
Proceedings of Sixth ACM Symposium o n Operating Systems Principles (November 1977) 33-42.

The DEMOS File System

Michael L. Powell

Los Alamos Scientific Laboratory
Los Alamos, New Mexico 87545

ABSTRACT

This paper discusses the design of the file system for DEMOS, an operat-
ing system being developed for the CRAY-I computer at Los Alamos Scientific
Laboratory. The goals to be met, in particular the performance and usability
considerations, are outlined. A description is given of the user interface
and the general structure of the file system and the file system routines. A
simple model of program behavior is used to demonstrate the effect of buffer-
ing data by the file system routines. A disk space allocation strategy is
described which will take advantage of this buffering. The last section out-
lines how the performance mechanisms are integrated into the file system
routines.

I. Introduction
u

File system design is a fairly well explored area of operating system research.
Many modern file systems offer device-independent user interfaces, hierarchical file
names, flexible file operations and powerful mechanisms for manipulating individual
files and groups of files [Ritchie] [Feiertag] [Bobrow]. However when considering
high-speed computational machines, such as the Cray Research, Inc. CRAY-I [CRI], ease of
use and flexibility are often sacrificed in the names of efficiency and size of operat-
ing system. The systems currently running at the Los Alamos Scientific Laboratory
(LASL) are examples of this type of system. None support hierarchical file names and
all require significant programmer effort in order to derive the most performance from
the machine.

The kinds of work done at LASL on these machines varies widely. There is a heavy
time-sharing load consisting of interactive text editing and many small user jobs. How-
ever, most of the machine resources are consumed by "number crunching" programs which
may run for minutes or hours. Large portions of this workload are being transferred to
the CRAY-I. Moreover, because of the unique characteristics of the CRAY-I, new kinds of
applications will be developed to run on it. Therefore, the DEMOS file system must sup-
port jobs with radically varying I/O requirements.

The classical method for improving I/O performance is buffering. Buffering means
that data is transferred from a secondary storage device to areas of main memory not
currently being manipulated by the program. This allows computation to be overlapped
with I/O activity, and thus reduces the total amount of time for a job to execute. File
systems for most large computational computers require the user to take explicit actions
with respect to buffering data.

One of the primary mechanisms for achieving performance goals in DEMOS is buffer-
ing. Buffering is done on two levels: by the disk controller in its local memory, and
by the file system routines in main memory buffers. This buffering is performed without
any special actions on the part of the user. The buffering done by the disk controller
has a fixed strategy. The buffering by the file system routines is based on the ob-

Work done under the auspices of the USERDA.

33

served I/O activity on each file. By adjusting the buffering strategy for each file
dynamically, the best use may be made of system resources.

Another important technique used in DEMOS for improving file system performance is
the localizing of references to small physical areas of the secondary storage device.
The most common device, the moving head disk, can access data at the current arm posi-
tion much faster than it can access data farther away. Also, data at the current arm
position can be accessed more economically if several records can be accessed in one re-
volution of the disk.

2. Design Objectives

Characteristics of the future workload of the CRAY-I are difficult to predict with
any accuracy. Since the hardware and software differ significantly from that currently
in use, simple extrapolation may not be appropriate. However, lower bounds on the
necessary performance may be estimated from the characteristics of the current workload.
Since much of the work which will initially be done on DEMOS has been done on these oth-
er systems, their characteristics provide initial design data for the CRAY-I system.

The distribution of sizes of disk files is useful in choosing an allocation unit
for disk space. Figure I shows the cumulative distribution of file sizes in bytes [Col-
lins] for the central file system at LASL. The central file system is the main reposi-
tory for permanent files. The top curve shows the percentage of files versus file size
while the bottom curve shows the percentage of total file space versus file size. The
top curve indicates that most files are relatively small, almost 50% contain less than
40K bytes. On the other hand, a few large files occupy most of the space in the central
file system. Although the CRAY-I will be able to directly access substantially more
disk space than the current machines can, similar behavior is expected for DEMOS files.
This would indicate that the allocation unit should be less than 40K bytes. Otherwise,
each small file will occupy considerably more disk space than its data requires.

File access characteristics are significant in determining the performance of a
file system. The sustainable data bandwidth is one measure of file system performance.
At LASL, there are two general kinds of usage for the current machines: interactive
time-sharing through LTSS (Livermore Time-Sharing System) and single-user batch through
CROS (Chili Ridge Operating System). At night, when there are few interactive users,
LTSS effectively runs in a multi-programmed batch mode. In the interactive environment,
most jobs have modest I/O requirements. However, because of the large number of jobs in
the system, a substantial amount of I/O activity is required for swapping. In the batch
environment, individual jobs have much greater I/O requirements, although swapping rates
are much lower. Data accumulated at LASL [Keller] show sustained transfer rates of 5-6
megabits/second for each CPU are typical when the interactive system is busy. Although
they tend to be lower, batch mode I/O rates frequently are in this same range. Data
gathered at Lawrence Livermore Laboratory [Sloane] which runs the same system with a
workload similar to LASL shows sustained data rates of 9-10 megabits/second per CPU.
The data rate is higher due to the larger number of I/O channels on their machines, but
indicates that even higher data rates could be necessary to effectively use the greater
processing speed of the CRAY-I.

Gene Amdahl has speculated that the I/O bandwidth requirement is proportional to
the instruction execution rate [Amdahl]. The evaluation of the CRAY-I done at LASL in-
dicates that it operates in the 20-60 million floating point operations per second
(MFLOP) range, whereas a CDC 7600 operates in the 2-6 MFLOP range [Keller]. This would
mean a factor of 4-10 improvement in I/O bandwidth over observed LTSS performance in
order to satisfy Amdahl's criterion.

Analysis of the distribution of the data transfer size is necessary in order to
determine whether the required transfer bandwidth can be achieved. If the amount of
data transferred by a particular request is small, a large percentage of the time re-
quired to complete the request is consumed by locating the appropriate data, rather than
transferring it. Data gathered at Lawrence Livermore Laboratory [Sloane] shows that
users tend to favor smaller transfer sizes. Except near the standard buffer size, the
number of requests of a particular size decreases as the size increases. The system,
however, performs few I/O operations except to swap jobs in and out of memory. Its re-
quests are clustered around the standard memory field sizes (see Figure 2). The overall
mean transfer size is 150 Kbytes, with the mean user request about half this value and
the mean system request about half again as much.

Since the median file size is so much smaller than any of these values, it can be
concluded that the larger files are accessed far more frequently than smaller files.
This observation has intuitive appeal in that programs and control information are gen-

34

erally small, whereas input, output and work files are generally large. The latter
files are accessed more frequently, although the former may be greater in number.

A summary of the characteristics of the environment is: the file system will have
to support a bandwidth of 20-60 megabits/second or higher; there will be a preponderance
of small files which will be accessed relatively infrequently; there will be a
smaller number of large files which will be heavily accessed; most user requests will be
small, although a significant fraction will be large; and virtually all system requests
will be to swap programs.

/

/ - - = N u m b e r o f f i l e s
/ -- -- = File space

~" / / /
/ / / /

//
/

///

,:16" ' " i ; " i ; ' ' ib'
File Size i n K b y t e s

F i g u r e 1. CUMULATIVE FILE SIZE DISTRIBUTION

I

I

I

I

I

I

a

]\

LEGEND / \ \ \
\ -__=: S Y u ~ T m ~ ~

' , s] ~ "

1o' I;" xb'
T r a n s f e r Size i n Kbytes

F i g u r e 2. TRANSFER SIZE DISTRIBUTION

!" File System Overview

The basic unit of storage in the file system from the user's point of view is an
8-bit byte. A file may be viewed as an ordered sequence of bytes. The bytes of a file
may be processed sequentially or randomly.

Files have hierarchical names. The hierarchical names are implemented through spe-
cial files called directory files. Data stored in a directory file establishes a
correspondence between file names ant files. The directory files may be visualized as
nodes in a tree. Directories point to other files which may be directory files or data
files. The root of the directory tree is the system root directory file. At the leaf
nodes are file descriptors which contain such information as the file's owner, classifi-
cation, an~--~ze, as well as the location on the disk of the file's data. For each file
descriptor being used, there is a unique path through the directory tree from the system
root directory to the file descriptor.

Files are initially created with no data in them. As data is written to the file,
blocks are allocated to hold the data. A block contains 4096 bytes and occupies a sec-
tor on the disk. Programs do not have to deal with blocks, however, and may read or
write (sequentially or randomly) any group of contiguous bytes in the file. I/O opera-
tions are initiated by the user program through messages to the file system routines.
The data is automatically buffered by the system as described below. I/O operations may
be done synchronously (that is, the program will not proceed until the operation is com-
plete) or asynchronously (the program may proceed, but must later check the status of
the operation).

The DEMOS file system will be used in conjunction with a central mass storage sys-
tem, the Common File System (CFS). Currently under development, the CFS will eventually
serve most of the LASL computers as a permanent and archival store. The CFS has a
directory structure identical to the DEMOS file system. When the CFS is operational,
such facilities as automatic migration and staging of files will be available.

35

4. File System Routines

The file system routines form a flexible structure for the implementation of I/O
operations. Each main routine is implemented as a separate task in the system. Each
task manipulates its own subset of control information, and communicates with the other
tasks through messages. The user interface is isolated in one task; the buffer manage-
ment is in another; the device-dependent information is in a third.

4.1. The request interpreter

The request interpreter provides the user interface to the file system. It re-
ceives messages from the user program and requests buffers from the buffer manager.
When the buffer manager gives a buffer to the request interpreter, it is full of data
(on a read operation) or ready to be filled (on a write operation). The actual I/O is
performed implicitly through the buffer manager.

The request interpreter moves all information to or from the user's memory field.
It accepts requests from the user program and provides status information when they are
com pl e te.

The request interpreter performs two primary functions: parameter validation and
request translation. Parameter validation consists of ensuring that the addresses
specified by the user are valid and that the requested operations are permitted on the
file. Request translation is interpreting the request's parameters and making the ap-
propriate calls on the buffer manager.

4.2. The buffer manager

The buffer manager maintains the pool of buffers for I/O operations. The buffer
pool is shared by all open files, and may vary dynamically in size. In the worst case,
buffers are allocated on a demand basis and reclaimed on a least-recently-used basis.
In this case, file blocks are written to disk as a result of the buffer reclamation al-
gorithm.

In practice, buffers will be allocated according to the strategy routines described
below. Buffers will be queued to be written to the disk after being filled by the re-
quest interpreter.

Buffers are either associated with a particular file, or available for use. Re-
quests are made for buffers based on a system file index and a block number within the
file. If the requested buffer is in memory it is simply returned. If not, an empty
buffer is allocated and sent to the disk driver to be filled.

4.3. The disk driver

The disk driver performs all of the actual disk positioning and data transfer
operations related to a file request. In the disk driver is the device dependent infor-
mation for the file system. The disk driver task manages I/O to all disk devices. The
disk driver performs three major functions: device mapping, disk queueing, and interrupt
processing.

The disk driver receives control as a result of one of two possible circumstances.
Either the buffer manager has sent more buffers to be filled or emptied, or an interrupt
has occurred indicating that an I/O operation has completed. In the first case, the re-
quests are processed and placed in a queue. In the second case, any additional opera-
tions are started, and, if appropriate, filled or emptied buffers are returned to the
buffer manager.

The device mapping function of the disk driver is primarily a translation from a
system file index and a block number within a file to a channel and unit number, and a
physical disk address. In the case of an output operation, if there is no block as-
signed to a block number (in other words, a new block is being written), a call is made
on the allocation routine to allocate one.

Requests are placed in queues so that the interrupt routine can quickly select the
next operation to be performed without having to search for one. Requests are queued by
cylinder in shortest seek time first (SSTF) order. Within a cylinder, requests are
queued by sector number and are issued in shortest latency time first (SLTF) order.

The interrupt routine has very little to do. It gets control whenever a sector has
been transferred and after each positioning function completes. If the previous opera-

36

tion finished successfully, then it selects the next operation in the queue and ini-
tiates it. If the previous operation caused an error, no new operation is begun and
control is given to an error processing routine. If the operation which completed was a
transfer operation, then the filled or emptied buffer is sent back to the buffer
manager.

5. Performance Mechanisms

There are two basic notions in improving I/O performance. The first is that I/O
operations ought to proceed in parallel with computation in order to minimize the amount
of time the program must wait for its data to be moved in or out of memory. The second
is that the length of time an I/O operation takes should be reduced as much as possible.
The first concept is the primary motivation for buffering; the second is the motivation
for optimizing disk scheduling and for localizing references to small physical areas of
a disk.

Suppose a simple model is chosen for I/O requests. In this model it is assumed
that a single program running on the CPU is requesting consecutive sectors on the disk.
The program requests a sector, performs some computation, and then requests the next
sector. This model will be used to investigate the effects of buffering on I/O perfor-
mace and to determine the feasibility of using system buffering to meet the performance
goals.

The next two sections deal with buffering. The first discusses buffering in the
disk controller; the second discusses buffering by the file system routines in main
memory. The third section describes the disk allocation mechanism which helps achieve
the bandwidth goal.

5.1. Disk controller buffering

The CRAY-I disk controller contains enough memory to hold two 4096-byte disk sec-
tors. On an input operation, data is first read from the disk into one of the buffers.
This transfer takes place at disk speed (35 megabits/second). When the buffer is full,
the data is transferred to main memory at channel speed (232 megabits/second). While
this sector is being sent to the CPU, the next sector is being read into the other con-
troller buffer. If a read operation is issued for the next sector before the sector
following it passes the read/write heads, that sector may be moved into main memory with
no delay. The controller will continue in this manner, reading one sector beyond the
sector requested by CPU. Figure 3 illustrates the operation of the controller.

Using the model described above, suppose that the compute time per sector is a con-
stant, C, and that C < S, where S is the time for one sector to pass under the
read/write heads. In this case, only one memory buffer is required, since it is always
available in time for the next sector to be read into it.

CPU Channel Controller Disk Time
Activity Activity Activity Activity

Request first Positioning
sector Latency

~irst sector
complete

send Ist
sector to CP(

Request 2nd ~end 2rid --
sector sector to CPU

l
Second sector
complete

Read first
sector into
Buffer A

Read second
sector into
Buffer B

Read third
sector into
Buffer A

Figure 3: Operation of the Disk Controller

CRAY- 1 CPU

F Systc~ Buf, ~ers

L I

User P~)gram

I

IData
Area

Disk Controller Disk

Figure 4: Two Level Buffering by Hardware

and File System

37

In the case of many utility programs (for example, copy or translate a file), C is
close to zero. Therefore, this buffering is sufficient to allow high transfer rates for
this class of program. In the case of programs which perform non-trivial calculations
on the data in each sector, two problems may arise. The first problem is that, although
the average computation for each sector may be sufficiently small, the computation for
some sector is too long. In spite of the buffering in the controller, this would mean
that a revolution is missed whenever the compute time for a sector was too large. The
second problem is that the average compute time per sector may be too large, and few
consecutive sectors could be read without missing a revolution. These problems can of-
ten be alleviated by introducing buffering in main memory.

5.2. File system buffering
w

In the previous section, it was noted that programs with sufficiently small amounts
of ~processing time for each sector could sustain very high data rates using the con-
troller buffering. Since the data rates in the observed systems do not approach these
high values even when the CPU is busy, it appears that frequently the average computa-
tion required for each sector is too great. In order to achieve high data rates in this
situation, additional buffering is required. Figure 4 shows how this buffering works.

Data is first tranferred from the disk into a controller buffer. From there it is
sent to a buffer in the system area until requested by the user. When the user performs
a read operation requesting the data, it is moved from the system buffer into his memory
field. After the system buffer has been emptied, it may be reused for buffering other
sectors.

It is useful to know the minimum number of buffers required to achieve a given lev-
el of system performance. Suppose a program behaves in the following manner. Computa-
tion of C seconds is performed on each sector, C > S. There are N buffers which may be
used to buffer data to the program. Suppose sector I is the last sector read from the
disk. If sector I+I is passing under the read/write heads and there is a buffer avail-
able, sector I+I will be read into that buffer. Thus the system tries to keep the N
buffers full with useful data. Figure 5 shows N versus CPU utilization for several
values of C/S (using a Pareto distribution with infinite variance for C). The C/S ratio
varies from 0.5 (the bottom curve) to 4.5 (the top curve). It is encouraging to note
that the knees in the curve all occur below 8 buffers, indicating that a small number of
buffers would be sufficient for reasonable performance.

Cpu/lO = 4.5

Number of Buffers

Figure 5. BUFFERS VERSUS CPU UTILIZATION
(Pareto Cpu Requests)

In figure 6 are shown plots of C/S versus N at 90 percent CPU utilization. All
three of the curves peak near I. Below I, the computation is limited by the speed of
the disk, and increasing the number of buffers will not improve things. Far above I, it
takes more time for the program to empty the buffers than for the system to fill them,
so it is not hard for the system to keep ahead of the program with only a few buffers.
Figure 7 shows the same curves at 70 percent CPU utilization. The shape is essentially

38

the same, but the buffer requirements are much smaller. Although the higher CPU utili-
zation may be required when only one job is running, lower values are probably adequate
when multiprogramming. Of course, when only one job is running, proportionally more
system buffers may be devoted to its files than when several jobs are in the system.

~ LEGEND
/ \ Constant

~ _ / \ - - - - = E x p o n e n t i a l

........ ;~_-
i ,,

//I ,~
/

F_ --'"""

°o i ~ J
Mean Cpu to I/O Ratio

Figure 6. BUFFERS VERSUS CPU/IO RATIO
(Cpu Utilization = 0.0)

g

LEGEND
= Constant

..... Exponential
-- = Pareto

0 ! 2 3 4

Mean Cpu to I/0 Ratio

Figure 7. BUFFERS VERSUS CPU/IO RATIO
(Cpu Utilization = 0.7)

5.3. Disk space allocation

The above discussion has assumed that the data in a file is stored in consecutive
sectors on the disk. To approach this ideal situation, it is necessary that the file
system routines be able to allocate consecutive sectors to a file. This section
describes how this may be accomplished in a flexible fashion which is transparent to the
user.

The management of disk space can be critical to the performance of a file system.
File space should be allocated and released efficiently. The most active files in the
system are frequently the temporary work files which are created, used and destroyed in
a short period of time. It is therefore necessary to perform the allocation quickly,
yet allocate the file so that I/O may be done efficiently. When the file is destroyed,
the space it occupies should be available for reuse as soon as possible. Disk space
should be used effectively. Small files should not take up large amounts of space, and
the disk space used by the file system routines to keep track of files and free space
should be minimal.

In order that small files be economical, the allocation increment must be relative-
ly small. Based on the file size data sited above, a disk track (18 sectors or 73,728
bytes) was deemed too large. Therefore a 4096-byte sector or block is used as the allo-
cation unit. The block is the standard unit of data manipulated by the file system
routines.

The information about how many and which blocks belong to a given file is stored in
a file descriptor. To keep track of blocks which do not belong to any file, a bit map
is kept with a bit corresponding to each block. If the bit is on, the block is in use;
otherwise, the block is not currently allocated to some file.

Use of a bit map makes possible efficient decisions in allocating blocks to files.
The most common criterion for selecting a block for a file is how close it is to other
blocks in the file. Whereas keeping a list of free blocks would require searching the
list in order to find a block which is close to the others, a bit map may easily be
tested for free bloqks among the set of good choices. Because of the controller buffer-
ing on the CRAY-I disks, some blocks are definitely better candidates for allocation
than others.

Most programs in this system manipulate files in one of two ways: either by reading
the file sequentially or by writing it sequentially. Therefore, when a block is re-

39

quested by a program, the probability that it will shortly request the next block of the
file is high. If the next block is stored in the sector following the requested block,
the disk controller will automatically read it into its buffer. If that block can be
transferred to main memory and saved until the program requests it, there will be no la-
tency associated with the request for that block. To try to make use of this feature,
the following allocation scheme is used for file blocks.

Suppose that data is being written on the end of a file, that is, that new blocks
must be allocated to the file to hold the data. The choices for a sector to hold the
new block according to the basic allocation strategy are as follows:

I) the sector immediately following the sector containing the previous block on the
same track and cylinder as the previous block,

2) the sector which is two sectors after the sector containing the previous block
on any track on that cylinder,

3) subsequent sectors on any track on that cylinder.

If no suitable sector can be found on that cylinder, then the file must be extended onto
a new cylinder. The new cylinder is selected based on how close it is to the current
cylinder, and how many sectors are available on the cylinder.

There are two possible problems with this basic allocation strategy. The first is
that if more than one file were being written by a program at the same time, the blocks
of the files would tend to be interleaved. The second problem is that in order to make
the file system reliable, the file descriptors and allocation maps would have to be
written to the disk each time a block is allocated. In order to alleviate these two
problems, the basic allocation mechanism is augmented by a pre-allocation strategy.

The pre-allocation strategy is based on predicting future program behavior from its
past behavior. As file blocks are allocated according to the basic allocation strategy,
an indication is recorded of how fast blocks are being allocated to the file. Each al-
location decision is matched by a pre-allocation decision. The pre-allocation decision
is whether or not to pre-allocate a number of blocks to the file, and how many to pre-
allocate. When blocks are pre-allocated, they are marked as being used in the alloca-
tion bit map, and added to the list in the file descriptor. However, in the file
descriptor they are marked as being pre-allocated. The basic allocation strategy will
always prefer a pre-allocated block over others. If the pre-allocation routine pre-
allocates blocks frequently enough, the basic allocation strategy would never have to
perform actual block allocation. Moreover, the increments of pre-allocation can be
large enough to minimize the possibility of interleaving the blocks of two files.

5.4. Strategy routines

The term strategy routine is used for a subroutine or task which is not necessary
for the correct operation of the system. In particular, if the strategy routines did
nothing (other than terminate in a finite amount of time without errors) the system
should still operate and give correct results. The purpose of a strategy routine is to
improve the performance of the system, by monitoring system activity and "recommending"
actions on the part of other routines.

Two examples of strategy routines are found in the DEMOS file system. The first is
the read-ahead routine. Its function is to cause blocks which are likely to be used in
the near future to be brought into memory. The second is the pre-allocation routine.
Its purpose is to pre-allocate groups of blocks to files shortly before they are needed.
The two routines operate in similar fashions. Control is passed to the strategy routine
when certain system events occur. The strategy routine records such information as is
appropriate and based on the new information as well as previously recorded information,
it performs some action. That action usually will have an effect on the system. If it
does not, because of some error or because the system is too busy, the correct operation
of the system should not be affected.

5.4.1. Read-ahead strategy

The read-ahead routine receives control from the request interpreter each time a
read request is received. The read-ahead routine examines the size of the current read
request, the rate at which read requests are occurring for that file, and indicators of
overall system I/O activity. Based on this information, it may select additional blocks
of the file to be read, and request that the buffer manager obtain those buffers. If
the buffer manager is short on buffers, or if the blocks do not exist in the file, then

4O

the requests are merely discarded.

The read-ahead routine attempts to track the activity on a file and keep sufficient
buffers full of data so that the user program rarely waits for I/O to complete. The
metric of file activity is a sum of file requests whi.ch decays over time. As discussed
earlier, the number of buffers required to sustain a given I/O rate may vary widely.
The job of the read-ahead routine is not just to read-ahead, but to read-ahead an ap-
propriate amount.

However, the bias of the read-ahead routine is to read too much. The reason for
this is that the cost of reading too much is small. Assuming that files are generally
contiguous, the additional sector-time to transfer an extra block is only 925 mi-
croseconds. Compared to the minimum seek time of the disk(15 milliseconds), this amount
is almost negligible. The cost of occupying a buffer with extra data is also small,
since "stale data" (data which was read but has not been used for a while) is easily
discarded by the buffer manager.

5.4.2. Pre-allocation strategy

The pre-allocation routine receives control from the disk driver each time a new
block is requested for a file. The pre-allocation routine examines the size of the
current allocation request, the rate at which new blocks are being allocated to the
file, indicators of overall system I/O activity and the amount of disk space available
oN the disk where the file is located. Based on this information, it may request the
pre-allocation of some number of blocks to the file. If there is insufficient disk
space for the file, the request is merely discarded.

The pre-allocation routine will receive some assistance from outside the file sys-
tem. The file space on the CRAY-I will be divided into several pools. One pool will be
for resident user files, another for resident system files, one for swap space, and
another for temporary work files. In this manner, the highest activity files will be
located away from the typically small user files which tend to fragment the disk. Files
in the temporary work file pool will have a short lifetime, and a relatively high per-
centage of free space will be maintained in that pool. Therefore, it should be easier
to find large contiguous groups of blocks. The ability to migrate files back to the
Common File System will provide another mechanism for assuring sufficient free space to
avoid fragmentation and to allow the pre-allocation routine to allocate contiguous
blocks. For files resident for longer periods of time, the disks will be re-organized
during periods of low activity to reduce the fragmentation of files.

6. Conclusion

Adding strategy routines to a file system is like adding a cache to a memory. It
is desirable to have a general-purpose file system or a large memory, but it is neces-
sary to have the performance of a special-purpose file system or a small memory. With
both, it is possible to come close to optimal performance by using some property of the
request distribution to develop an ad hoc solution which works well a large percentage
of the time. In this case, that property is the sequential nature of most file opera-
tions, as well as the ordered arrangement of the data on the secondary storage device.

DEMOS is being developed in an evolutionary manner from the vendor-supplied operat-
ing system for the CRAY-I. The file system in that operating system is similar in its
lack of sophistication to the file systems mentioned earlier. It offers a useful bench-
mark against which the performance of the DEMOS file system will inevitably be compared.

It is hoped that this kind of implementation will make it possible to have more of
the general-purpose capabilities found in other systems to be included in high-
performance operating systems.

7 • Acknowledgements

I must express my gratitude to Forest Baskett, J. C. Browne, John H. Howard, and
John T. Montague, whose well-considered suggestions and criticisms improved not only the
presentation of the ideas in this paper, but also the likelihood that they will work.

8. References

Amdahl, G. M., "Storage and I/O Parameters and Systems Potential", Proceedings of the
IEEE Computer Group Conference, June 16-18, 1970, Washington, D. C., pp 371-372.

Bobrow, D. G., Burchfiel, J. D., Murphy, D. L., and Tomlinson, R. S., "TENEX, A Paged
Time Sharing System for the PDP-10", CACM 15, 3 (March 1972), 135-143.

Collins, M. W., LASL CCF Mass Storage Requirements. Los Alamos Scientific Laboratory
internal memo. (December 1975).

Cray Research, Inc., CRAY-I Computer System Reference Manual, Publication 2240004, 1977.

Feiertag, R. J. and Organick, E. I., "The Multics Input-Output System", Proceedings of
the Third Symposium on Operating Systems Principles, Oct 18-20, 1971, ACM, New York,
35-41.

Keller, T. W., Measurement data taken at Los Alamos Scientific Laboratory, (March 1977).

Keller, T. W., CRAY-I Evaluation Final Report. Los Alamos Scientific Laboratory. Infor-
mal report. LA-6456-MS (December 1976).

Ritchie, D. M. and Thompson, K., "The UNIX Time-Sharing System", CACM 17, 7 (July 1974),
365-375.

Sloane, L., Measurement data obtained at Lawrence Livermore Laboratory. (February
1977) •

42

