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Abstract: A technique is presented for replacing long-term interlocking of shared 
data by the possible repetition of unprivileged code in case a version number 
(associated with the shared data) has been changed by another process. Four 
principles of operating system architecture (which have desirable effects on the 
intrinsic reliability of a system) are presented; implementation of a system 
adhering to these principles requires that long-term lockout be avoided. 

Introduction 

An important feature of modern multiprogramming 
systems is the ability to allow independent, concurrent- 
ly executing processes to work on the same data base. 
If a process needs to modify a data base which is being 
shared by other processes, then some means of synchro~ 
nization must be provided to prevent chaos when two 
processes attempt to overlap each other in accessing 
the data. The usual means for providing such synchro~ 
nization is to lock out all other processes while one 
process is modifying the data. We propose, instead, 
that (with careful system design) access can be allowed 
to all processes at all times, and that a process can 
determine whether the data have been modified by 
another process and take corrective action. 

The proposed technique, in brief, is to provide 
each shared object with a version number, to remember 
the version number prior to making a decision about 
modifying the object, and then, when the actual modi- 
fication takes place, to compare the version number 
with the remembered one, to change the version number, 
and to perform the modification, all "in a single 
instant of time." Thls technique is somewhat in- 
elegant, in that a process may be forced to repeat work 
it has already done. However, the system's scheduling 
mechanism can be greatly simplified, since it need not 
be concerned with such matters as the release of shared 
resources. Furthermore, the description of the state 
of the entire multiprogramming system at any point in 
time is made simpler, since no process is ever inter- 
rupted while it is part way through modifying critical 
data. The additional cost entailed by occasional 
repetition is readily made small enough in an actual 
implementation. 

An Example 

Suppose that a process desires to create a new 
file of a certain name in a given directory, and that 
the newly-created file must be the only file wlth 
that name in the directory. We will examine the inter- 
lock requirements for this guarantee. 

Let a directory be a flle whose records (entries) 
each contain the external name of a file and further 
information about the file (such as pointers to the 
data, time of creation, and so on). We assume that a 
directory may, in principle, be arbitrarily large, so 
that operations on it may involve an undetermined 
number of physical data transfers to and from a mass- 
storage device. In order to create a new file, a 
process must search the directory to determine that 

there is not already a file with the same name; it must 
then insert, in an unused entry position, the desired 
name and whatever further information is required (the 
file is empty, its creation time is right now, and so 
on). Of course, some or all of these operations will 
be done by privileged system code. 

The usual implementation of file creation, using 
interlocks to provide one-process-at-a-time access to 
the directory, is shown in Figure i. 
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Fig. i. File creation with direc- 
tory interlock. 

During the entire operation, the directory is 
inaccessible to other processes. This privileged 
status is shown by a broken line around the flow 
chart; the operations within the broken line are done 
"in a single instant of time," as far as processes 
accessing the directory are concerned. The directory- 
searching operation may require the transfer of data 
from mass storage; the central processor will, in 

95 



general, turn its attention to other processes while 
waiting for the completion of such transfers. Since 
these other processes may also wish to use the direc- 
tory in question, these processes may become blocked 
and action must then be taken to awaken them when the 
directory is available. Furthermore, the system's 
scheduler must provide that the process currently using 
the directory retain enough priority to quickly release 
the directory; otherwise, access to the directory by 
other processes will be delayed. 

The implementation of file creation using the 
version-check technique is illustrated in Figure 2. 
Prior to searching the directory, the process fetches 
and remembers the directory's version number. After 
the search operation is complete, the remembered 
version number is compared with the current one; if 
they differ, the directory has been modified by another 
process and the search operation must be restarted. 
(Note that the remembered version number need not 
itself be a protected object, since the unprivileged 
program can gain no additional power by falsifying it.) 
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Fig. 2. File creation using 
the verslon-check technique. 

Again, operations which must be done "in one 
instant of time" are enclosed in broken lines. The 
directory search operation has been removed from the 
critical section; instead, the entire search operation 
is to be restarted if the directory is modified by 
another process during the search. 

It is still the case that several operations must 
be done "all at once," There is, however, an essential 
difference in the required interlock. If the location 
of a free record position is known, the creation of 
the new entry requires references to a small, fixed 
number of pages. If these pages are brought into core 
before the version check and if they are guaranteed to 
remain in core during the creation of the entry, then 
the updating of the entry can proceed at central- 

processor speeds without waiting for mass-storage 
operations. Thus, the system may prevent the central 
processor from being taken away from the process for 
the small number of microseconds required to complete 
the entry creation; in turn, it becomes possible to 
implement the required interlock by looping on a test- 
and-set instruction without involving the scheduler. 

The technique just described does provide the 
required synchronization between processes since (in 
this example) the directory is guaranteed not to have 
been modified between the start of the search and a 
successful version check. Furthermore, this synchro- 
nization is provided in such a way that no process is 
denied access to the directory because another process 
is using it. 

There are, however, two important costs associated 
with the version-check technique. First, processes 
must make decisions on the basis of data structures 
which may be changing in time; some means must be 
provided to avoid erratic behavior on the part of a 
process because it happens to look at such a data 
structure at a bad time. Second, there is the 
potential of much "useless" repetition of unprivileged 
code because several processes are "fighting for" a 
particular data structure. 

Preliminaries 

A process is an object which consists of a 
virtual-processor state, a description of an address 
space, and some historical information. [2, 5, 9, II, 
12] MultiProgrammin g is a technique for sharing a 
(normally) smaller number of physical processors among 
a larger number of processes. 

We will assume that the address space of a pro- 
cess consists of pages of fixed length which may or 
may not be shared with other processes. These pages 
may be organized into segments or files; we will use 
the terms "segment" and "file" interchangeably to 
refer either to named collections of data normally 
kept on mass storage devices or Co data which are 
directly accessible by a process in execution. A page 
is assumed to have an existence as a collection of data 
which can be described by some unique name known to 
the system; this existence is independent of particular 
copies of the page in core storage or on a mass-storage 
device. Thus, for example, the same page may, at 
different times, exist only in core storage, only on a 
mass storage device, or in both of these places. 

A page is said to contain (system) critical data 
if it contains data required for the proper functioning 
of the multiprogramming mechanism or the system's 
protection facilities. Examples of critical data are 
the contents of the processes' state vectors or the 
contents of a directory. A process is said to have 
privileged status if it can modify critical data 
directly; a process is said to have unprivileged status 
if it does not have this power. By a privileged 
procedure, we will mean a procedure being executed by 
a process with privileged status. 

Note that the distinction between privileged and 
unprivileged status is not necessarily the same as the 
distinction between an all-powerful supervisory state 
and a limited problem state--a process executing in a 
hardware state that prevents it from directly executing 
I/O commands may nevertheless have privileged status 
if it has critical data in the writable part of its 
address space. Note, too, that we have not set the 
boundary between privileged and unprivileged status as 
the only protection boundary in the system; good 
system design practice will certainly include 
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"firewalls" separating programs with different require- 
ments operating in both statuses. The same process may 
have either status at different points in time. 

The way a procedure operating in unprivileged 
status can cause a change in critical data is to enter 
privileged status (by some protected means provided by 
the system) with a request for a desired modification; 
a procedure operating in privileged status will then 
check that the specific modification is permitted and 
then do the operation before returning the process to 
unprivileged status. 

A Philosophy of System Architecture 

A common theme in many papers on the design of 
multiprogramming systems is the ability to limit the 
privileged operations a process can perform to the 
minimum required for correct functioning of the 
process. We believe that this sort of limitation is a 
necessary condition for a system to be capable of 
continuous operation for periods of weeks or months 
in spite of occasional hardware malfunctions and 
evolutionary modification of software. Indeed, we 
would push such limitations to the extreme. Specifi- 
cally, we would insist that processes be allowed to 
execute in privileged status only if they observe the 
following requirements: 

( t )  No operations of a decision-making or 
strategy-determining nature will be done in 
privileged status. 

(2) No process will ever be removed from a 
physical processor while it has privileged 
status. 

(3) No process will return to unprivileged 
status while any critical data which it has 
modified are in an inconsistent state. 

(4) No unprivileged process may prevent access 
by any other process (which would otherwise 
be entitled to such access) to any critical 
data. 

Adherence to these principles can provide a number 
of advantages in the intrinsic reliability of the 
system, but imposes a severe discipline on the system 
architecture. 

The requirement that no strategy-determining 
operations take place in privileged status is an 
expression of the desire to provide a process with as 
little power as possible. A strategy decision which 
requires the examination of critical data but not its 
modification can be made without privileged status, 
and, therefore, should be. Implementation of the 
decision may then be done by a privileged procedure 
which will check that the requested action is 
permitted. The decision process will be restarted if 
the version check indicates that its decision has been 
invalidated by another process' modification of the 
critical data. 

An example of a decision which can take place in 
unprivileged status is the decision to assign a block 
of physical core to a page. A procedure without 
privilege can decide that a particular page is to be 
assigned to a particular block of core; such a decision 
can be made by examining the current contents of core, 
the status of processes wishing to access the page, 
and the status of mass-storage devices. To implement 
the decision, a request is made to a privileged 
procedure. That procedure checks that the page exists, 
that there is not already a copy in core, and that the 

requested location is available for assignment. 

The decision to assign physical core to a page 
may involve complex algorithms which take into account 
such factors as the sizes of the working sets of 
various processes and various parameters relating to 
the use of core by processes. Furthermore, such 
algorithms are likely to he changed as part of the 
process of system evolution. The actual operation of 
assignment, on the other hand, requires only a small 
number of machine instructions to check the status of 
the page and the physical core location and to 
perform the actual assignment. Presumably, one would 
prefer not to allow a program written by any user of 
the system to directly cause the assignment of real 
core to pages; such a restriction on a user's 
program can easily be provided within the above frame- 
work. Note, however, that the consequences of such an 
assignment by a user's program (if it were permitted) 
would affect only the efficiency of the system and not 
the integrity of critical data. 

The requirement that no process ever be removed 
from a physical processor while it has privileged 
status precludes awaiting the completion of physical 
I/0 operations within a privileged procedure. Further- 
more, it requires all interlocks within the system 
to be short-term interlocks (which can be implemented 
by looping on a test-and-set instruction) rather than 
ions-term interlocks (which require that a process be 
unscheduled when the interlock is already set and 
scheduled again when the interlock is cleared). 

Finally, the requirements that no process ever 
return to unprivileged status while part way through 
modification of critical data or while preventing 
access to critical data by other processes allows the 
system's scheduling and resource-allocation mechanisms 
to not be concerned with the need for a particular 
process to complete action on critical data. 

Implementation of the Philosophy 

The implementation of the philosophy described in 
the preceding section implies a number of restrictions 
on the system architecture. We describe below a means 
of implementation which adheres to this philosophy. 

Whenever a change to critical data is to be made, 
a process will enter privileged status from unprivi- 
leged status. In privileged status, prior to any 
modification of critical data, the process will check 
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Success Error 
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Fig. 3. Flow chart of a privileged 
procedure. 
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that the operation is permitted and that all pages 
required are in core and accessible. If either of 
these conditions is not satisfied, the process will 
return to unprivileged status with an error indication 
in the first case and after handling a page fault in 
the second case. If the conditions are satisfied, the 
required changes will be made and control returned to 
unprivileged status. This is illustrated in Figure 3 
(on the preceding page). 

Since all actions take place at central-processor 
speeds, it is reasonable to allow privileged operations 
implemented in this way to run to completion. The 
status of a process at any time when it can be inter- 
rupted is always known: Either the privileged 
operation has not yet been started, or it has been 
completed. 

The remaining requirements are satisfied if long- 
term interlocks are prohibited and short-term inter- 
locks are permitted only for the duration of a 
privileged procedure. To allow for the possibility 
that critical data may have been changed between the 
time a decision was made and entry to a privileged 
procedure, we attach to each shared object a version 
number (which may be a number maintained by the system 
and incremented on request or a set of unique bits 
provided by a system timer [8, 13]). Figure 4 illus- 
trates the unprivileged decision to modify system 
data and its relationship to the privileged procedure 
doing the modification, with checking of version 
numbers. 

When the version check has been passed, it is 
guaranteed that no modification to the critical data 
has occurred since the beginning of the current 
process' decision to modify it; it is further 
guaranteed that the version number will be changed 
before another process can pass the version check. 

In describing the implementation of our four 
principles, we have ignored their relationship Co the 
system's protection mechanism. If decisions on 
protection require searching of hierarchies of files 
to determine if a particular action is allowed, then 
it is clearly not possible to satisfy our criteria. 
Several authors [5, 7, I0, 14] have suggested an 
Implementation. of protection using protected names 
called ca2abillties or access keys retained in a 
privileged data structure associated with a process; 
using such a technique, checks for protection can also 
be implemented in a few machine instructions. 

Finally, we believe that all of the privileged 
procedures which are really necessary for a general- 
purpose multlprogramming system can be implemented 
in two or three thousand machine instructions. Such 
an amount of code--if it is entirely made up of small, 
simple procedures--can be completely tested in a 
reasonable time and can be expected to remain 
relatively static since the mechanisms which change 
with time in a system are its complex strategy 
algorithms and not its basic data structures. 

A Possible Hardware Implementation 

The flow chart in Figure 4 uses a software inter- 
lock (with a test-and-set instruction) to provide 
one-at-a-time execution of a privileged procedure. 
Lampson has suggested the implementation of a special 
"protect" instruction [9, II] which would guarantee 
that a small sequence of instructions is executed 
without interruption and would cause operation to be 
restarted at the protect instruction in case of a page 
fault. A possible implementation in hardware of the 
entry to a privileged procedure is to include as part 
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Fig. 4. Relationship between a 
decision to modify critical data and 
the actual modification. 

of the access rights to a segment the right to enter 
privileged code in that segment; transfer to the 
segment at any location containing a special "entry" 
instruction would cause execution to continue in 
privileged status, with the entry instruction acting 
like Lampson's protect instruction. [The idea of 
using a special instruction to mark an allowed entry 
point in an execute-only segment was suggested to 
the author by Alan Kotok.] 

Accessing a Changing Data Structure 

The technique that we have described requires 
that a process access a data structure for the 
purpose of making a decision with no assurance that 
the data structure will not be changed at an arbitrary 
time. The version check avoids the possibility that 
a resulting incorrect decision will be implemented. 
There is still the possibility that the process will 
behave erratically because of data fetched at an 
inopportune moment. For example, the process might 
fetch a number from the data structure which it 
believes to be an address in some segment but which 
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has been changed by another process to be a portion of 
some alphabetic text; the use of the number thus 
obtained could, in turn, cause the process to destroy 
its own data or to loop forever. 

The version-check technique provides a solution to 
this difficulty. The process need only check that the 
data structure has not been changed whenever it fetches 
data which, if incorrect, could cause erratic behavior. 
The data structure has been changed if the version 
number has been changed. In addition, the data 
structure may have been changed by another processor 
executing in privileged status which has not yet 
updated the version number. 

The implementation of the version check is shown 
in Figure 5. Prior to checking the version number, 
the process guarantees that at some time after the 
data were fetched, no processor was in the midst of 
modifying it; if the version check is then passed, 
it is guaranteed that the data structure had not been 
modified at ~he time the data were fetched. 

I Fetch Data I 
, from Structure I 

k I • yes 

~ Restart at 
Initial Fetch of 
Version Number 

Continue 
Fig. 5. Checking the version 
number when accessing a possibly 
changing data structure. 

If there is available a segmentation mechanism 
which allows the interlock and the version number to 
be accessed directly, the two decisions in Figure 5 
would normally require one or two instructions each. 
We have allowed the process to loop while waiting for 
the interlock to be cleared; we would expect that, in 
a typical system, the expected waiting time would be 
of the same order as the overhead of changing 
processes. 

We note in passing that the check of the version 
number in our original example (see Figure 2) prior to 
a fail return was of the same nature as the version 
check after fetching data during the directory search; 
the version check could thus be removed from 
privileged status in Figure 2 if the process waits 
until the interlock is cleared prior to the version 
check. 

We have shown the updating of version numbers 
following the modification of critical data. Alter- 
natively, the version number could be updated prior to 
the modification. It would then be necessary to test 
that the interlock is not set after fetching the 
version number and to fetch the version number again 
if the interlock is set. In this case, the status of 
the interlock need not be tested when checking the 
version number after fetching of data. 

The Overhead Cost of the Version-Check Technique 

The technique of checking version numbers to 
determine if a decision process should be restarted 
costs some system overhead in that code is repeated 
"uselessly." One can imagine a process cycling 
forever, always unlucky in performing a desired 
privileged operation. We claim that this is unlikely, 
provided that the paging algorithm normally retains 
in core several of a process' most recently referenced 
pages. 

Suppose that we are dealing with a system with 
one central processor. Upon entry to a privileged 
procedure, there may be a number of page faults. The 
code repeated on reentry to the procedure will 
presumably be small compared to the overhead of 
changing processes while pages are brought in. The 
real potential for additional overhead is in the 
repetition of the decision process. With an imple- 
mentation of a working-set paging algorithm, [3] we 
would expect that if the version number is found to 
be incorrect, then the process will have recently been 
unscheduled (so that another process could change the 
version) and will have its required pages in core. 
Thus, if the system's minimum quantum is large enough 
to allow the decision to be made in less than a 
quantum, the process will not again be unscheduled 
until after the privileged procedure has been executed. 

We cannot make as strong a statement for a system 
with more than one processor. With a small number of 
processors, there is still some chance of interference, 
but we would still expect it to be small unless 
processors are spending a very large fraction of their 
time deciding to modify one particular object. With a 
large number of processors, one would probably 
require a "protect" instruction with some sort of 
hardware-implemented scheduling. 
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