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The performance improvements brought by demand paging policies with swapped working-sets depend on 
several f=ctors, among which the scheduling policy, the behaviour of the programs running in the system and 
the secondary memory latency characteristics are the more noticeable. We present in this paper a modelling 
approach to quantify the effects of these factors on the performance of a system running with a swapped 
working-sets policy. A preliminary analysis, conducted in the virtual time of the programs, shows their 
influence on the paging behaviour of programs. The results of this analysis are then used within a detailed 
queueing network of a multiprogranmned system. Computationnaly simple expressions for the CPU time spent in 
user state and in supervisor state are obtained for a class of paging policies ranging from pure demand 
paging to demand paging with swapped working-sets. Numerical examples illustrate the analysis, and these 
results are compared with measurements made on a real system running with swapped working-sets policies. 
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Introduction. 

In time-sharing multiprogrammed systems using a 
pure demand paging policy a page is loaded into main 
memory only after the occurence of a page fault. An 
important part of the page traffic is thus incurred 
when the working pages of a process are loaded on 
demand at the start of its execution. This effect 
is enhanced by the influence of such factors as the 
scheduling policy and slow input-output requests 
which cause the execution of a process to be split 
into several memory residence intervals, thus giving 
rise to as many initial loading phases. Experimental 
evidence [I] indicates that more than fifty percent 
of the page traffic comes from these page faults 
and the results of an analysis on the influence of 
process loading on the page fault presented in [9] 
also points out the importance of this effect. 

An obvious solution to this drawback of a pure 
demand paging memory management policy is to 
preload the process active pages or working-set 
when the process is reactivated in the multipro- 
grammed set. We shall call these policies demand 
paging policies with swapped working sets or, 
more briefly, SWS policies. 

The main advantages associated with these 
policies are to reduce the number of page faults and 
to generate bulk requests to the secondary memory 
(however, the volume of pages moved remains 
unchanged, and may even increase because of unused 
preloaded pages). Since reducing the number of page 
faults has a direct effect'on the amount of supervi- 
sor time spent in processor switching, a gain is to 
be expected there. The gains brought by the bulk 
requests depend on the secondary memory device 
characteristics. Preloading from a device with no 
latency (e.g. core-to-core transfers) would gain 

nothing as it was proved by Mattson et al. [8] and 
Aho, Denning and Ullman [3]. On the contrary, in 
systems using sequential access secondary memories 
such as drums, the average time to load a page will 
be reduced since preloading a working set may 
require only one access to the drum rather than as 
many as pages for pure demand paging. 

It remains to analyse and quantify these effects 
according to the environment in which the SWS 
policy is implemented. It is the approach followed 
in this paper. 

The performance analysis of demand paging 
policies with swapped working-sets that we present 
has two startpoints : the analysis presented in [9] 
which provides the basic modelling framework for 
our study ; the demand paging policy with swapped 
working-sets currently implemented in the Edinburgh 
Multi-Access system (EMAS) [2]. This policy proved 
to be successful, and we shall refer to it in the 
remainder of this paper. 

The study of SWS policies that we shall develop 
is based on a simple probabilistic model of the 
paging behaviour of a program. The analysis proceeds 
in two steps. A preliminary analysis conducted in 
the virtual time of the programs shows how SWS 
policies reduce the average page fault rate and 
generate bulk requests to the secondary memory device. 
These results are then used within a multiclass 
queueing network model of a multiprogrammed system 
where programs are divided into classes according 
to the number of their pages present in main memory. 
The memory management policy represented in the 
model follows the one implemented on EMAS and the 
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paging drum service time characteristics and the 
overheads involved in the different operations are 
taken into account in detail. Expressions for the 
Central Processing Unit (CPU) time spent in user 
state and supervisor state are obtained for a class 
of demand paging policies ranging from pure demand 
paging (PDP) to demand paging with SWS. These 
results are illustrated by numerical examples and 
compared to the observations made on the EMAS 
system. 

Process time ana lys is .  

In the context of multiprogrammed page on 
demand computer systems, the execution of a program 
consists of a sequence of memory residence intervals 
(MRI), the number and the duration of which depend 
on factors such as the I/0 behaviour of the program 
and the memory management and scheduling policies 
implemented in the system. Within each memory 
residence interval, the execution is interrupted by 
page faults, the interval of time between two conse~ 
cutive page-faults depending on the internal 
behaviour of the program, the paging policy and the 
number of pages of the program present in main 
memory. 

Let X(t) be the number of pages of a program 
present in main memory at the instant t of its 
virtual time. The behaviour of X(t) can be 
described in two steps. We specify in the first 
place the variations of X(t) within a MRI and then 
the transitions of X(t) between two consecutive 
MRI's. The first step consists in representing the 
paging behaviour of the program under a page on 
demand policy ; the second step in describing the 
swapping policy. 

The analysis of the process X(t) follows closely 
the one developped in [9] and we shall recall it 
briefly. It is conducted under the following 
assumptions : 

H 0 : the programs executing on the system have 
identical behaviour. 

H I : the length of the consecutive memory 
residence intervals are i.d.d, exponential 
random variables with mean T. 

H 2 : the maximum number M of main memory page 
frames allocated to a program is fixed and, 
unless otherwise specified, pages are 
loaded in main memory on a page on demand 
basis. 

H 3 : the intervals of time between two consecu- 
tive page faults of a program are i.i.d. 
exponential random variables with mean qi 
when i pages of the program are present in 
main memory. 

H 4 : the transitions between the number i of 
pages of a program present in main memory 
at the end of given MRI and the number j 
of pages of the same program in main memory 
at the beginning of the next MRI are 
described by a first order Markov chain 
with transition matrix (~ij). Thus (~ij) 
characterizes the swapping policy 
implemented by the system. 

The set of states E of the process X(t) is then: 
E = {1,2,... M}. An example of a realization of X(t) 
is represented in figure I. 

M 

X(t) 
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.MRIk MRI k+l MRIk+2 

Figure 1.  

Under assumptions Ho-H4, X(t) is a semi-Markov 
process. Let p =(Pij) be its transition matrix 
which is computed as follows. The probabilityOi 
that the interruption which occurs is a page fault 
when the process is in state i is given by 

~__ll~i 

and the mean uninterrupted CPU interval £. in state 
i is z 

(2) £i = 7T7~-$-T7~7 ~ T(, - O i) , 

Prom equation (I) and assumption H4, we obtain 

(6) 

( l - Oi) ~ij 

(3) Pij = (I Oi) ~Mj 

( l  OM) C~MM + % 

Let mi represent the equilibrium probability 
that a program is activated on the CPU in state i. 
Denoting by z the vector : 

(4) ~ = (~l ..... iN) 

we have, from the definition of P 

I 
~=gp 

(5) zM gi = l 

i=l 

The mi can be simply computed using the 
following recursive equation obtained from (3) and 
(5) and starting with 0J M 

- 1 [g. M - 

. . . . . .  .~.(l-Oi)c~ij~ i] , 
c0j_ ] Oj _ ] J 1=3 

j=2,... ,M-I 

- l - 

°~M-I = ~--- L°M (I - OM)(I - eMM ). 
M-I 

i=l,...,M-! ; j=i+l 

i=l,...,M-I ; j=!,...,i 

i=M ; j=~ .... ,M-I 

i=j =M 
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The vector of steady-state probabilities 
F = (71,...,YM), where 7i is the equilibrium 
probability that X(t) = i, is obtained from g and 
%i, i=l,...,M, by 

z i i=l ,M 
(7) 7 i = M ' "'" 

j=] o J 

r M 

(msec.: 

Hence, in the virtual time of the process, we 
can now compute the average time r M between two 2~ 
consecutive page faults for a given memory allocat- 
ion of M pages, and the memory utilization ratio 
eM" We have 

M 

(8) I/r M = Z Ti/q. , 
i=l l 

1 M 
= __Z i 7 i . (9) eM M i 1 

The mode] of swapping policy. 

We consider the following class of SWS policies, r M 
A program which has i pages in main memory when it (=see.) 
is swapped out at the end of the current memory 
residence interval, has i pages preloaded at the 
beginning of the next memory residence interval 
with probability 1-8 , and only one page with 
probability 8, (0 _< 8 -<l). The parameter 8 takes 
into account different factors such as the proport ~ 
ion of new processes for which no preloading can be 

25 
achieved and the way the active pages of the process 
are identified. For 8=I., pure demand (PDP) is 
followed, whereas for 8=0., the SWS policy is 
always successful• Thus B defines a continuum of 
paging policies ranging from pure demand paging to 
demand paging policies with swapped working sets. 

It should be noted that more complex models of 
swapping policies could be used. Indeed, any policy 

which can be described in terms of a first order 
Markov chain (assumption H4) may be imbedded in the 
model. However, for the sake of clarity, we shall 
restrict our attention in the remainder of the paper 
to the class of SWS policies with one parameter 
defined above. 

Numerical examples. 

Figures 2 and 3 present E M and r M for different 
values of 8 and T. The function qi has been 
estimated by qi = aik with a = 10-7 , k = 6, using 
the experimental results reported in [7]. Unless 
otherwise specified, the unit of time is O.O01 sec.. 
The graphs show the effect of the paging policy 
on the memory utilization ratio gM and on the 
average interval of time between page faults r M 
for two values of the mean residence time 
(obviously, for T = ~, we have r M = qM and e M = I). 
The improvements brought by a SWS policy are clearly 
pointed out in figures 2a and 3a. There improvements 
are the more noticeable the larger the memory 
allocation M. This illustrates why in paged systems 
using a PDP policy, allocating main memory to a 
process beyond a certain point does not improve its 
paging behaviour very muc~. 

T ~  

s T = l O0 
e 
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An other way to illustrate the effects of a SWS 
policy is to compare the rate u r of I/0 requests 
generated to the rate u_ of pages transfered. For a 

P 
demand paging policy with no SWS we have u r = Up, 
whereas for a SWS policy we expect, as noted in the 
introduction, to have u r < Up. Thus, the comparison 
of u r and Up gives an indication on the gain which 
can he obtained by the reduction of device accesses. 
Following [5],we shall draw an u r - Up plot in order 
to provide a visual comparison of the-performance of 
the SWS policies we have defined. The derivation of 
u r and u_ is straight forward. Assuming that no page 
• ° ~ o 
Is modlfzed durxng an MRI, we have 

1 1 
= ---- + ~, (10) u r rN 

= I _  + ![~ + ( I I )  U t MCM(I-~) ] rM T 
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Figure 4. 

The u r - u t plot is represented in figure 4 for 
different values of 6 and ~. The others parameters 
are set to the same values as above with T = 100. 
The graph shows clearly that as 6 increases the 
rate u r decreases significantly whereas u t increases. 

These observations indicate how an SWS policy 
which recorded the set of active pages of program 
when it is suspended and preloaded this set of 
pages at the reactivation of the program, reduces 
the page fault rate of the programs, increases the 
usage of main memory and reduces overheads due to 
latency owing to bulk requests. It remains to 
evaluate the effects of a SWS policy on system 
performance such as throughput and supervisor 
activlty. This will be done in the next section. 

Real t ime  a n a l y s i s .  

The model  o f  the  system.  

The model of the system is represented in 
figure 5. It consists of a central processing unit 
(CPU) station and a secondary memory (SM) station. 
A new program is queued at the SM station to have 
its first page loaded into main memory and then put 
in the CPU queue. A page fault causes the execution 
of the running program to be suspended, and the 
program to be queued at the SM station to have its 
missing page transfered. At the end of a memory 
residence interval, the execution of the program is 
suspended and the program leaves the CPU-SM loop 
and the multiprogramming set. 

system 
interruption 

, ' ' ,, ' ' , ' ' 

The memory management policy follows the one 
currently implemented in the EMAS system, with the 
main simplification that all programs have identi- 
cal behaviour. The analysis is performed under the 
assumption that the degree of multiprogramming N 
is fixed : a program which leaves the CPU-SM loop 
due to a system interrutpion is immediately 
replaced by another program. When a'program enters 
the multiprogrammed set, it is allocated a fixed 
number of main memory page frames m = M/N, where 
M is the total number of main memory page frames. 
The working-sets of programs belonging to the 
multiprogramming set are periodically recorded so 
that when a program is reactivated in the 
multiprogran~ning set to start a new MRI its working 
set can be preloaded into main memory by the SM 

station. 

It should be noted that a new program which 
replaces a terminating program will have an empty 
working set and only its first page can be loaded. 
Moreover, due to fact that working sets are measured 
at relatively large periods of time if no proper 
mechanism is available, some fraction of the 
preloaded pages will not actually be used. In 
order to take into account these two factors, we 
assume that when a program is suspended with i 
pages present in main memory, the program which 
immediately replaces it is preloaded with one page 
with probability 6 , and with i pages with proba- 
bility 1-6. This define (vii) and the ~i as above. 

We now define a classification of the programs 
being multiprogrammed according to their state 
(number of pages in main memory), the station where 
they are queues or serviced, and the kind of service 
they are receiving (page transfer, swapping out, 
preloading) from the SM station. 

i) a program is in class (1,i) if it is in 
state i, i=l,...,M and in the CPU station, 

ii) a program is in class (2,i) if it is in the 
SM station after having page faulted in 

state i, 
iii) a program is in class (3,i) if it is in the 

SM station to have its pages swapped out 
after having completed the current MRI in 
state i. Only modified pages are swapped 
out on the SM and we define Pmod as the 
proportion of pages which have been modified 

during the current MRI, 
iv) a program is in class (4,i) if it is in the 

SM station to have its pages preloaded after 
having completed the previous MRI in state i. 

With each SM service is associated a CPU time 
cverhead. Let (2,i)', (3,i)', (4,i)' denote the 
alass of a program suspended in state i and 
receiving services from the supervisor for proces- 
sing a page fault, a swap out, a preload. We denote 
by r2, i, T3,i, and T4, i the length of the correspon- 

ding overheads. 

Figure 5. 
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From these definitions and previous assumptions, 
the class of a program is a Markov chain whose 
transition diagram is represented in figure 6. The 
relative arrival rates Xk, i of a program (k,i) are 
simply obtained by noting that we have from 
definition (i) 

(12) Xl, i = Cg i, i=1,M, 

where C is a multiplicative constant. The transi- 
tion diagram yields : M 

~X +B l 
4,1 = X3,i i=l X3, i 

= OiX], i i=1,...,M, X2,i 

(13) 
X3, i = (I - Oi)Xl, i i=l,...M, 

X4, i = (1 - 8)X3, i i=2, M, 

and the overheads associated with a page fault, a 
swap out, and a preload occur with the respective 
frequencies X2,i, X3, i and X4, i. 

In the context of multi-class queueing networks 
[4] , the Xk, i represent the relative arrival rates 
to the different stations of the network. It remains 
to characterize the mean service times of the 
different classes of program at each station. At 
the CPU station, the mean service time of programs 
of class (I,i) is obviously £i given by equation 
(2). Processes asking for supervisor services when 
they are in classes (2,i)', (3,i)' and (4,i)' 
require a mean CPU service time r2,i, ~3,i and 

r4,i. 

At the SM station, we denote by s(j) the mean 
time to access and transfer j pages. The function 
s(j) takes into account service time characteristics 
of the SM station. For a typical paging drum, s(j) 
would be approximated by .~ 

(14) s(j) = X + j x 
a t ) 

where 

x a = me n access time, 

x t = mean transfer time. 

Solution of the model. 

We assu~-e that the discipline of service is 
processor-sharing at the CPU and the SM station. 
Although the processor-sharing assumption is not 
realistic for the SM station, experiments we have 
conducted indicate that in a closed two server 
queueing model, the utilization factors of the 
servers are not sensitive to this assumption. 
Let PCPU be the CPU utilization rate, including 
overheads, 06pu utilization rate, overheads not 
included, and PSM the SM utilization rate. Following 
[4] , we then have : 

1 - A N 
(15) PCPU ffi I - A N+I ) 

(16) ' = 
~CPU OCPU ' 

(17) 

where 

(18) 

PSM l - A N+I 

M 
Z {X. .~.+X~ .T~ . + X . . T ~  . + X . . z .  .} 

M 

i~l{S(1)X2,i+X3,iS(Pmod.1)+X4,is(i)} 

M M 

(19) ~ = i=E1 Xl,i~i/i=Z1[Xl,i£i+X2,iz2,i + 

+ X3,iT3,i+X4,iT4,i ]. 

The derivation of equations (15) and (17) is 
straightforward. The coefficient A can be simply 
interpreted as the ratio of the average CPU service 
time for all classes requiring a service from the 
CPU to the SM average service time for all classes 
requiring a service from the SM. It can be noted 

that the parameter Pmod is used in the computation 
of the average SM servlce time in order to determine 
the number of pages actually swapped out. The para- 
meter ~ is the ratio of the CPU time spent in user 
state to the CPU time spent in user state and super- 
visor state. Without further computations, 
provides an important indication on the performance 
of the memory management policy. 

To summarize, the model has been built in order 
to take into account the main factors which 
determine the performance of a prepaging policy : 

- the intrinsic program behaviour described by 
the function qi, 

- the mean memory residence interval T, 
- the probability 8 of not being able to preload, 
- the proportion Pmod of modified pages during 

an MRl, 
- the overheads associated with the SM service. 

These overheads take explicitly into account 
the number of page transfers demandedby each 
request, 
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- the service time characteristics of the SM. 
Since bulk requests generated by a SWS policy 
result in reduced access time on the drum for 
each transfer, the dependence of the service 
time to the number of pages j to be transfered 
is explicitly considered by the function s(j). 

The influence of these factors is illustrated in the 
next section by several numerical examples. 

Numerical examples. 

The model has been run using measurements made 
on the EMAS system [I]. The EMAS system makes use 
of a SWS policy but this policy can be easily turned 
off so that data on the performance of the system 
running the same benchmark with SWS turned off and 
on are available for a variety or hardware configu- 
rations. These measurement indicate that the runs 
using SWS show consistently that the CPU time 
spent in the user state is significantly increased 
by more than I0 % and that the time spent in 
supervisor state is decreased. It has also been 
observed that the utilization of the drum channel 
is greater with SWS. 

Although the model does not describe the actual 
EMAS configuration, since it is mostly restricted 
to the description of the operations associated 
with the memory management policy, we shall see 
that, as far as the influence of SWS is concerned, 
it satisfactorily reproduces the performance impro- 
vements brought by SWS as they have been observed 
on the real system. Moreover, it will allow us to 
investigate the effects of the variation on some 
factors such as overheads or SM service time 
characteristics. 

Input parameters have been obtained from 
measurements made on the EMAS system. The following 
values have been estimated 

T2, i = 4.5 (msec.) 

~3,i = ~4,i = 1 . 5  + 1.7 i (msec.) 

s(j) = I0(.66 + .33 i) (msec.), 

T = IO0 (msec.) 

Pmod = I/3 

For all the experiments we have assumed that 
M = 9'6 main memory pages are available to users. 
The degree of multiprogramming has been varied from 
l to 5. For each set of parameters the performance 

! 
measures 6, 0CPU, 0SPV = OCPU - 0~PU and 0S~ have 
been computed as a function of the degree of 
multiprogramming N. The parameter B has been set to 
I. for pure demand paging and .I for demand paging 
with SWS. 

~ °cPv °~eu %PV [ %~ 
N PDP ] StJ~ PDP S~¢N PDP EWe PDP ~ . 

M l 

2 .44 .59 ,57 ,54 .25 .32 .3l . 76 .7.~ 

3 I 1 " 4 4  .57 .63 .61 .28 ,35 .35 , . 5 .8'= 
4 .44 .47 .67 .62 .29 ,29 .37" ~34 .~2 
5 .35 ,36 .63 .59 .22 ,21 .4[ .39 ~9 ,96 

Table 7" 

Table 7 shows the way the measures of performance 
are influenced by the paging policy. The main obser- 
vation is that the ratio ~ is steadily increased 
by more than lO % with SWS as long as the system 
is not thrashing. Depending on the degree of 
multiprogramming and the utilization factor of the 
SM, this causes the CPU time spent in user state to 
increase by 2 % to 6 %. It can be noted that the 
maximum improvement is obtained for the optimum 
values of the degree of multiprogrannning, i.e. the 
degree which maximizes 0~pu . As already observed 
on measurements made on the EMAS system, the 
optimum degree of multiprogramming is smaller with 
SWS(N=3) than with PDP (N=4). Despite the service 
time characteristics of the SM, the utilization 
factor of the SM is slightly increased with SWS, 
which indicates that the total amount of page 
transfers is greater with SWS than with PDP. 

• N --F~f- _sws - -  

I .55 .70 
2 .55 .69 
3 .55 .67 
4 .55 .58 

5 

PCPU 

PD? ]_XL~$ 

,38 .37 
.49 .48 
.54 .54 
• 56 .52 
.51 .48 

.21 .26 J .IY .II .~2 .63 
i 

.27 .33 I .22 .14 ~ [ . ~ i i ' 8 1  .~3 
,30 .36 .24 .17 .SO .9'? 
.31 .30 .26 .22 .94 .96 
.23 .21 .28 .26 . 9 8 [ . 9 ~  

I 

Table 3 

The effect of overheads has been investigated 
in more detail by setting r~ • = 3 msec., T 3 ~ = 

L,l . ,~ 

= T4, i = |+i (msec.). The results obtazned from 
this new set of experiments are presented in 
table 8. We can observe that the reduction of 
overheads causes an increase in the SM utilization. 
This is an indirect consequence of the increase of 
CPU time spent in user state, although the total 
CPU utilization is significantly decreased by 
5 % to 10 %. This observation partly explains why 
SWS which causes a reduction of the amount of 
supervisor activity, also causes an increase of the 
SM utilization,. As in table 7, it can be noted that 
the improvements brought by SWS vanish when the 
system starts running in a thrashing zone. The 
explanation is that in this case programs are 
allocated a small number of page frames so that the 
influence of the initial loading phases (see 
figure 2) on the paging activity diminishes. 
Preloading is then more useful since the supplemen- 
tary page transfers brought by SWS are not compensa- 
ted by a sufficient decrease of the supervisor 
activity. 

| ..55 .70 .39 .42 .2 ,  .29 .17 .13 .61 .5S 
2 .555 .6q .51 .55 .28 .39 .23 ~17 .~3 .77 

5 .67 .56 .61 .3l  .41 .25 .20 .E9 .@$ 
4 .55 [ .58 .58 .57 .32 .32 .26 .24 .q~ . ~  

Table 9 

As already noted, service time characteristics 
of the SM play an important part in the improvements 
brought by SWS policies. Table 9 presents the 
results obtained by setting s(j) = 10(.5 + .5i). The 
measure of performance ~ is not modified since it 
does not depend on the SM service time characteris- 
tics. Since the new function s(j) gives a more 
favourable treatment to bulk requests generated by 
SWS, the performance of these policies are increased. 
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More detailed observations reveal that the SM 
utilization is then smaller with SWS than with PDP. 
This indicates that in this case the increase of 
the number of page transfers is compensated by the 
reduction of the mean service time per page of the 
SM due to bulk requests. 

As a whole, these results illustrate how the 
different factors which have been listed above 
interact and influence the performance of a SWS 
policy. As observed from the experiments we have 
presented, no factor is in itself determinant, but 
it is their combination which defines the final 
result. The observations we have made on the results 
obtained from the model corroborate the measurements 
made on the EMAS system. Moreover, they provide some 
understanding of the behaviour of a SWS policy, and 
indicate how this policy would work with other 
hardware configurations and in other situations. As 
an application, it is intended to use the model to 
study the performance of a SWS policy between the 
disks and the drum in the EMAS system. Although the 
model involves only one category of users, it could 
be readily extended to take into account different 
categories of users by associating with each cate- 
gory a different life-time function and mean resi- 
dence time. This would merely enlarge the number of 
classes involved, and the derivation of the solution 
would remain unchanged. 

Conclusion. 

We have presented a model for the analysis of 
the performance of a variety of swapping policies in 
page-on-demand multiprogramming systems. This 
analysis is based on a detailed characterization of 
the paging behaviour of programs and of the system 
and hardware configuration. The model is computatio- 
nally simple, and we have shown that it can be used. 
to evaluate the "trade-offs" involved in the 
implementation of a class of swapped working-sets 
policies. ~oreover, the approach we have followed 
provides a framework for analysing the influence 
of program behaviour on global performance and it 
should be useful for the performance analysis of 
other memory management policies. 
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