32, 4.35, 8.1.

Introduction.

In time-sharing multiprogrammed systems using a
pure demand paging policy a page is loaded into main
memory only after the occurence of a page fault. An
important part of the page traffic is thus incurred
when the working pages of a process are loaded on
demand at the start of its execution. This effect
is enhanced by the influence of such factors as the
scheduling policy and slow input-output requests
which cause the execution of a process to be split
into several memory residence intervals, thus giving
rise to as many initial loading phases. Experimental
evidence [I] indicates that more than fifty percent
of the page traffic comes from these page faults
and the results of an analysis on the influence of
process loading on the page fault presented in [9]
also points out the importance of this effect.

An obvious solution to this drawback of a pure
demand paging memory management policy is to
preload the process active pages or working-set
when the process is reactivated in the multipro-
grammed set. We shall call these policies demand
paging policies with swapped working sets or,
more briefly, SWS policies.

The main advantages associated with these
policies are to reduce the number of page faults and
to generate bulk requests to the secondary memory
(however, the volume of pages moved remains
unchanged, and may even increase because of unused
preloaded pages). Since reducing the number of page
faults has a direct effect'on the amount of supervi-
sor time spent in processor switching, a gain is to
be expected there. The gains brought by the bulk
requests depend on the secondary memory device
characteristics. Preloading from a device with no
latency (e.g. core-to-core transfers) would gain

nothing as it was proved by Mattson et al. [8] and
Aho, Denning and Ullman [3]. On the contrary, in
systems using sequential access secondary memories
such as drums, the average time to load a page will
be reduced since preloading a working set may
require only one access to the drum rather than as
many as pages for pure demand paging.

It remains to analyse and quantify these effects
according to the environment in which the SWS
policy is implemented. It is the approach followed
in this paper.

The performance analysis of demand paging
policies with swapped working-sets that we present
has two startpoints : the analysis presented in [9]
which provides the basic modelling framework for
our study ; the demand paging policy with swapped
working-sets currently implemented in the Edinburgh
Multi-Access system (EMAS) [2]. This policy proved
to be successful, and we shall refer to it in the
remainder of this paper.

The study of SWS policies that we shall develop
is based on a simple probabilistic model of the
paging behaviour of a program. The analysis proceeds
in two steps. A preliminary analysis conducted in
the virtual time of the programs shows how SWS
policies reduce the average page fault rate and
generate bulk requests to the secondary memory device.
These results are then used within a multiclass
queueing network model of a multiprogrammed system
where programs are divided into classes according
to the number of their pages present in main memory.
The memory management policy represented in the
model follows the one implemented on EMAS and the

125

paging drum service time characteristics and the
overheads involved in the different operations are
taken into account in detail. Expressions for the
Central Processing Unit (CPU) time spent in user
state and supervisor state are obtained for a class
of demand paging policies ranging from pure demand
paging (PDP) to demand paging with SWS. These
results are illustrated by numerical examples and
compared to the observations made on the EMAS
system.

Process time ana lys is .

In the context of multiprogrammed page on
demand computer systems, the execution of a program
consists of a sequence of memory residence intervals
(MRI), the number and the duration of which depend
on factors such as the I/0 behaviour of the program
and the memory management and scheduling policies
implemented in the system. Within each memory
residence interval, the execution is interrupted by
page faults, the interval of time between two conse~
cutive page-faults depending on the internal
behaviour of the program, the paging policy and the
number of pages of the program present in main
memory.

Let X(t) be the number of pages of a program
present in main memory at the instant t of its
virtual time. The behaviour of X(t) can be
described in two steps. We specify in the first
place the variations of X(t) within a MRI and then
the transitions of X(t) between two consecutive
MRI's. The first step consists in representing the
paging behaviour of the program under a page on
demand policy ; the second step in describing the
swapping policy.

The analysis of the process X(t) follows closely
the one developped in [9] and we shall recall it
briefly. It is conducted under the following
assumptions :

H 0 : the programs executing on the system have
identical behaviour.

H I : the length of the consecutive memory
residence intervals are i.d.d, exponential
random variables with mean T.

H 2 : the maximum number M of main memory page
frames allocated to a program is fixed and,
unless otherwise specified, pages are
loaded in main memory on a page on demand
basis.

H 3 : the intervals of time between two consecu-
tive page faults of a program are i.i.d.
exponential random variables with mean qi
when i pages of the program are present in
main memory.

H 4 : the transitions between the number i of
pages of a program present in main memory
at the end of given MRI and the number j
of pages of the same program in main memory
at the beginning of the next MRI are
described by a first order Markov chain
with transition matrix (~ij). Thus (~ij)
characterizes the swapping policy
implemented by the system.

The set of states E of the process X(t) is then:
E = {1,2,... M}. An example of a realization of X(t)
is represented in figure I.

M

X(t)

unused PJ//l
page frames f//////

f f f f f f f f f f f f f f f
J \ / ~.

.MRIk MRI k+l MRIk+2

Figure 1.

Under assumptions Ho-H4, X(t) is a semi-Markov
process. Let p =(Pij) be its transition matrix
which is computed as follows. The probabilityOi
that the interruption which occurs is a page fault
when the process is in state i is given by

~__ll~i

and the mean uninterrupted CPU interval £. in state
i is z

(2) £i = 7T7~-$-T7~7 ~ T(, - O i) ,

Prom equation (I) and assumption H4, we obtain

(6)

(l - Oi) ~ij

(3) Pij = (I Oi) ~Mj

(l OM) C~MM + %

Let mi represent the equilibrium probability
that a program is activated on the CPU in state i.
Denoting by z the vector :

(4) ~ = (~l iN)

we have, from the definition of P

I
~=gp

(5) zM gi = l

i=l

The mi can be simply computed using the
following recursive equation obtained from (3) and
(5) and starting with 0J M

- 1 [g. M -

.~.(l-Oi)c~ij~ i] ,
c0j_] Oj _] J 1=3

j=2,... ,M-I

- l -

°~M-I = ~--- L°M (I - OM)(I - eMM).
M-I

i=l,...,M-! ; j=i+l

i=l,...,M-I ; j=!,...,i

i=M ; j=~ ,M-I

i=j =M

126

The vector of steady-state probabilities
F = (71,...,YM), where 7i is the equilibrium
probability that X(t) = i, is obtained from g and
%i, i=l,...,M, by

z i i=l ,M
(7) 7 i = M ' "'"

j=] o J

r M

(msec.:

Hence, in the virtual time of the process, we
can now compute the average time r M between two 2~
consecutive page faults for a given memory allocat-
ion of M pages, and the memory utilization ratio
eM" We have

M

(8) I/r M = Z Ti/q. ,
i=l l

1 M
= __Z i 7 i . (9) eM M i 1

The mode] of swapping policy.

We consider the following class of SWS policies, r M
A program which has i pages in main memory when it (=see.)
is swapped out at the end of the current memory
residence interval, has i pages preloaded at the
beginning of the next memory residence interval
with probability 1-8 , and only one page with
probability 8, (0 _< 8 -<l). The parameter 8 takes
into account different factors such as the proport ~
ion of new processes for which no preloading can be

25
achieved and the way the active pages of the process
are identified. For 8=I., pure demand (PDP) is
followed, whereas for 8=0., the SWS policy is
always successful• Thus B defines a continuum of
paging policies ranging from pure demand paging to
demand paging policies with swapped working sets.

It should be noted that more complex models of
swapping policies could be used. Indeed, any policy

which can be described in terms of a first order
Markov chain (assumption H4) may be imbedded in the
model. However, for the sake of clarity, we shall
restrict our attention in the remainder of the paper
to the class of SWS policies with one parameter
defined above.

Numerical examples.

Figures 2 and 3 present E M and r M for different
values of 8 and T. The function qi has been
estimated by qi = aik with a = 10-7 , k = 6, using
the experimental results reported in [7]. Unless
otherwise specified, the unit of time is O.O01 sec..
The graphs show the effect of the paging policy
on the memory utilization ratio gM and on the
average interval of time between page faults r M
for two values of the mean residence time
(obviously, for T = ~, we have r M = qM and e M = I).
The improvements brought by a SWS policy are clearly
pointed out in figures 2a and 3a. There improvements
are the more noticeable the larger the memory
allocation M. This illustrates why in paged systems
using a PDP policy, allocating main memory to a
process beyond a certain point does not improve its
paging behaviour very muc~.

T ~

s T = l O0
e

32

FiSure 2a

~f
T ~

PRP (8:. I)
T = 200.

!
!
I
I

£M

.5

~ pp.p (B=. l)
%% T = 1 OO. X

X •
pRp (8=1 .) k •~

T = 100 . \ ~'~

%
%%

i i |

:32 M

Ffsure 2b

~ " ~ , _ PRP ([~=. 1)
~ T = 200. \ "-,

PDP(~=I .) • %%
T = 200. \ ~k

\
\

y~ pDe(8=i .)
t

T : 200.

3'2 32 H

Fisure 3a Fisure 3b

An other way to illustrate the effects of a SWS
policy is to compare the rate u r of I/0 requests
generated to the rate u_ of pages transfered. For a

P
demand paging policy with no SWS we have u r = Up,
whereas for a SWS policy we expect, as noted in the
introduction, to have u r < Up. Thus, the comparison
of u r and Up gives an indication on the gain which
can he obtained by the reduction of device accesses.
Following [5],we shall draw an u r - Up plot in order
to provide a visual comparison of the-performance of
the SWS policies we have defined. The derivation of
u r and u_ is straight forward. Assuming that no page
• ° ~ o
Is modlfzed durxng an MRI, we have

1 1
= ---- + ~, (10) u r rN

= I _ + ![~ + (I I) U t MCM(I-~)] rM T

127

.S

o7

,,6

Up . 5

(ITISeC -1)

.4

.3

M = 3 2

,1 .2 ,S .4 ,S .6 .7

U r (msec "1)

Figure 4.

The u r - u t plot is represented in figure 4 for
different values of 6 and ~. The others parameters
are set to the same values as above with T = 100.
The graph shows clearly that as 6 increases the
rate u r decreases significantly whereas u t increases.

These observations indicate how an SWS policy
which recorded the set of active pages of program
when it is suspended and preloaded this set of
pages at the reactivation of the program, reduces
the page fault rate of the programs, increases the
usage of main memory and reduces overheads due to
latency owing to bulk requests. It remains to
evaluate the effects of a SWS policy on system
performance such as throughput and supervisor
activlty. This will be done in the next section.

Real t ime a n a l y s i s .

The model o f the system.

The model of the system is represented in
figure 5. It consists of a central processing unit
(CPU) station and a secondary memory (SM) station.
A new program is queued at the SM station to have
its first page loaded into main memory and then put
in the CPU queue. A page fault causes the execution
of the running program to be suspended, and the
program to be queued at the SM station to have its
missing page transfered. At the end of a memory
residence interval, the execution of the program is
suspended and the program leaves the CPU-SM loop
and the multiprogramming set.

system
interruption

, ' ' ,, ' ' , ' '

The memory management policy follows the one
currently implemented in the EMAS system, with the
main simplification that all programs have identi-
cal behaviour. The analysis is performed under the
assumption that the degree of multiprogramming N
is fixed : a program which leaves the CPU-SM loop
due to a system interrutpion is immediately
replaced by another program. When a'program enters
the multiprogrammed set, it is allocated a fixed
number of main memory page frames m = M/N, where
M is the total number of main memory page frames.
The working-sets of programs belonging to the
multiprogramming set are periodically recorded so
that when a program is reactivated in the
multiprogran~ning set to start a new MRI its working
set can be preloaded into main memory by the SM

station.

It should be noted that a new program which
replaces a terminating program will have an empty
working set and only its first page can be loaded.
Moreover, due to fact that working sets are measured
at relatively large periods of time if no proper
mechanism is available, some fraction of the
preloaded pages will not actually be used. In
order to take into account these two factors, we
assume that when a program is suspended with i
pages present in main memory, the program which
immediately replaces it is preloaded with one page
with probability 6 , and with i pages with proba-
bility 1-6. This define (vii) and the ~i as above.

We now define a classification of the programs
being multiprogrammed according to their state
(number of pages in main memory), the station where
they are queues or serviced, and the kind of service
they are receiving (page transfer, swapping out,
preloading) from the SM station.

i) a program is in class (1,i) if it is in
state i, i=l,...,M and in the CPU station,

ii) a program is in class (2,i) if it is in the
SM station after having page faulted in

state i,
iii) a program is in class (3,i) if it is in the

SM station to have its pages swapped out
after having completed the current MRI in
state i. Only modified pages are swapped
out on the SM and we define Pmod as the
proportion of pages which have been modified

during the current MRI,
iv) a program is in class (4,i) if it is in the

SM station to have its pages preloaded after
having completed the previous MRI in state i.

With each SM service is associated a CPU time
cverhead. Let (2,i)', (3,i)', (4,i)' denote the
alass of a program suspended in state i and
receiving services from the supervisor for proces-
sing a page fault, a swap out, a preload. We denote
by r2, i, T3,i, and T4, i the length of the correspon-

ding overheads.

Figure 5.

i28

0
S.M.

SRRVI CE
C.P.U.
USER
$ERVICE

I (
,o

(~, I) ' @II/"

Figure 6.

D~
&% p.[l.

SUPERVI~'OR
SERFICE

~)~ PRKLOADING

i~ 1. DEELOAD[Nc
$,4),

0¢ ,

(2,4) ' I,

From these definitions and previous assumptions,
the class of a program is a Markov chain whose
transition diagram is represented in figure 6. The
relative arrival rates Xk, i of a program (k,i) are
simply obtained by noting that we have from
definition (i)

(12) Xl, i = Cg i, i=1,M,

where C is a multiplicative constant. The transi-
tion diagram yields : M

~X +B l
4,1 = X3,i i=l X3, i

= OiX], i i=1,...,M, X2,i

(13)
X3, i = (I - Oi)Xl, i i=l,...M,

X4, i = (1 - 8)X3, i i=2, M,

and the overheads associated with a page fault, a
swap out, and a preload occur with the respective
frequencies X2,i, X3, i and X4, i.

In the context of multi-class queueing networks
[4] , the Xk, i represent the relative arrival rates
to the different stations of the network. It remains
to characterize the mean service times of the
different classes of program at each station. At
the CPU station, the mean service time of programs
of class (I,i) is obviously £i given by equation
(2). Processes asking for supervisor services when
they are in classes (2,i)', (3,i)' and (4,i)'
require a mean CPU service time r2,i, ~3,i and

r4,i.

At the SM station, we denote by s(j) the mean
time to access and transfer j pages. The function
s(j) takes into account service time characteristics
of the SM station. For a typical paging drum, s(j)
would be approximated by .~

(14) s(j) = X + j x
a t)

where

x a = me n access time,

x t = mean transfer time.

Solution of the model.

We assu~-e that the discipline of service is
processor-sharing at the CPU and the SM station.
Although the processor-sharing assumption is not
realistic for the SM station, experiments we have
conducted indicate that in a closed two server
queueing model, the utilization factors of the
servers are not sensitive to this assumption.
Let PCPU be the CPU utilization rate, including
overheads, 06pu utilization rate, overheads not
included, and PSM the SM utilization rate. Following
[4] , we then have :

1 - A N
(15) PCPU ffi I - A N+I)

(16) ' =
~CPU OCPU '

(17)

where

(18)

PSM l - A N+I

M
Z {X. .~.+X~ .T~ . + X . . T ~ . + X . . z . .}

M

i~l{S(1)X2,i+X3,iS(Pmod.1)+X4,is(i)}

M M

(19) ~ = i=E1 Xl,i~i/i=Z1[Xl,i£i+X2,iz2,i +

+ X3,iT3,i+X4,iT4,i].

The derivation of equations (15) and (17) is
straightforward. The coefficient A can be simply
interpreted as the ratio of the average CPU service
time for all classes requiring a service from the
CPU to the SM average service time for all classes
requiring a service from the SM. It can be noted

that the parameter Pmod is used in the computation
of the average SM servlce time in order to determine
the number of pages actually swapped out. The para-
meter ~ is the ratio of the CPU time spent in user
state to the CPU time spent in user state and super-
visor state. Without further computations,
provides an important indication on the performance
of the memory management policy.

To summarize, the model has been built in order
to take into account the main factors which
determine the performance of a prepaging policy :

- the intrinsic program behaviour described by
the function qi,

- the mean memory residence interval T,
- the probability 8 of not being able to preload,
- the proportion Pmod of modified pages during

an MRl,
- the overheads associated with the SM service.

These overheads take explicitly into account
the number of page transfers demandedby each
request,

129

- the service time characteristics of the SM.
Since bulk requests generated by a SWS policy
result in reduced access time on the drum for
each transfer, the dependence of the service
time to the number of pages j to be transfered
is explicitly considered by the function s(j).

The influence of these factors is illustrated in the
next section by several numerical examples.

Numerical examples.

The model has been run using measurements made
on the EMAS system [I]. The EMAS system makes use
of a SWS policy but this policy can be easily turned
off so that data on the performance of the system
running the same benchmark with SWS turned off and
on are available for a variety or hardware configu-
rations. These measurement indicate that the runs
using SWS show consistently that the CPU time
spent in the user state is significantly increased
by more than I0 % and that the time spent in
supervisor state is decreased. It has also been
observed that the utilization of the drum channel
is greater with SWS.

Although the model does not describe the actual
EMAS configuration, since it is mostly restricted
to the description of the operations associated
with the memory management policy, we shall see
that, as far as the influence of SWS is concerned,
it satisfactorily reproduces the performance impro-
vements brought by SWS as they have been observed
on the real system. Moreover, it will allow us to
investigate the effects of the variation on some
factors such as overheads or SM service time
characteristics.

Input parameters have been obtained from
measurements made on the EMAS system. The following
values have been estimated

T2, i = 4.5 (msec.)

~3,i = ~4,i = 1 . 5 + 1.7 i (msec.)

s(j) = I0(.66 + .33 i) (msec.),

T = IO0 (msec.)

Pmod = I/3

For all the experiments we have assumed that
M = 9'6 main memory pages are available to users.
The degree of multiprogramming has been varied from
l to 5. For each set of parameters the performance

!
measures 6, 0CPU, 0SPV = OCPU - 0~PU and 0S~ have
been computed as a function of the degree of
multiprogramming N. The parameter B has been set to
I. for pure demand paging and .I for demand paging
with SWS.

~ °cPv °~eu %PV [%~
N PDP] StJ~ PDP S~¢N PDP EWe PDP ~ .

M l

2 .44 .59 ,57 ,54 .25 .32 .3l . 76 .7.~

3 I 1 " 4 4 .57 .63 .61 .28 ,35 .35 , . 5 .8'=
4 .44 .47 .67 .62 .29 ,29 .37" ~34 .~2
5 .35 ,36 .63 .59 .22 ,21 .4[.39 ~9 ,96

Table 7"

Table 7 shows the way the measures of performance
are influenced by the paging policy. The main obser-
vation is that the ratio ~ is steadily increased
by more than lO % with SWS as long as the system
is not thrashing. Depending on the degree of
multiprogramming and the utilization factor of the
SM, this causes the CPU time spent in user state to
increase by 2 % to 6 %. It can be noted that the
maximum improvement is obtained for the optimum
values of the degree of multiprogrannning, i.e. the
degree which maximizes 0~pu . As already observed
on measurements made on the EMAS system, the
optimum degree of multiprogramming is smaller with
SWS(N=3) than with PDP (N=4). Despite the service
time characteristics of the SM, the utilization
factor of the SM is slightly increased with SWS,
which indicates that the total amount of page
transfers is greater with SWS than with PDP.

• N --F~f- _sws - -

I .55 .70
2 .55 .69
3 .55 .67
4 .55 .58

5

PCPU

PD?]_XL~$

,38 .37
.49 .48
.54 .54
• 56 .52
.51 .48

.21 .26 J .IY .II .~2 .63
i

.27 .33 I .22 .14 ~ [. ~ i i ' 8 1 .~3
,30 .36 .24 .17 .SO .9'?
.31 .30 .26 .22 .94 .96
.23 .21 .28 .26 . 9 8 [. 9 ~

I

Table 3

The effect of overheads has been investigated
in more detail by setting r~ • = 3 msec., T 3 ~ =

L,l . ,~

= T4, i = |+i (msec.). The results obtazned from
this new set of experiments are presented in
table 8. We can observe that the reduction of
overheads causes an increase in the SM utilization.
This is an indirect consequence of the increase of
CPU time spent in user state, although the total
CPU utilization is significantly decreased by
5 % to 10 %. This observation partly explains why
SWS which causes a reduction of the amount of
supervisor activity, also causes an increase of the
SM utilization,. As in table 7, it can be noted that
the improvements brought by SWS vanish when the
system starts running in a thrashing zone. The
explanation is that in this case programs are
allocated a small number of page frames so that the
influence of the initial loading phases (see
figure 2) on the paging activity diminishes.
Preloading is then more useful since the supplemen-
tary page transfers brought by SWS are not compensa-
ted by a sufficient decrease of the supervisor
activity.

| ..55 .70 .39 .42 .2 , .29 .17 .13 .61 .5S
2 .555 .6q .51 .55 .28 .39 .23 ~17 .~3 .77

5 .67 .56 .61 .3l .41 .25 .20 .E9 .@$
4 .55 [.58 .58 .57 .32 .32 .26 .24 .q~ . ~

Table 9

As already noted, service time characteristics
of the SM play an important part in the improvements
brought by SWS policies. Table 9 presents the
results obtained by setting s(j) = 10(.5 + .5i). The
measure of performance ~ is not modified since it
does not depend on the SM service time characteris-
tics. Since the new function s(j) gives a more
favourable treatment to bulk requests generated by
SWS, the performance of these policies are increased.

1 3 0

More detailed observations reveal that the SM
utilization is then smaller with SWS than with PDP.
This indicates that in this case the increase of
the number of page transfers is compensated by the
reduction of the mean service time per page of the
SM due to bulk requests.

As a whole, these results illustrate how the
different factors which have been listed above
interact and influence the performance of a SWS
policy. As observed from the experiments we have
presented, no factor is in itself determinant, but
it is their combination which defines the final
result. The observations we have made on the results
obtained from the model corroborate the measurements
made on the EMAS system. Moreover, they provide some
understanding of the behaviour of a SWS policy, and
indicate how this policy would work with other
hardware configurations and in other situations. As
an application, it is intended to use the model to
study the performance of a SWS policy between the
disks and the drum in the EMAS system. Although the
model involves only one category of users, it could
be readily extended to take into account different
categories of users by associating with each cate-
gory a different life-time function and mean resi-
dence time. This would merely enlarge the number of
classes involved, and the derivation of the solution
would remain unchanged.

Conclusion.

We have presented a model for the analysis of
the performance of a variety of swapping policies in
page-on-demand multiprogramming systems. This
analysis is based on a detailed characterization of
the paging behaviour of programs and of the system
and hardware configuration. The model is computatio-
nally simple, and we have shown that it can be used.
to evaluate the "trade-offs" involved in the
implementation of a class of swapped working-sets
policies. ~oreover, the approach we have followed
provides a framework for analysing the influence
of program behaviour on global performance and it
should be useful for the performance analysis of
other memory management policies.

Acknowledgements.

We wish to thank Colin Adams, from the Computer
Science Group at the University of Edinburgh, for
many helpful discussions on the EMAS system.

[4] BASKETT, F., et al., "Open, Closed and Mixed
Networks of queues with different classes of
customers", J.ACM 22, 2 (April 1975).

[5] CHOY, D.M., "A graphical tool for the evaluation
of prepaging and of paging with non-uniform
pages", Report RJ - 1789, IBM Research Labora-

[6]

[7]

tory, San Jose, Calif. (May 1976).

DENNING, P.J., "Virtual memory", Computing
Surveys 2, 3 (September 1970).

LEROUDIER, J., BURGEVlN, P., "Characteristics
and models of program behaviour", Proceedings
of the Annual Conference ACM'76, Houston,
(October |976).

[8] MATTSON, R.L., et al., "Evaluation techniques
for storage hierarchies", IBM Sys. J. 9, 2
(1970), 78-117.

[9] PARENT, M., POTIER, D., "A note on the influence
of program loading on the page fault rate",
2nd International Workshop on Modelling and
Performance Evaluation of Computer Systems,
EURATOM-ISPRA, Stresa (October 1976), North-
Holland Publishing Company (to appear in
Acta Informatica).

References.

[I] ADAMS, J.C., "Evaluation of performance of the
EMAS System", S~minaires Mod~lisation et Mesures
IRIA-LABORIA (1976).

[2] ADAMS, J.C. , MILLIARD, G.E., "Performance mea-
surements of the Edingburgh Multi-Access System",
Proceedings of the International Computing
Symposium 1975, ACM/AFCET, Antibes (June 1975).

[3] AHO, A.V., DENNING, P.J., ULLMAN, J.D.,
"Principal of Optimal Page Replacement", J.ACM
18, I (January 1971), 80-93.

131

