
PROCESS SYNCHRONIZATION WITHOUT LONG-TERM INTERLOCK

William B. Easton
Applied Logic Corporation

Princeton, New Jersey

Abstract: A technique is presented for replacing long-term interlocking of shared
data by the possible repetition of unprivileged code in case a version number
(associated with the shared data) has been changed by another process. Four
principles of operating system architecture (which have desirable effects on the
intrinsic reliability of a system) are presented; implementation of a system
adhering to these principles requires that long-term lockout be avoided.

Introduction

An important feature of modern multiprogramming
systems is the ability to allow independent, concurrent-
ly executing processes to work on the same data base.
If a process needs to modify a data base which is being
shared by other processes, then some means of synchro~
nization must be provided to prevent chaos when two
processes attempt to overlap each other in accessing
the data. The usual means for providing such synchro~
nization is to lock out all other processes while one
process is modifying the data. We propose, instead,
that (with careful system design) access can be allowed
to all processes at all times, and that a process can
determine whether the data have been modified by
another process and take corrective action.

The proposed technique, in brief, is to provide
each shared object with a version number, to remember
the version number prior to making a decision about
modifying the object, and then, when the actual modi-
fication takes place, to compare the version number
with the remembered one, to change the version number,
and to perform the modification, all "in a single
instant of time." Thls technique is somewhat in-
elegant, in that a process may be forced to repeat work
it has already done. However, the system's scheduling
mechanism can be greatly simplified, since it need not
be concerned with such matters as the release of shared
resources. Furthermore, the description of the state
of the entire multiprogramming system at any point in
time is made simpler, since no process is ever inter-
rupted while it is part way through modifying critical
data. The additional cost entailed by occasional
repetition is readily made small enough in an actual
implementation.

An Example

Suppose that a process desires to create a new
file of a certain name in a given directory, and that
the newly-created file must be the only file wlth
that name in the directory. We will examine the inter-
lock requirements for this guarantee.

Let a directory be a flle whose records (entries)
each contain the external name of a file and further
information about the file (such as pointers to the
data, time of creation, and so on). We assume that a
directory may, in principle, be arbitrarily large, so
that operations on it may involve an undetermined
number of physical data transfers to and from a mass-
storage device. In order to create a new file, a
process must search the directory to determine that

there is not already a file with the same name; it must
then insert, in an unused entry position, the desired
name and whatever further information is required (the
file is empty, its creation time is right now, and so
on). Of course, some or all of these operations will
be done by privileged system code.

The usual implementation of file creation, using
interlocks to provide one-process-at-a-time access to
the directory, is shown in Figure i.

|
r T

i Interlock I Directory
I

• yes

l Create I
New Entry I

Directory
/

Success Return

Release]
Directory I

_ _ _ _ . ~ _ _ _ ,

Fail
Return

Fig. i. File creation with direc-
tory interlock.

During the entire operation, the directory is
inaccessible to other processes. This privileged
status is shown by a broken line around the flow
chart; the operations within the broken line are done
"in a single instant of time," as far as processes
accessing the directory are concerned. The directory-
searching operation may require the transfer of data
from mass storage; the central processor will, in

95

general, turn its attention to other processes while
waiting for the completion of such transfers. Since
these other processes may also wish to use the direc-
tory in question, these processes may become blocked
and action must then be taken to awaken them when the
directory is available. Furthermore, the system's
scheduler must provide that the process currently using
the directory retain enough priority to quickly release
the directory; otherwise, access to the directory by
other processes will be delayed.

The implementation of file creation using the
version-check technique is illustrated in Figure 2.
Prior to searching the directory, the process fetches
and remembers the directory's version number. After
the search operation is complete, the remembered
version number is compared with the current one; if
they differ, the directory has been modified by another
process and the search operation must be restarted.
(Note that the remembered version number need not
itself be a protected object, since the unprivileged
program can gain no additional power by falsifying it.)

kl

Directory Version

[Search Directory 1
for File Name

r I i . I no y~s !

4
Version Number

L _ L -I-

Success Fail
Return Return

Fig. 2. File creation using
the verslon-check technique.

Again, operations which must be done "in one
instant of time" are enclosed in broken lines. The
directory search operation has been removed from the
critical section; instead, the entire search operation
is to be restarted if the directory is modified by
another process during the search.

It is still the case that several operations must
be done "all at once," There is, however, an essential
difference in the required interlock. If the location
of a free record position is known, the creation of
the new entry requires references to a small, fixed
number of pages. If these pages are brought into core
before the version check and if they are guaranteed to
remain in core during the creation of the entry, then
the updating of the entry can proceed at central-

processor speeds without waiting for mass-storage
operations. Thus, the system may prevent the central
processor from being taken away from the process for
the small number of microseconds required to complete
the entry creation; in turn, it becomes possible to
implement the required interlock by looping on a test-
and-set instruction without involving the scheduler.

The technique just described does provide the
required synchronization between processes since (in
this example) the directory is guaranteed not to have
been modified between the start of the search and a
successful version check. Furthermore, this synchro-
nization is provided in such a way that no process is
denied access to the directory because another process
is using it.

There are, however, two important costs associated
with the version-check technique. First, processes
must make decisions on the basis of data structures
which may be changing in time; some means must be
provided to avoid erratic behavior on the part of a
process because it happens to look at such a data
structure at a bad time. Second, there is the
potential of much "useless" repetition of unprivileged
code because several processes are "fighting for" a
particular data structure.

Preliminaries

A process is an object which consists of a
virtual-processor state, a description of an address
space, and some historical information. [2, 5, 9, II,
12] MultiProgrammin g is a technique for sharing a
(normally) smaller number of physical processors among
a larger number of processes.

We will assume that the address space of a pro-
cess consists of pages of fixed length which may or
may not be shared with other processes. These pages
may be organized into segments or files; we will use
the terms "segment" and "file" interchangeably to
refer either to named collections of data normally
kept on mass storage devices or Co data which are
directly accessible by a process in execution. A page
is assumed to have an existence as a collection of data
which can be described by some unique name known to
the system; this existence is independent of particular
copies of the page in core storage or on a mass-storage
device. Thus, for example, the same page may, at
different times, exist only in core storage, only on a
mass storage device, or in both of these places.

A page is said to contain (system) critical data
if it contains data required for the proper functioning
of the multiprogramming mechanism or the system's
protection facilities. Examples of critical data are
the contents of the processes' state vectors or the
contents of a directory. A process is said to have
privileged status if it can modify critical data
directly; a process is said to have unprivileged status
if it does not have this power. By a privileged
procedure, we will mean a procedure being executed by
a process with privileged status.

Note that the distinction between privileged and
unprivileged status is not necessarily the same as the
distinction between an all-powerful supervisory state
and a limited problem state--a process executing in a
hardware state that prevents it from directly executing
I/O commands may nevertheless have privileged status
if it has critical data in the writable part of its
address space. Note, too, that we have not set the
boundary between privileged and unprivileged status as
the only protection boundary in the system; good
system design practice will certainly include

96

"firewalls" separating programs with different require-
ments operating in both statuses. The same process may
have either status at different points in time.

The way a procedure operating in unprivileged
status can cause a change in critical data is to enter
privileged status (by some protected means provided by
the system) with a request for a desired modification;
a procedure operating in privileged status will then
check that the specific modification is permitted and
then do the operation before returning the process to
unprivileged status.

A Philosophy of System Architecture

A common theme in many papers on the design of
multiprogramming systems is the ability to limit the
privileged operations a process can perform to the
minimum required for correct functioning of the
process. We believe that this sort of limitation is a
necessary condition for a system to be capable of
continuous operation for periods of weeks or months
in spite of occasional hardware malfunctions and
evolutionary modification of software. Indeed, we
would push such limitations to the extreme. Specifi-
cally, we would insist that processes be allowed to
execute in privileged status only if they observe the
following requirements:

(t) No operations of a decision-making or
strategy-determining nature will be done in
privileged status.

(2) No process will ever be removed from a
physical processor while it has privileged
status.

(3) No process will return to unprivileged
status while any critical data which it has
modified are in an inconsistent state.

(4) No unprivileged process may prevent access
by any other process (which would otherwise
be entitled to such access) to any critical
data.

Adherence to these principles can provide a number
of advantages in the intrinsic reliability of the
system, but imposes a severe discipline on the system
architecture.

The requirement that no strategy-determining
operations take place in privileged status is an
expression of the desire to provide a process with as
little power as possible. A strategy decision which
requires the examination of critical data but not its
modification can be made without privileged status,
and, therefore, should be. Implementation of the
decision may then be done by a privileged procedure
which will check that the requested action is
permitted. The decision process will be restarted if
the version check indicates that its decision has been
invalidated by another process' modification of the
critical data.

An example of a decision which can take place in
unprivileged status is the decision to assign a block
of physical core to a page. A procedure without
privilege can decide that a particular page is to be
assigned to a particular block of core; such a decision
can be made by examining the current contents of core,
the status of processes wishing to access the page,
and the status of mass-storage devices. To implement
the decision, a request is made to a privileged
procedure. That procedure checks that the page exists,
that there is not already a copy in core, and that the

requested location is available for assignment.

The decision to assign physical core to a page
may involve complex algorithms which take into account
such factors as the sizes of the working sets of
various processes and various parameters relating to
the use of core by processes. Furthermore, such
algorithms are likely to he changed as part of the
process of system evolution. The actual operation of
assignment, on the other hand, requires only a small
number of machine instructions to check the status of
the page and the physical core location and to
perform the actual assignment. Presumably, one would
prefer not to allow a program written by any user of
the system to directly cause the assignment of real
core to pages; such a restriction on a user's
program can easily be provided within the above frame-
work. Note, however, that the consequences of such an
assignment by a user's program (if it were permitted)
would affect only the efficiency of the system and not
the integrity of critical data.

The requirement that no process ever be removed
from a physical processor while it has privileged
status precludes awaiting the completion of physical
I/0 operations within a privileged procedure. Further-
more, it requires all interlocks within the system
to be short-term interlocks (which can be implemented
by looping on a test-and-set instruction) rather than
ions-term interlocks (which require that a process be
unscheduled when the interlock is already set and
scheduled again when the interlock is cleared).

Finally, the requirements that no process ever
return to unprivileged status while part way through
modification of critical data or while preventing
access to critical data by other processes allows the
system's scheduling and resource-allocation mechanisms
to not be concerned with the need for a particular
process to complete action on critical data.

Implementation of the Philosophy

The implementation of the philosophy described in
the preceding section implies a number of restrictions
on the system architecture. We describe below a means
of implementation which adheres to this philosophy.

Whenever a change to critical data is to be made,
a process will enter privileged status from unprivi-
leged status. In privileged status, prior to any
modification of critical data, the process will check

Handle
l Page]Fault I

. I

Perform I
I Operation 1 I_i,. 2___,,

Success Error
Return Return

Fig. 3. Flow chart of a privileged
procedure.

97

that the operation is permitted and that all pages
required are in core and accessible. If either of
these conditions is not satisfied, the process will
return to unprivileged status with an error indication
in the first case and after handling a page fault in
the second case. If the conditions are satisfied, the
required changes will be made and control returned to
unprivileged status. This is illustrated in Figure 3
(on the preceding page).

Since all actions take place at central-processor
speeds, it is reasonable to allow privileged operations
implemented in this way to run to completion. The
status of a process at any time when it can be inter-
rupted is always known: Either the privileged
operation has not yet been started, or it has been
completed.

The remaining requirements are satisfied if long-
term interlocks are prohibited and short-term inter-
locks are permitted only for the duration of a
privileged procedure. To allow for the possibility
that critical data may have been changed between the
time a decision was made and entry to a privileged
procedure, we attach to each shared object a version
number (which may be a number maintained by the system
and incremented on request or a set of unique bits
provided by a system timer [8, 13]). Figure 4 illus-
trates the unprivileged decision to modify system
data and its relationship to the privileged procedure
doing the modification, with checking of version
numbers.

When the version check has been passed, it is
guaranteed that no modification to the critical data
has occurred since the beginning of the current
process' decision to modify it; it is further
guaranteed that the version number will be changed
before another process can pass the version check.

In describing the implementation of our four
principles, we have ignored their relationship Co the
system's protection mechanism. If decisions on
protection require searching of hierarchies of files
to determine if a particular action is allowed, then
it is clearly not possible to satisfy our criteria.
Several authors [5, 7, I0, 14] have suggested an
Implementation. of protection using protected names
called ca2abillties or access keys retained in a
privileged data structure associated with a process;
using such a technique, checks for protection can also
be implemented in a few machine instructions.

Finally, we believe that all of the privileged
procedures which are really necessary for a general-
purpose multlprogramming system can be implemented
in two or three thousand machine instructions. Such
an amount of code--if it is entirely made up of small,
simple procedures--can be completely tested in a
reasonable time and can be expected to remain
relatively static since the mechanisms which change
with time in a system are its complex strategy
algorithms and not its basic data structures.

A Possible Hardware Implementation

The flow chart in Figure 4 uses a software inter-
lock (with a test-and-set instruction) to provide
one-at-a-time execution of a privileged procedure.
Lampson has suggested the implementation of a special
"protect" instruction [9, II] which would guarantee
that a small sequence of instructions is executed
without interruption and would cause operation to be
restarted at the protect instruction in case of a page
fault. A possible implementation in hardware of the
entry to a privileged procedure is to include as part

I Decide Modificationl
lto Critical Data I

r i o

I . ,andle
'~ I I Page Fault

"1 / '
L l~2f~l°2!____J I • ves !

[Clear
Interlock]

no I

. _.___~t '~es

! M o d , , : ; " " - - - " ' l I Cr"ica'O I

I Change Version I Clear I I Number Interlock

: j Ole --q
I Interlock |
I

L "l J
Soe e - -
Return Return

Fig. 4. Relationship between a
decision to modify critical data and
the actual modification.

of the access rights to a segment the right to enter
privileged code in that segment; transfer to the
segment at any location containing a special "entry"
instruction would cause execution to continue in
privileged status, with the entry instruction acting
like Lampson's protect instruction. [The idea of
using a special instruction to mark an allowed entry
point in an execute-only segment was suggested to
the author by Alan Kotok.]

Accessing a Changing Data Structure

The technique that we have described requires
that a process access a data structure for the
purpose of making a decision with no assurance that
the data structure will not be changed at an arbitrary
time. The version check avoids the possibility that
a resulting incorrect decision will be implemented.
There is still the possibility that the process will
behave erratically because of data fetched at an
inopportune moment. For example, the process might
fetch a number from the data structure which it
believes to be an address in some segment but which

98

has been changed by another process to be a portion of
some alphabetic text; the use of the number thus
obtained could, in turn, cause the process to destroy
its own data or to loop forever.

The version-check technique provides a solution to
this difficulty. The process need only check that the
data structure has not been changed whenever it fetches
data which, if incorrect, could cause erratic behavior.
The data structure has been changed if the version
number has been changed. In addition, the data
structure may have been changed by another processor
executing in privileged status which has not yet
updated the version number.

The implementation of the version check is shown
in Figure 5. Prior to checking the version number,
the process guarantees that at some time after the
data were fetched, no processor was in the midst of
modifying it; if the version check is then passed,
it is guaranteed that the data structure had not been
modified at ~he time the data were fetched.

I Fetch Data I
, from Structure I

k I • yes

~ Restart at
Initial Fetch of
Version Number

Continue
Fig. 5. Checking the version
number when accessing a possibly
changing data structure.

If there is available a segmentation mechanism
which allows the interlock and the version number to
be accessed directly, the two decisions in Figure 5
would normally require one or two instructions each.
We have allowed the process to loop while waiting for
the interlock to be cleared; we would expect that, in
a typical system, the expected waiting time would be
of the same order as the overhead of changing
processes.

We note in passing that the check of the version
number in our original example (see Figure 2) prior to
a fail return was of the same nature as the version
check after fetching data during the directory search;
the version check could thus be removed from
privileged status in Figure 2 if the process waits
until the interlock is cleared prior to the version
check.

We have shown the updating of version numbers
following the modification of critical data. Alter-
natively, the version number could be updated prior to
the modification. It would then be necessary to test
that the interlock is not set after fetching the
version number and to fetch the version number again
if the interlock is set. In this case, the status of
the interlock need not be tested when checking the
version number after fetching of data.

The Overhead Cost of the Version-Check Technique

The technique of checking version numbers to
determine if a decision process should be restarted
costs some system overhead in that code is repeated
"uselessly." One can imagine a process cycling
forever, always unlucky in performing a desired
privileged operation. We claim that this is unlikely,
provided that the paging algorithm normally retains
in core several of a process' most recently referenced
pages.

Suppose that we are dealing with a system with
one central processor. Upon entry to a privileged
procedure, there may be a number of page faults. The
code repeated on reentry to the procedure will
presumably be small compared to the overhead of
changing processes while pages are brought in. The
real potential for additional overhead is in the
repetition of the decision process. With an imple-
mentation of a working-set paging algorithm, [3] we
would expect that if the version number is found to
be incorrect, then the process will have recently been
unscheduled (so that another process could change the
version) and will have its required pages in core.
Thus, if the system's minimum quantum is large enough
to allow the decision to be made in less than a
quantum, the process will not again be unscheduled
until after the privileged procedure has been executed.

We cannot make as strong a statement for a system
with more than one processor. With a small number of
processors, there is still some chance of interference,
but we would still expect it to be small unless
processors are spending a very large fraction of their
time deciding to modify one particular object. With a
large number of processors, one would probably
require a "protect" instruction with some sort of
hardware-implemented scheduling.

I.

2.

3.

4.

5.

6.

7.

8.

REFERENCES

Corbat6, F. J., and Vyssotsky, V. A. Introduction
and overview of the MULTICS system. Proc. AFIPS
1965 Fall Joint Comput. Conf., Vol. 27, Part I.
Spartan Books, New York, pp. 185-197.

Daley, R. C., and Dennis, J. B. Virtual memory,
processes, and sharing in MULTICS. Comm. ACM
II, 5 (May 1968) 306-312.

Denning, P. J. The working set model for program
behavior. Comm. ACM II, 5 (May 1968) 323-333.

Dennis, J. B. Segmentation and the design of
multiprogrammed computer systems. J. ACM. 12, 4
(Oct. 1965) 143-155.

Dennis, J. B., and Van Horn, E. C. Programming
semantics for multiprogrammed computations.
Comm. ACM 9, 3 (Oct. 1966) 143-155.

Dijkstra, E. W. The structure of the "THE"-
multiprogramming system. Comm. ACM ii, 5
(May 1968) 341-346.

Evans, D. C., and LeClerc, J. Y. Address mapping
and the control of access in an interactive
computer. Proc. AFIPS 1967 Spring Joint
Comput. Conf., Vol. 30. Thompson Book Co.,
Washington, D. C., pp. 23-30.

Fenichel, R. R. On implementation of label
variables. Comm. ACM 14, 5 (May 1971) 349-350.

99

9.

I0.

II.

12.

13.

14.

Gray, J. Locking. Record of the Project MAC
conference on concurrent systems and parallel
computation. ACM, New York, 1970, pp. 169-176.

Lampson, B. W. Dynamic protection structures.
Proc. AFIPS 1969 Fall Joint Comput. Conf., Vol.
35. AFIPS Press, Montvale, New Jersey, pp. 27-38.

Lampson, B. W. A scheduling philosophy for
multiprogramming systems. Comm. ACM ii, 5
(May 1968) 347-360.

Saltzer, J. H. Traffic control in a multiplexed
computer system. Project MAC Technical Report
30 (thesis). Cambridge, Mass., July 1966.

Saltzer, J. H., and Gintell, J. W. The
instrumentation of MULTICS. Comm. ACM 13, 8
(Aug. 1970) 495-500.

Watson, R. W. Timesharing system design concepts.
McGraw-Hill, New York, 1970.

i00

