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Abstract 

Maintaining consistency of on-line, long-lived, 
distributed data in the presence of hardware failures is a 
necessity for many applications. The Argus programming 
language and system, currently under development at 
M.I.T., provides users with linguistic constructs to 
implement such applications. Argus permits users to 

identify certain data objects as being resilient to failures, 
and the set of such resilient objects can vary dynamically as 
programs run. When resilient objects are modified, they are 
automatically copied by the Argus implementation to stable 
storage, storage that with very high probability does not lose 
information. The resilient objects are therefore guaranteed, 
with very high probability, to survive both media failures and 
node crashes. 

This paper presents a method for implementing 
resilient objects, using a log-based mechanism to organize 
the information on stable storage. Of particular interest is 
the handling of a dynamic, user-controlled set of resilient 
objects, and the use of early prepare to minimize delays in 
user activities. 
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1. I n t r o d u c t i o n  

In banking systems, airline reservation systems, office 

automation systems, and other databases, the manipulation 

and preservation of long-lived, on-line, distributed data is of 

primary importance. The Argus programming language and 

system[12], currently under development at M.I.T., is 

designed to support such applications. A fundamental 

requirement in such systems is making data resilient to 

hardware failures, so that the crash of a node or storage 

device will not result in the loss of vital information. This 

paper discusses support for data resiliency in Argus. 

In Argus, data consistency in the presence of 

concurrency is achieved by making activities atomic. 

Atomic activities are referred to as actions or transactions 

[4, 5, 6]. An action is indivisib/e and total Indivisibility 

means that the execution of one action never appears to 

overlap the execution of any other action. Totalility means 

that the overall effect of an action is all-or-nothing, that is, 
either all changes made to the data by the action happen 

(the action commits), or none of these changes happen (the 

action aborts). While an action is running, the changes it 

makes to data objects are kept in volatile storage. If the 

action aborts, the changes are simply discarded. If the 

action commits, however, the changes become permanent. 

Our method of providing data resiliency is to write such 

changes to stable storage. 

Stable storage provides memory with a high 

probability of surviving node and media failures [11]. A 

stable storage device might provide block read and write 

operations just like a conventional disk device; the write 

operation, however, is atomic, meaning the data is either 

written completely or not written at all, even if there is a 

failure during the write. This atomicity ensures that the data 

will never be left in an inconsistent state in which the old 

value is gone and the new value is wrong. Lampson and 

Sturgis [10] call this kind of stable storage atomic stable 
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storage, and describe one method for implementing it. In 

this paper, we ignore the details of implementing stable 

storage itself and focus instead on how stable storage can 

be organized to allow a distributed system to recover from 

failures efficiently. 

In most existing work on databases [2], file 

repositories [8], and object repositories [16, 17, 1], users 

must make explicit calls on the system to create, modify, or 

delete resilient data: the data is under explicit system 

control. Argus is unique in its integration of resilient data 

into the fabric of the programming language. In Argus, the 

programmer divides data between stable state and volatile 

state; only stable state survives node crashes. The stable 

state is specified as a fixed collection of root objects. 

Objects, however, can refer to other objects, and inter. 

object references can be changed dynamically under 

program control. The stable state is actually the set of all 

objects reachable from the root objects. Thus, objects enter 

and leave the stable state implicitly rather than explicitly. 

The job of the recovery system is to write data objects to 

stable storage as needed, to restore the data objects after a 
crash, and to reorganize stable storage to make crash 

recovery more efficient. 

The next section presents background information on 

the Argus programming language and its model of 

computation, including atomic actions and the two-phase 

commit protocol. Section 3 presents a log-based 

organization of stable storage. Subsequent sections 

present the algorithms for writing objects to the log and for 

recovering objects from the log, and a snapshot technique 

for speeding up crash recovery. We conclude with a 

discussion of current status and future plans. 

2. Background  

This section lays the groundwork for understanding 

the remaining sections. We first explain the basic concepts 

underlying Argus, particularly atomic actions and atomic 

objects, and then discuss how Argus implements atomictiy. 

2.1. The Programming Language Argus 

Argus[12] gives programmers the ability to write 

distributed programs that run on a network of 

heterogeneous computers. Each node in the network is an 

independent computer consisting of one or more 

processors with local memory and devices; nodes 

communicate with each other only by sending messages 

over the network. 

A distributed Argus program consists of modules 

called guardians. A guardian encapsulates and controls 

access to resources, such as databases or devices, and 

guards its local data. A guardian's external interface is in 

the form of a set of operations, called handlers, that can be 

called by other guardians to obtain access to the called 

guardian's resources. In addition to processes executing 

handler calls, a guardian can have processes to perform 

background tasks. 

Guardians are the logical nodes of the distributed 

system. Each resides at a single physical node, although a 

node may support several guardians. When a guardian's 

node crashes, the volatile state of the guardian, as well as all 

processes, are lost; only the stable state survives. The roots 

of the stable state are defined by a fixed number of statically 

declared variables, called the stable variables. The set of all 

objects accessible from these variables (via all chains of 

inter-object references) constitutes the stable state; these 

objects are called stable objects. When the guardian's node 

recovers from a crash, the Argus system re-creates the 

guardian with its stable objects as recorded on stable 

storage. A user process is then started in the guardian to 

reinitialize the volatile state. Once this task is completed, 

the guardian's background processes are restarted, and the 

guardian starts accepting handler calls. 

Atomic actions are the primary method of performing 

distributed computations in Argus. The effect of an action is 

all-or-nothing; that is, it either completes successfully 

(commits) and changes the state permanently, or fails 

completely (aborts) and restores the state that existed 

before the action was executed. An action starts at one 

guardian and can spread to other guardians by means of 

handier calls. (Actually, handler calls are run as subactions 

of the calling action as is discussed further in section 

2.2 below.) When the action completes, it either commits at 

all guardians, and the changes it made to each guardian's 

stable state are reflected in stable storage appropriately, or 

it aborts at all guardians. 

Atomicity is achieved with atomic objects. Argus 

provides several built-in types of atomic objects, such as 

atomic_arrays and atomic_records. These are similar to 

ordinary objects except that they use locks and versions to 

provide totality and indivisibility for actions using the 

objects. There are two kinds of locks: read locks and write 

locks. To use an object, an action must invoke one of the 

object's operations. The operation acquires the lock in the 

appropriate mode and the action holds the lock until it 

completes (commits or aborts). When a write lock is first 

obtained for an action, a version of the object is made in 

volatile memory, and the action operates on this version, 

called the current version. The old version, called the bass 
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version, is also retained. If the action commits, the current 

version becomes the base version and the old base version 

is discarded. If the action aborts, the current version is 

discarded. 

Argus also supports user-defined atomic objects (see 

[18]), which present an external interface that supports 

atomicity, but can offer significant concurrency as well. 

User-defined atomic objects do not have a major impact on 

the algorithms described in this paper; to simplify the 

presentation, we consider only built-in atomic objects. 

Complete algorithms are presented in [15]. 

2.2. Overview of Transaction Processing in Argus 
As actions execute, modifications to objects are made 

on volatile versions at several guardians. As we mentioned 

above, each object is contained in exactly one guardian. 

Each guardian keeps track of all uses of its own objects; 

such information is never sent to another guardian. In 

particular, for each action that visits a guardian, the 
guardian records every atomic object the action reads and 

every one it modifies. Information about these modified 

objects is maintained in the Modified Objects Set (MOS); a 

guardian maintains a separate MOS for every action that 

has visited it and that has not yet committed or aborted. 

When an action commits, the system must ensure that 

it either commits everywhere or aborts everywhere, and that 

its effects are made permanent by writing the modified 

atomic objects to stable storage. Since the guardians 

themselves know which objects were modified by the action, 

the system just needs to communicate with the guardians 

that the action visited, using the standard two-phase commit 

protocol [7]. Since the algorithms presented later in this 

paper are tightly coupled with this protocol, we explain it 

briefly here. Although many optimizations of the standard 

protocol are possible, we avoid describing any of them for 

the sake of simplicity. The protocol works even if crashes 

occur while it executes; we assume that no nodes crash 

forever and eventually any two nodes can communicate 

[14]. Following standard terminology, we call the guardian 

where the action originates the coordinator, and the various 

guardians visited via handler calls the participants. 

1. Coordinator's Preparing phase. In the 
preparing phase, the coordinator sends a 
prepare message to each participant (including 
itself) saying "prepare for action A to commit," 
where A is the action identifier of the preparing 
action, and then waits for replies. Participants 
reply with either prepared or aborted messages. 
If the coordinator receives a prepared message 
from each participant, it starts the committing 

phase below. If an aborted message is 
received, then the action must be aborted, and 
the coordinator informs the other participants 
via abort messages. The coordinator may also 
abort unilaterally if it does not receive 
responses from some participants, after suitable 
attempts to retransmit the prepare messages. 

2. Coord inator 's  Commit t ing phase. If all 
participants respond prepared, the coordinator 
writes a committing record, containing the 
names of the participants, to stable storage. At 
this point the action is committed. The 
coordinator then sends commit messages to all 
the participants (including itself), and waits for 
committed messages in response. When all 
have responded, the coordinator writes a done 
record to stable storage, and the two-phase 
commit is complete. 

3. Participant's Prepare phase. When. a 
participant receives a prepare message from 
the coordinator, it responds as follows. If the 
action is unknown at the participant (due, for 
example, to a crash), then the participant 
replies aborted to the coordinator. Otherwise, 
the current versions of all stable objects 
modified by the action (all stable objects listed 
in the MOS) are written to stable storage, read 
locks for all objects read by the action but not 
modified are released, and a prepared record is 
written to stable storage. The participant then 
replies prepared to the coordinator and enters 
the completion phase. 

4. Participant's Completion phase. Once e 
participant has written the prepared record, it 
must await a verdict from the coordinator. When 
the participant receives a commit message, it 
writes a committed record to stable storage, 
releases write locks, replaces base versions 
with current versions, and then replies 
committed to the coordinator. If the participant 
receives an abort message instead, it writes an 
aborted record to stable storage, releases write 
locks, and discards current versions. If a 
participant has not heard from its coordinator it 
can query the coordinator to find out the 
outcome of the action. (An action identifier 
contains enough information that each 
participant knows who its coordinator is [13].) 

As mentioned above, actions may be nested. In 

particular, handler calls run as subactions of the calling 

action. Subactions require extensions to the locking and 
version management rules given above (see[12]); for 
example, there is a separate version for each subaction that 

modifies an object. But these extensions are not significant 

as far as recovery is concerned because two-phase commit 
is only carried out when top actions commit. (Top action8 
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are not subactions of any action.) When a top action 

commits, only two versions exist for each object it modified: 

the base version records the state of the object before the 

action ran, and the current version records all changes 

made to the object by the action and its descendants. It is 

this current version that is written to stable storage. 

3 .  The  Log 

Two main methods have been used in systems to 

organize stable storage: logging and shadowing. Like an 

accounting journal that is a chronological record of 

accounting transactions, a/og [3, 7, 10] is a kind of append- 

only file used to record the versions of objects changed by 

an action as well as the stages of the two-phase commit 

protocol. The protocol information is needed to recognize 

when all values of data objects modified by a committing 

action have been written to the log, and when participants 

and coordinators must be recreated. For example, if a crash 

occurs before all modifications for an action have been 
written, then on recovery all modifications for the action will 

be discarded (and the action aborts). 

In shadowing [7], storage is organized as a map, 

which associates objects with their actual versions in stable 

storage. As an action gets ready to commit, the new object 

versions are.written to stable storage without destroying 

existing versions. When an action actually commits, these 

new versions are installed by making a new map that 

contains the pointers to them, writing the map to stable 

storage, and then switching from the old map to the new 
map in one atomic step. The old versions are then 

discarded. When an action aborts, the new versions are 

discarded and the map is untouched. 

In a distributed system, a map alone is not enough for 

shadowing to work properly; information about the status of 

actions (prepared, committed, or aborted) is needed. For 

prepared actions, intentions fists [9] are also required. An 

intentions list contains the new piece of the map for the 

prepared action. A log might be used to maintain this 

information. 

A cursory comparison of logging and shadowing 

would lead one to the conclusion that logging is faster 

during normal execution, since there is no need to update a 

possibly large map, but is slower during recovery, since an 

ever expanding log must be scanned in its entirety. There 

are, however, innumerable tricks and variations for each 

scheme, and ultimate performance depends heavily on the 

precise characteristics of the stable storage devices used. 

We will return to this issue at the end of the paper. 

We have chosen to use a log-based mechanism for 

Argus, which we describe in the remainder of this section. 

3.1. Log Abstraction Interface to Stable Storage 

To avoid considering the details of implementing 

stable storage on top of conventional storage devices, we 

will simply assume the existence of a stable storage system 

that provides an efficient implementation of stable logs. A 

stable log resembles an array indexed by abstract objects 

called log_addresses. , 

The (stable) log abstraction provides the following 

operations: 

1. create(). This operation creates a new log 
object and returns it. 

2. write(log, entry). This operation writes an 
arbitrary length entry to the log, and returns its 
log_address. The actual writing of the data to 
the stable storage may not have happened 
when this operation returns. 

3. force_write(log, entry). This operation forces an 
entry to the log, and returns its log_address. 
The current entry and all older entries have 
been written to stable storage when the 
operation returns. 

4. get_last(log). This operation returns the log 
address of the last entry that was forced to the 
log. 

5. read(log, Iogaddress). This operation reads 
the entry at the log address and returns it. 

6. destroy(log). This operation destroys a log. 

Each guardian has its own log; the Argus system 

remembers (in stable storage) the association between a 

guardian and its log. 

3.2. Structure of the Log 

Entries in the log can be classified as either data 

entries or outcome entries. A data entry contains a copy of 

a version of an atomic object; outcome entries indicate the 

stages of an action, such as whether an action has 

prepared, committed, or aborted. Figure 1 shows the 

formats of these entries. 

Each outcome entry contains a log pointer, linking the 

entry to the previous outcome entry in the log. This reverse 

chain will be used during recovery to reconstruct the stable 

state. The outcome entries come in two varieties, one set 

-- prepared, committed, aborted, base_committed, and 

prepareddata -- for participants and the other set 

-. committing and done -- for coordinators, 
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Data entry 

I objectvalue I 

Outcome entries for participants 

prepared 

<uid,log address> 

action id 
log pointer 

base committed 

I object uid 
object value 
log pointer 

committed 
action ~ 

log pointer 

prepared data 

object uid 
object value 

action id 
log pointer 

aborted 

I action ~ 
log pointer 

Outcome entries for ceordinators 
committing 

I guardian ids I action id 
log pointer 

done 

I ect,°n, 1 
log pointer ] 

Figure 1 : Format of log entries 

A prepared outcome entry contains the action 

identifier of the preparir~g action, and a list of <uid, log 

address> pairs, where the uid is an identifier for an atomic 

object and the log address points to a data entry containing 

a copy of the object's version. This list is like the intentions 

list or partial map in a shadowing scheme; there is a pair for 
each atomic object that was both modified by the action and 

accessible from the stable variables. 

A committed outcome entry is written to a 

participant's log by the recovery system when an action has 
committed, and an aborted outcome entry is written when 
an action has aborted. These entries contain the action 
identifier of the completing action. 

Two special participant outcome entries, 

basecommitted and prepareddata, handle certain cases 

arising from the dynamic nature of the guardian's stable 

state. The use of these entries, which are combined data 

and outcome entries, will be explained in the next section. 

A committing outcome entry is written to a 

coordinator's log by the recovery system when all 

participants have prepared; it includes a list of all 

participants. A done outcome entry is written when two- 

phase commit is complete. Both entries contain the action 

identifier of the completing action. 

4. Writ ing Objects  to the Log 

Our recovery system is similar to others that use a log. 

Whenever a participant receives a message from a 

coordinator, it carries out the requested action. If the 
message is a prepare, it writes out data entries containing 

the current versions of all objects modified by the action, 

followed b~ the prepared outcome entry. (Some of these 
data entries may have been written already because of early 
prepare as discussed in section 4.5 below.) Later, when it 

receives a commit message it writes out a committed 

outcome entry; when it receives an abort message, it writes 

out an aborted outcome entry. The coordinator writes out a 

committing outcome entry when all participants are 
prepared, and a done outcome entry when all participants 

acknowledge receipt of the commit message. 

The result of this approach is that more recent 

information occurs later in the log than older information. 

During recovery, then, the recovery system will process the 
log backwards. For each data entry, it considers the status 

of the action on whose behalf that entry was written; 

information about the action status will be encountered 

before the entry since it was written to the log alter the 
entry. If the action has aborted, or has no status, the 
recovery system ignores the data entry. (An action may 
have no status because, for example, a crash occurred 

while the action was preparing.) If the action has prepared, 

that is, a prepared outcome entry has been processed but 

not a committed or aborted outcome entry, then the 
recovery system uses the data entry to restore the object's 

current version. It also grants a write lock on the object to 

the prepared action; granting this lock allows us to resume 

execution of the guardian before the prepared action 

terminates. If the action has committed, the recovery 

system uses the entry to restore the object's base version, 

provided the base version has not yet been restored; if the 

base version is already restored, the entry contains an older 

and, hence, obsolete version of the object, so it is ignored. 

This section discribes how we write information to the 

log. First, we discuss how atomic objects are copied to 

stable storage, and how we maintain the sharing 

relationship among objects when they are stored in the log. 

Next, we discuss how the system determines which modified 

objects should be written to stable storage, and how we deal 

with atomic objects that dynamically enter and leave a 

guardian's stable state. Then we describe our general 

writing method, and how to do early prepare. 
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4.1. Copying Data 
The method we use for copying atomic objects to 

stable storage works in an incrementa/ fashion: each 

atomic object is copied to stable storage in a separate, 

atomic step. To make incremental copying possible, each 

atomic object contains, in addition to lock information and 

versions, a unique object identifier called a uid. These uids 

find their use in the log. They are stored in the intentions list 

in the prepared outcome entry (see Figure 1), and also 

support inter-object references: a version in the log can 

refer to an atomic object by using that object's uid. 

In volatile memory, objects are stored in a heap, and 

garbage collection is used to reclaim storage. Suppose 

object A contains object B as a component (for example, B 

is an element of an array A). The data storage for B is not 

physically contained within the storage for A; rather, B is an 

independent object and A contains the volatile memory 

address of B. (In actual practice, there are a few exceptions 

that arise out of performance considerations. Integers, in 

this example, would be contained in the storage for A, rather 

than existing as an independent object 8 with a pointer to it 

from A.) 

Thus, a version of an atomic object may contain 

references to other objects, both atomic and non-atomic, 

which may in turn refer to other objects. An example of 

such an object is given in Figure 2a. The figure shows an 

atomic record with four components; the first component is 

an integer, the second is a sequence of integers as is the 

third, and the fourth is an atomic array. The figure shows 

the current version of the object; notice that the second and 

third components refer to the same sequence. 

When a version is copied to the log, all non-atomic 

objects accessible from the version are also copied, but 

contained atomic objects are not. These contained atomic 

objects will be copied in a separate atomic step if they were 

modified by the preparing action. 

In the copy on the log, contained non-atomic objects 

are contiguous, the intra-object references to non-atomic 

objects are replaced by relative offsets within the copy, and 

the references to other atomic objects are replaced by the 

uids of those objects. Figure 2b shows the log 

representation for the current version of the object in Figure 

2a. Notice that the reference to the contained atomic object 

has been replaced by that object's uid. 

Sharing relationships among the copied non-atomic 

objects are preserved. For example, the sharing of the 

sequence of integers is preserved in Figure 2b, and the use 

of uids for the atomic objects allows the sharing 

relationships among atomic objects to be preserved. 

c u r r c n t ~  atomic record 

I 

sequenee[int] 

a. An atomic record in volatile memory 

1,7 ,I i i 
b. A copy of the current version of the record on the log 

Figure 2: Object Formats 

Because of the incremental nature of the copying, however, 

the sharing of a non-atomic object between several atomic 

objects is not preserved. 

4.2. The Accessibility Set 
As mentioned earlier, for each action, the Argus 

system keeps track of modified objects in a Modified 

Objects Set (MOS) for the action. The recovery system 

separates the objects in the MOS that are accessible from 

the guardian's stable variables from those that are 

inaccessible and only writes the accessible objects to the 

log. 

Determining the accessibility of an atomic object 

could be accomplished by walking over the trees of objects 

accessible from the guardian's stable variables. To avoid 

race conditions, such a traversal must effectively block all 

user processes from running. This kind of approach would 

be extremely inefficient because there are likely to be many 
accessible objects. Instead, the recovery system maintains, 

for each guardian, an accessibi/ity set (AS) of atomic 

objects accessible from the guardian's stable variables. The 
AS is implemented with a single bit in each atomic object; to 

determine whether an atomic object in the MOS must be 
written to the log, the recovery system merely checks this 
bit. The AS is initialized when the guardian is created by 
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performing an initial walk over the tree of objects accessible 

from the stable variables, setting the bit in each atomic 

object encountered. To maintain the AS, two problems 

must be solved: discovering when an object is newly 

accessible, and must be added to the AS, and discovering 

when an object is no longer accessible, and can be deleted 

from the AS. 

Determining when an object is no longer accessible 

can only be accomplished by a full tree traversal from the 

stable variables. The current Argus implementation uses a 

stop-the-world, mark-sweep garbage collector to reclaim 

storage; recomputing the AS is done as part of the mark 

phase and requires essentially no additional overhead. 

Notice that this means the AS is really a superset of the 

atomic objects actually accessible. For each inaccessible 

object that remains in the AS, modifications to that object 

will result in unnecessary writes to stable storage. Usually, 

however, when an object is removed from the stable state it 

becomes completely inaccessible, and subject to 

reclamation at the next garbage collection. Such an object 

will not be modified because no program can access it. 

Therefore, waiting to recompute the AS until a garbage 

collection involves little unnecessary writing of inaccessible 

objects to stable storage. 

4.3. Newly Accessible Objects 
An atomic object is newly accessible if it is reachable 

from the stable variables but is not in the AS. The object 

may be newly created, or it may have existed for some time 

but was reachable only from volatile variables. Since the 

only way to make an object newly accessible is to modify 

some object that is already accessible, the recovery system 

can discover newly accessible objects simply by examining 

the other atomic objects encountered while copying 

accessible objects. In the process of copying an object, 

whenever a reference to an atomic object is replaced with 

the object's uid, the recovery system checks the referenced 

atomic object to see if it is in the AS. If not, the object is 

newly accessible and the recovery system must also copy it 

to the log, as well as add it to the AS. Copying the newly 

accessible object may, of course, result in finding more 

newly accessible objects. 

Newly accessible objects introduce some new 

problems because the action that makes an object newly 

accessible may not have modified that object. One problem 

is that we may need to write the base version of the newly 

accessible object, instead of writing the current version of 

the object, which is what we always write for accessible 

objects. But a more significant problem is that if the 

preparing action did not modify the newly accessible object, 

then some other active action might be using that object 

concurrently. (Such concurrent use was not possible for 

accessible objects since the preparing action held a write 

lock on the object.) There are two situations to consider, 

each involving two or more concurrent actions. In the first 

situation, several actions make the object accessible; in the 

second, one action makes the object accessible, while 

another action modifies the object. The situations are 

illustrated with scenarios. 

Scenar io  1. Suppose two actions, T 1 and T 2, 
both make some object, O, newly accessible 
through different paths, but neither modifies O 
itself. Suppose further that T 1 prepares before T 2. 
When T 1 prepares, O is found to be newly 
accessible, its base version is written to the log, 
and then O is added to the AS. When T 2 prepares, 
no version is written because O is already in the 
AS. Now let us consider what happens if T 1 
aborts, T 2 commits, and the node crashes. On 
recovery, the version of O is ignored because it 
was written on behalf of an aborted action. O is 
still accessible via the commit of T 2, but there is no 
version of O for the recovery system to use. 

To ensure that newly accessible atomic objects 

always have a base version at recovery, a special outcome 

entry, base_committed, is used. Whenever a newly 

accessible atomic object is encountered, its base version is 

copied to the log as part of a basecommitted outcome 

entry. Such an outcome entry is not tied to a particular 

action (note that the entry does not contain an action 

identifier), and will be processed at recovery even if the 

action that caused it to be written ultimately aborts. 

If a newly accessible object is in the preparing 

action's MOS, the object's current version is also written to 

the log as an ordinary data entry, to be included in the 

action's prepared outcome entry. The current version, 

however, must be copied in another case, as the following 

scenario illustrates. 

Scenar io  2. Suppose action T 1 makes object O 
newly accessible, and that O has been modified 
(but not made accessible) by some other action, 
T 2. Suppose further that T 2 prepares before T 1. 
When T 2 prepares, no version of O is copied, 
since O is not accessible. When T 1 prepares, O's 
base version is copied but not its current version, 
since T 1 has not modified O. Now let us consider 
what happens if both T 1 and T 2 commit and the 
node crashes. On recovery, only the base version 
of O is restored, even though T 2 has committed. 
The modifications made by T 2 have been lost. 
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To avoid losing modifications, we use another special 

outcome entry. When a newly accessible object is write- 

locked by an action that has already prepared, the current 

version of the object is copied to the tog as part of a 

prepared_data outcome entry. This entry contains the 
action identifier of the prepared action. At recovery, it will 

be treated as a (belated) addition to the prepared outcome 

entry of the specified action. 

4.4. The General Writing Algorithm 
We now present the full algorithm for preparing an 

action at a participant guardian. This algorithm runs when a 

prepare message is received at the guardian. The algorithm 

uses two new sets, maintained separately for each 
preparing action. An Intentions List (IL) is used to 

accumulate the <uid, log address> pairs for eventual 

inclusion in the prepared outcome entry. A Newly 

Accessible Objects Set (NAOS) is used to keep track of 

newly accessible objects. 

The algorithm can be executed concurrently for 

multiple actions at the same guardian; in steps 2 and 3 

below, the processing for an individual object must occur 

indivisibly with respect to concurrent prepares. 

1. Create an empty NAOS and an empty IL. 

2. V object 6 MOS do 

a. lf object E AS, write a data entry 
containing a copy of the object's current 
version, and add the <object uid, data 
entry log address> pair to the IL. For each 
atomic object encountered while copying 
the version, check the AS. If the object 
AS then the object is newly accessible, so 
add it to the NAOS for eventual 
processing. 

b. Delete the object from the MOS. 

3. V object E NAOS do 

a. If the object is still ~ AS (it may have been 
added by a concurrent prepare), write a 
base_committed entry containing a copy 
of the object's base version. For each 
atomic object encountered while copying 
the version, if the object ~ AS then add it 
to the NAOS. 

b. Whether the object is still in the AS or not, 
if the preparing action has a write lock on 
the object, then write a data entry 
containing a copy of the object's current 
version, and add the <object uid, data 
entry log address> pair to the IL. For each 
atomic object encountered while copying 

the version, if the object ~ AS then add it 
to the NAOS. 

c. If the object (E AS and some other action 
holds a write lock on the object, check the 
status of that action. If the locking action 
has already prepared, write a 
prepared_data entry containing a copy of 
the object's current version and the 
action identifier of the locking action. For 
each atomic object encountered while 
copying the version, if the object (~ AS 
then add it to the NAOS. If the locking 
action is preparing concurrently, simply 
add the object to the NAOS of the locking 
action if that action's IL does not yet 
contain an entry for the object. 

d. Add the object to the AS and delete it 
from the NAOS. 

4. Write a prepared outcome entry containing the 
IL, forcing it and all previous entries to the log 
with the lorce_write operation. The particpant 
can then respond with a prepared message to 
the coordinator. 

As mentioned earlier, the AS is initialized as part of 

guardian creation. Once the stable variables are initialized, 

they become read-only. At this point, the uids of the atomic 

objects that have been assigned to them are written to the 
log in a special record. These objects are then used as an 
initial NAOS, and a special version of step 3 of the algorithm 

above is run to initialize the AS and to write base versions of 

the stable objects to the log. 

4.5. Early Prepare 
The algorithm in the previous section delays all 

prepare activity until the prepare message is received from 

the coordinator. Once a handler call commits at a guardian, 

however, local processing on its behalf is over, so there is 

no reason why copying new versions of objects to the log 
cannot take place before the prepare message arrives. 

Early copying of versions to stable storage is called early 

prepare. Early prepare is done in background mode when 

the guardian is not busy. Ideally, by the time the prepare 

message arrives at the guardian, all modified and newly 
accessible objects have already been copied to the log. All 

that remains to be done is to write the prepared outcome 

entry itself. 

Very few changes to the algorithm are needed to 
support early prepare. Rather than running the algorithm 

for each action, we can run it for each handler call made by 

the action. That is, we keep a separate MOS, IL, and NAOS 

for each handler call. The recovery system can start 
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running the algorithm (with the exception of the last step) as 

soon as a handler call completes. When the prepare 

message for the action is finally received, processing for 

each handler call that was part of the preparing action is run 

to completion, and then a merge of the resulting ILs is 

performed. Several handler ILs may contain entries for the 

same object, but with different object versions. The version 

used in the merged IL depends on which handler calls were 

retained by the action (an action may abort the effects of 

individual handler calls), and the subaction ordering of 

those committed handlers. Typically, the version for the last 

handler call will be used. Once the ILs have been merged, a 

prepared outcome entry is written to the log. 

Early prepare may result in unnecessary information 

being copied to stable storage. For example, the action may 

ultimately abort, in which case all of the effort is wasted. If 

the action visits a guardian multiple times, and modifies the 

same object each time, multiple versions of the object may 

be written to the log. If the guardian has sufficient idle time, 

however, early prepare is almost always worth the effort, 

since it reduces the real-time delay imposed by two-phase 

commit. 

5.  R e c o v e r i n g  O b j e c t s  f r om the Log 

After a crash, the recovery system reads the log 

backwards starting with the last outcome entry, 

reconstructing the stable state of the guardian as well as the 

action state. The recovery system restores the objects to 

the same state they were in before the crash. Three tables 

are used during recovery: 

1. A participant action table (PT) maps action 
identifiers to participant action states: 

PT: action id ---~ participant action state 

where participant action state is either 
prepared, committed, or aborted. 

2. An object table (OT) maps object uids to object 
states: 

OT: object uid ~ object state 
The object state is either partial or restored, and 
contains the address of the object in volatile 
memory. 

3. A coordinator action table (CT) maps action 
identifiers to coordinator action states: 

CT: action id ~ coordinator action state 

where coordinator action state is either 
committing or done. The committing state 
contains a list of the guardian identifiers of the 
participants. 

To restore a logged version to volatile memory, the 

recovery system copies the version into volatile memory, 

adds a base address to each contained relative offset to 

obtain the new memory reference for a contained non- 

atomic object, and replaces each contained uid of an atomic 

object with a volatile memory reference to that object. Each 

contained uid is looked up in the OT. If it is present in the 

OT, then its volatile address is known, and its uid can be 

replaced with that address. Otherwise, a "null" object is 

created for it, and it is entered in the OT in the partial state. 

An object remains in the partial state until its base version is 

restored; the version (or versions) will be filled in as they are 

encountered later during recovery. 

In the recovery algorithm described below, two kinds 

of object version restoration are used: base restoration and 

prepared restoration: 

1. base restore. This is used to restore the base 
version of the object. Given an <object uid, 
version log address> pair, look up the uid in OT. 
If uid (~ OT, the version is restored from the log 
and installed as the base version of the object, 
and the entry <uid, restored, vm address> is 
added to OT. If <uid, partial> E OT, the log 
version is restored as the base version, and the 
OT entry is changed to the restored state. If 
<uid, restored> E OT, the log version is ignored. 

2. prepared restore. This is used to restore the 
current version of an object, and is therefore 
run on behalf of an action that has prepared but 
not yet committed. Given an <object uid, 
version log address> pair and an action 
identifier, look up the uid in OT. If uid ~ OT, the 
version is restored from the log and installed as 
the current version of the object, the action is 
granted a write lock, and the entry <uid, partial, 
vm address> is added to OT. If <uid, partial> E 
OT, the log version is restored as the current 
version, and the action is granted a write lock. 
(<uid, restored> E OT is not possible since we 
process the log backwards, and no action 
whose outcome entry appears in the log after 
the prepare record of this action can have used 
the object, since this action held an exclusive 
lock on it at the time of the crash.) 

The general recovery algorithm can now be 

described. 

1. Create an empty PT, OT, and CT. Volatile 
memory is empty. 

2. Read the log backwards, starting with the last 
outcome entry in the log. Process each entry as 
follows. 

a. done outcome entry. Insert <a/d, done) in 
the CT. 
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b. committing outcome entry. If <aid, done) 
E CT then ignore the entry. Otherwise, 
insert <aid, committing(gids)> into the CT, 
where gids are the guardian identifiers of 
the participants as given in the outcome 
entry. 

c. committed outcome entry. Insert <aid, 
committed> in the PT. 

d. aborted outcome entry. Insert <aid, 
aborted> in the PT. 

e. prepared outcome entry. Look up the aM 
in the PT. 

i. <aid, committed> E PT. V <uid, log 
address> pairs, do a base restore. 

ii. <aid, aborted> E PT. Do nothing. 

iii. aid ~ PT. Insert <aid, prepared> in 
the PT, and V <uid, log address> 
pairs, do a prepared restore. 

f. base_committed outcome entry. Do a 
base restore with the <uid, log address> 
pair. 

g. prepared_data outcome entry. Look up 
aid in the PT. 

<aid, committed> E PT. Do a base 
restore with the <uid, log address> 
pair. 

ii. <aid, aborted> E PT. Do nothing. 

iii. aid ~ PT. Do a prepared restore 
with the <uid, log address> pair. 

3. The special log record identifying which objects 
are assigned to the stable variables is read, and 
the stable variables are initialized. The recovery 
system traverses the objects accessible from 
the stable variables, recreating the AS. 

4. The PT and CT are returned to the Argus 
system, to recreate two-phase commit activities. 

We now present an example of recovery. Suppose we 

have the log depicted in Figure 3. In this figure the log 

grows to the right. The symbols in the log have the following 

meaning. T 1 and T 2 are action identifiers. Action T 1 has 

committed; action T 2 has prepared. 01 and 02 represent 

unique object identifiers, and V 1 and V 2 are the object 

values, that is, the versions of objects. L 1 and L 2 are log 

addresses. The arrows are back pointers either to data 

entries or to other outcome entdes. 

The following is a step-by-step explanation of how the 

objects in the log depicted in Figure 3 are recovered. 

L2 L1 

I 4 ..... l 

v, I i I <°''L'' 
O1 I 02 <O2,L2> T1 

1 L I" !'; 
Iog'send 

Figure 3: Log after the prepare phase 

The recovery system reads the log backwards starting 

with the last outcome entry. 

1. For outcome entry <prepared, <01, L1), T2> the 
recovery system checks the PT for T 2 and 
enters <T2, prepared> into the PT. 

For the <01, LI> pair the recovery system 
checks the OT for the uid, finds it is not there, 

"follows the L 1 pointer to the data entry, copies 
the object version V 1 to volatile memory as the 
current version for an atomic object, and grants 
T 2 a write lock. The recovery system enters 
<01, partial, vm address> into the the OT and 
follows the log pointer to the previous outcome 
entry. 

2. For outcome entry <committed, Ti> the 
recovery system enters <T 1 , committed> into the 
PT, and follows the log pointer to the previous 
outcome entry. 

3. For outcome entry <prepared, <0 2, L2>, TI> the 
recovery system looks up T 1 in the PT and finds 
the <T 1 , committed~ entry. 

For the <0 2, L2> pair the recovery system looks 
up 0 2 in the OT, finds it is not there, follows the 
L 2 pointer to the data entry, and copies the 
object version V 2 to volatile memory as the base 
version of the object. The recovery system 
enters <0 2, restored, vm address> into the OT, 
and follows the log pointer to the previous 
outcome entry. 

4. For outcome entry <base_committed, 0 2, V2), 
the recovery system looks up 0 2 in the OT. 
Since the object already appears in the OT with 
state restored, the most current version of the 
object has already been copied, so the recovery 
system ignores the entry. The recovery system 
follows the log pointer to the previous outcome 
entry. 

5. For outcome entry <base_committed, 01, Vl>, 
the recovery system looks up up 01 in the OT. 
Since the state of the object is partial, the 
recovery system copies V 1 into volatile memory 
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as the base version of the object and changes 
the object state to restored. The log pointer is 
null, so there are no more outcome entries to 
consider. 

6. Housekeeping the Log 

We have seen that the log is a repository of all the 

atomic objects that were ever part of the guardian's stable 

state during the guardian's lifetime. As time goes on, the log 

will eventually become quite large. Although the recovery 

system need not read all data entries, it must read every 

outcome entry to reconstruct the stable state. If the log is 

too large, recovery will be unacceptably slow. Furthermore, 

the recovery system cannot determine the stable state until 

all objects have been recovered from the log. As new 

objects replace older objects in the stable state, the total 

number of objects restored from the log may be much larger 

than the number of objects actually contained in the final 

stable state, perhaps even more objects than will fit in 

volatile memory. 
One way to reduce the size of the log is to produce 

periodically a snapshot representing the stable state of a 

guardian and to write that snapshot into a new log. This 

new log replaces the old log when the snapshot is complete. 

For example, a snapshot could be taken immediately after 

recovering from a crash if the log is large compared to the 

final size of the stable state. For very active guardians 

running on reliable nodes, however, waiting for a crash to 

take a snapshot is inadequate, and it is undesirable to force 
the guardian to crash just to clean up the log. Stopping the 

guardian to take a snapshot is just as bad as crashing it, 

because activity may be suspended for an undesirable 

length of time. Therefore, we describe a dynamic snapshot 

scheme below. This scheme does not affect the recovery 

algorithm at all, and requires only minor changes to the 

writing algorithm. 

A snapshot takes place in two stages. First, the 

recovery system copies the accessible objects into a new 

log. Second, it copies to the new log all outcome entries 

(together with their associated data entries) written to the 

old log since the snapshot began. The snapshot is 

performed by a process running in parallel with other 

system and recovery operations, synchronizing with them as 

needed. The snapshot process generally runs only when 

the guardian is otherwise idle, although if little progress is 

being made on the snapshot, it may be necessary to give the 
process more time. 

When the snapshot process first starts up, it 

determines the earliest log address recorded in the ILs of 

actions being prepared (or early prepared) by the recovew 

system, and remembers that address. The snapshot 

process also creates a new, empty accessibility set (the 

snapshot AS), and a new, empty log (the snapshot log). It 

then traverses the graph of atomic objects accessible from 

each of the guardian's stable variables. For each atomic 

object it encounters, it checks whether the object is already 
in the snapshot AS. If not, it adds the object to the snapshot 
AS, and writes a basecommitted entry containing the base 

version of the object to the snapshot log. 

When the snapshot process has completed its 

traversel of the stable state, it enters the second stage of the 
snapshot, to deal with entries written to the normal log while 

the snapshot was being taken. These entries must be 

copied over to the snapshot log. Starting with the entry at 

the log address recorded when the snapshot proces,~ first 

started, the snapshot process reads each entry (in forward 

order) from the normal log and writes a new copy of the 

entry to the snapshot log. For each data entry copied over 
to the snapshot log, the snapshot process maintains a 

mapping from log address in the normal log to 

corresponding log address in the snapshot log. When a 

prepared outcome entry is read from the normal log, the 
snapshot process must update each contained <uid, log 

address) pair with the new snapshot log address before 

writing the entry to the snapshot log. 

When all entries in the normal log have been copied, 

the normal recovery system is suspended while the normal 

log is replaced with the snapshot log, and all log addresses 

in all ILs of preparing actions are mapped to their new 

addresses. The recovery system then resumes writing log 

entries to the new log. 

This snapshot algorithm can result in unnecessary 

copying of data. For example, the first stage may write a 

base version, only to have that version supplanted by a 

version from an action that commits while the snapshot is 

being taken. The amount of extra copying is proportional to 

the amount of processing that occurs against the old log 

while the snapshot takes place. We assume that the extra 

copying is not significant compared with the total size of the 
stable state. 

7. Discussion 

We have described a log-based organization of stable 

storage, and presented algorithms for writing objects to the 

log and recovering objects from the log after a crash. A 

significant feature of these algorithms is the handling of a 

dynamic, implicitly changing stable state via a guardian's 

Accessibility Set. We introduced an early prepare 
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mechanism to speed up two-phase commit, and a snapshot 

mechanism to speed up crash recovery, 

We believe this is a reasonably efficient method for 

organizing stable storage. In the expected normal case, 

assuming enough idle time for early prepare to finish, the 

total delay a user process incurs for two.phase commit is 

approximately one message round trip time (prepare and 

prepared messages) plus the time for two stable storage 

writes (prepared and committing entries); no delay accrues 

from phase two of the protocol, as it can be carried out in 

background. This is about the best one can hope for with 

any method. Although the log is biased somewhat in favor 

of normal processing at the expense of recovery speed, the 

snapshot mechanism should provide recovery times 

reasonably close to those possible with a shadowing 

scheme, again assuming guardians have sufficient idle time. 

Argus is running on VAX-11/750 processors under 

Berkeley Unix 4.2. The basic writing and recovery 

algorithms have been implemented and are in use in the 

Argus system, although we are currently using conventional 

disks instead of true stable storage. Early prepare and 

snapshots are not yet implemented. 

Current time Estimated time 
conventional disks stable storage 

message round trip 35 15 
one block disk write 60 20 
total user delay 265 95 

Figure 4: Current and Estimated Performance Figures 

Figure 4 presents our current and estimated 

performance figures. A message round trip time is 

approximately 35 milliseconds; measurements show that 

more than half of this time can be attributed to unnecessary 

kernel overhead. Our measurements show that a typical 

one block raw disk write takes about 20 milliseconds; 

however, we are using a network-based disk server, with a 

write time of about 60 milliseconds. With this configuration, 

two-phase commit delays a user process a minimum of 155 

milliseconds, but because Unix lacks non-blocking raw disk 

writes, the writes done in "background" in phase two of the 

protocol block the entire guardian, so the delay with 

sustained activity is closer to 265 milliseconds. The 

estimated delay of 95 milliseconds assumes one round trip 

message and four disk writes, two each for writing the 

prepare and committing records. If we are willing never to 

overwrite disk pages as is done, for example, in Swallow 

[16, 17]: then the delay can be reduced to 55 milliseconds. 

During recovery the system must read every outcome 

entry, but may only look at a fraction of the data entries in 

the log. To reduce the number of unnecessary reads during 

recovery, it might be better to keep two separate logs, one 

containing information about actions (outcome entries), and 

the other containing information about data (data entries). 

We have merged the outcome and data entries into one log 

to minimize the number of sequential stable storage writes, 

under the assumption that writes are expensive. Suppose, 

however, one built a large stable buffer out of highly reliable 

direct access memory, so that disk operations could 

generally take place in background. Write times are then 

almost negligible, perhaps making other stable storage 

organizations more attractive. 

We have organized stable storage under the 

assumption that volatile memory has been discarded, or at 

least cannot be trusted, after a crash, which is certainly true 

of most operating systems. If, however, we were to design 

an operating system kernel specifically for Argus, we might 

use the virtual memory system as part of the stable storage 

system, in the following way. Notice that the version 

management used for atomic objects in volatile memory is 

essentially a shadowing scheme: the base version is the 

shadow and committing an action installs a new shadow. If 

we assume that after a crash the backing store portion of 

virtual memory on disk is intact, then recovery can be done 

starting with the object versions in virtual memory and 

consulting the log to bring the objects up to date. Changes 

of uncommitted actions can be undone simply by discarding 

the current versions of objects; for the prepared actions we 

must retain the current versions. Since some modified 

pages in volatile memory may not have been paged out to 

backing store before the crash, we cannot be sure whether 

needed base and current versions were written to disk. To 

keep backing store approximately up-to-date, we can create 

checkpoints, somewhat like those in System R [7], by 

periodically suspending activity long enough to flush all 

modified pages containing stable objects and their base 

versions to backing store. After a crash only the part of the 

log after the checkpoint, plus data entries before the 

checkpoint for actions whose prepare or commit record 

appears after the checkpoint, will have to be processed. 

Such a method is likely to be faster for recovery than 

our current scheme. One problem arises, however: what 

happens if a crash occurs during garbage collection? Such 

a crash is not a problem with our current scheme because 

virtual memory is discarded after the crash. However, if 

virtual memory is retained, it must be possible to restore 

objects from it even if it was being reorganized by garbage 

collection when the crash occurred. 
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Many garbage collection schemes make virtual 

memory unreadable while they are running. Our own 

scheme is one of these; we use a mark-sweep collector that 

stores information in the objects themselves. Other 

schemes, such as a copying garbage collector, do not 

destroy virtual memory, but these appear to be the less 

efficient than our scheme given our current hardware 

constraints. Such schemes are safe because they consist of 

a sequence of atomic steps. We intend to explore 

alternative garbage collection methods that are both atomic 

and efficient as part of our future research. 

R e f e r e n c e s  

1. Arens, Gall C. "Recovery of the Swallow Repository". 
Tech. Rep.  MIT/LCS/TR-252, M.I.T. Laboratory for 
Computer Science, January, 1981. Master's thesis. 

2. Astrahan, Morton M., et al. "System R: A Relational 
Approach to Database Management". ACM Transactions 
on Database Systems 1, 2 (June 1976), 97-137. 

3. Bjork, L.A. "Generalised Audit Trail Requirements and 
Concepts for Data Base Applications". /BM Systems 
Journal 14, 3 (1975), 229-245. 

4. Davies, Charles T. "Recovery Semantics for a DB/DC 
System". Proceedings of the 1973 ACM National 
Conference, 1973, pp. 136-141. 

5. Davies, Charles T. "Data Processing Spheres of 
Control". /BM Systems Journal 17, 2 (February 1978), 
179-198. 

6. Eswaran, Kapal P., Gray, James N., Lode, Raymond A., 
and Traiger, Irving L. "The Notion of Consistency and 
Predicate Locks in a Database System". Communications 
o/the ACM 19, 11 (November 1976), 624.633. 

7. Gray, James N. "Notes on Database Operating 
Systems". In Lecture Notes in Computer Science 60, Goos 
and Hartmanis, Eds., Springer-Verlag, Berlin, 1978, pp. 
393-481. 

8. Israel, Jay E., Mitchell, James G., and Sturgis, Howard. 
"Separating Data from Function in a Distributed File 
System". Tech. Rep. CSL-78-5, Xerox Palo Alto Research 
Center, September, 1978. 

9. Lampson, Butler W. and Sturgis, Howard E. "Crash 
Recovery in a Distributed Data Storage System". Xerox 
Palo Alto Research Center,Palo Alto, California (1976). 
Unpublished paper. This 1976 paper is the first to mention 
the notion of intentions lists. 

10. Lampson, Butler W. and Sturgis, Howard E. "Crash 
Recovery in a Distributed Data Storage System". Xerox 
Palo Alto Research Center,Palo Alto, California (April, 1979). 
Unpublished paper. This later paper mentions nothing about 
intentions lists. 

11. Lampson, Butler W. Atomic Transactions. In Lecture 
Notes in Computer Science, Volume 105: Distributed 
Systems: Architecture and Implementation, Goos and 
Har-tmanis, Eds., Springer-Verlag, Berlin, 1981, ch. 11, pp. 
246-265. 

12. Liskov, Barbara H. and Scheifler, Robert W. 
"Guardians and Actions: Linguistic Support for Robust 
Distributed Programs". ACM Transactions on Programming 
Languages and Systems 5, 3 (July 1983), 381-404. 

13. Liskov, Barbara H. "Overview of the Argus Language 
and System". Available as Programming Methodology 
Group Memo 40, M.I.T. Laboratory for Computer Science, 
February, 1984. 

14. Moss, J. Eliot B. "Nested Transactions: An Approach 
to Reliable Distributed Computing". Tech. Rep. 
MIT/LCS/TR-260, M.I.T. Laboratory for Computer Science, 
June, 1981. Ph.D. thesis. 

15. Oki, Brian M. "Reliable Object Storage to Support 
Atomic Actions". Tech. Rep. MIT/LCS/TR-308, M.I.T. 
Laboratory for Computer Science, May, 1983. Master's 
thesis. 

16. Reed, David P. and Svobodova, Liba. "Swallow: A 
Distributed Data Storage System for a Local Network". In 
Local Networks for Computer Communication, West, A. and 
Janson, P., Eds., North Holland Publishing Company, 1981, 
pp. 355-373. 

17. Svobodova, Liba. Management of Object Histories in 
the Swallow Repository. Tech. Rep. MIT/LCS/TR.243, 
M.I.T. Laboratory for Computer Science, July, 1980. 

18. Weihl, William E. and Liskov, Barbara H. "Specification 
and Implementation of Resilient Atomic Data Types". 
Available as Computation Structures Group Memo 223, 
M.I.T. Laboratory for Computer Science, December, 1982. 
This memo contains a detailed discussion of mutex. 

159 


