
Reliable Object Storage to Support Atomic Actions

Brian M. Oki, Barbara H. Liskov, and Robert W. Scheifler

Laboratory for Computer Science
Massachusetts Institute of Technology

Cambridge, MA 02139

Abstract

Maintaining consistency of on-line, long-lived,
distributed data in the presence of hardware failures is a
necessity for many applications. The Argus programming
language and system, currently under development at
M.I.T., provides users with linguistic constructs to
implement such applications. Argus permits users to

identify certain data objects as being resilient to failures,
and the set of such resilient objects can vary dynamically as
programs run. When resilient objects are modified, they are
automatically copied by the Argus implementation to stable
storage, storage that with very high probability does not lose
information. The resilient objects are therefore guaranteed,
with very high probability, to survive both media failures and
node crashes.

This paper presents a method for implementing
resilient objects, using a log-based mechanism to organize
the information on stable storage. Of particular interest is
the handling of a dynamic, user-controlled set of resilient
objects, and the use of early prepare to minimize delays in
user activities.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1985 A C M - 0 - 8 9 7 9 1 - 1 7 4 - 1 - 1 2 / 8 5 - 0 1 4 7 $ 0 0 . 7 5

1. I n t r o d u c t i o n

In banking systems, airline reservation systems, office

automation systems, and other databases, the manipulation

and preservation of long-lived, on-line, distributed data is of

primary importance. The Argus programming language and

system[12], currently under development at M.I.T., is

designed to support such applications. A fundamental

requirement in such systems is making data resilient to

hardware failures, so that the crash of a node or storage

device will not result in the loss of vital information. This

paper discusses support for data resiliency in Argus.

In Argus, data consistency in the presence of

concurrency is achieved by making activities atomic.

Atomic activities are referred to as actions or transactions

[4, 5, 6]. An action is indivisib/e and total Indivisibility

means that the execution of one action never appears to

overlap the execution of any other action. Totalility means

that the overall effect of an action is all-or-nothing, that is,
either all changes made to the data by the action happen

(the action commits), or none of these changes happen (the

action aborts). While an action is running, the changes it

makes to data objects are kept in volatile storage. If the

action aborts, the changes are simply discarded. If the

action commits, however, the changes become permanent.

Our method of providing data resiliency is to write such

changes to stable storage.

Stable storage provides memory with a high

probability of surviving node and media failures [11]. A

stable storage device might provide block read and write

operations just like a conventional disk device; the write

operation, however, is atomic, meaning the data is either

written completely or not written at all, even if there is a

failure during the write. This atomicity ensures that the data

will never be left in an inconsistent state in which the old

value is gone and the new value is wrong. Lampson and

Sturgis [10] call this kind of stable storage atomic stable

147

storage, and describe one method for implementing it. In

this paper, we ignore the details of implementing stable

storage itself and focus instead on how stable storage can

be organized to allow a distributed system to recover from

failures efficiently.

In most existing work on databases [2], file

repositories [8], and object repositories [16, 17, 1], users

must make explicit calls on the system to create, modify, or

delete resilient data: the data is under explicit system

control. Argus is unique in its integration of resilient data

into the fabric of the programming language. In Argus, the

programmer divides data between stable state and volatile

state; only stable state survives node crashes. The stable

state is specified as a fixed collection of root objects.

Objects, however, can refer to other objects, and inter.

object references can be changed dynamically under

program control. The stable state is actually the set of all

objects reachable from the root objects. Thus, objects enter

and leave the stable state implicitly rather than explicitly.

The job of the recovery system is to write data objects to

stable storage as needed, to restore the data objects after a
crash, and to reorganize stable storage to make crash

recovery more efficient.

The next section presents background information on

the Argus programming language and its model of

computation, including atomic actions and the two-phase

commit protocol. Section 3 presents a log-based

organization of stable storage. Subsequent sections

present the algorithms for writing objects to the log and for

recovering objects from the log, and a snapshot technique

for speeding up crash recovery. We conclude with a

discussion of current status and future plans.

2. Background

This section lays the groundwork for understanding

the remaining sections. We first explain the basic concepts

underlying Argus, particularly atomic actions and atomic

objects, and then discuss how Argus implements atomictiy.

2.1. The Programming Language Argus

Argus[12] gives programmers the ability to write

distributed programs that run on a network of

heterogeneous computers. Each node in the network is an

independent computer consisting of one or more

processors with local memory and devices; nodes

communicate with each other only by sending messages

over the network.

A distributed Argus program consists of modules

called guardians. A guardian encapsulates and controls

access to resources, such as databases or devices, and

guards its local data. A guardian's external interface is in

the form of a set of operations, called handlers, that can be

called by other guardians to obtain access to the called

guardian's resources. In addition to processes executing

handler calls, a guardian can have processes to perform

background tasks.

Guardians are the logical nodes of the distributed

system. Each resides at a single physical node, although a

node may support several guardians. When a guardian's

node crashes, the volatile state of the guardian, as well as all

processes, are lost; only the stable state survives. The roots

of the stable state are defined by a fixed number of statically

declared variables, called the stable variables. The set of all

objects accessible from these variables (via all chains of

inter-object references) constitutes the stable state; these

objects are called stable objects. When the guardian's node

recovers from a crash, the Argus system re-creates the

guardian with its stable objects as recorded on stable

storage. A user process is then started in the guardian to

reinitialize the volatile state. Once this task is completed,

the guardian's background processes are restarted, and the

guardian starts accepting handler calls.

Atomic actions are the primary method of performing

distributed computations in Argus. The effect of an action is

all-or-nothing; that is, it either completes successfully

(commits) and changes the state permanently, or fails

completely (aborts) and restores the state that existed

before the action was executed. An action starts at one

guardian and can spread to other guardians by means of

handier calls. (Actually, handler calls are run as subactions

of the calling action as is discussed further in section

2.2 below.) When the action completes, it either commits at

all guardians, and the changes it made to each guardian's

stable state are reflected in stable storage appropriately, or

it aborts at all guardians.

Atomicity is achieved with atomic objects. Argus

provides several built-in types of atomic objects, such as

atomic_arrays and atomic_records. These are similar to

ordinary objects except that they use locks and versions to

provide totality and indivisibility for actions using the

objects. There are two kinds of locks: read locks and write

locks. To use an object, an action must invoke one of the

object's operations. The operation acquires the lock in the

appropriate mode and the action holds the lock until it

completes (commits or aborts). When a write lock is first

obtained for an action, a version of the object is made in

volatile memory, and the action operates on this version,

called the current version. The old version, called the bass

148

version, is also retained. If the action commits, the current

version becomes the base version and the old base version

is discarded. If the action aborts, the current version is

discarded.

Argus also supports user-defined atomic objects (see

[18]), which present an external interface that supports

atomicity, but can offer significant concurrency as well.

User-defined atomic objects do not have a major impact on

the algorithms described in this paper; to simplify the

presentation, we consider only built-in atomic objects.

Complete algorithms are presented in [15].

2.2. Overview of Transaction Processing in Argus
As actions execute, modifications to objects are made

on volatile versions at several guardians. As we mentioned

above, each object is contained in exactly one guardian.

Each guardian keeps track of all uses of its own objects;

such information is never sent to another guardian. In

particular, for each action that visits a guardian, the
guardian records every atomic object the action reads and

every one it modifies. Information about these modified

objects is maintained in the Modified Objects Set (MOS); a

guardian maintains a separate MOS for every action that

has visited it and that has not yet committed or aborted.

When an action commits, the system must ensure that

it either commits everywhere or aborts everywhere, and that

its effects are made permanent by writing the modified

atomic objects to stable storage. Since the guardians

themselves know which objects were modified by the action,

the system just needs to communicate with the guardians

that the action visited, using the standard two-phase commit

protocol [7]. Since the algorithms presented later in this

paper are tightly coupled with this protocol, we explain it

briefly here. Although many optimizations of the standard

protocol are possible, we avoid describing any of them for

the sake of simplicity. The protocol works even if crashes

occur while it executes; we assume that no nodes crash

forever and eventually any two nodes can communicate

[14]. Following standard terminology, we call the guardian

where the action originates the coordinator, and the various

guardians visited via handler calls the participants.

1. Coordinator's Preparing phase. In the
preparing phase, the coordinator sends a
prepare message to each participant (including
itself) saying "prepare for action A to commit,"
where A is the action identifier of the preparing
action, and then waits for replies. Participants
reply with either prepared or aborted messages.
If the coordinator receives a prepared message
from each participant, it starts the committing

phase below. If an aborted message is
received, then the action must be aborted, and
the coordinator informs the other participants
via abort messages. The coordinator may also
abort unilaterally if it does not receive
responses from some participants, after suitable
attempts to retransmit the prepare messages.

2. Coord inator 's Commit t ing phase. If all
participants respond prepared, the coordinator
writes a committing record, containing the
names of the participants, to stable storage. At
this point the action is committed. The
coordinator then sends commit messages to all
the participants (including itself), and waits for
committed messages in response. When all
have responded, the coordinator writes a done
record to stable storage, and the two-phase
commit is complete.

3. Participant's Prepare phase. When. a
participant receives a prepare message from
the coordinator, it responds as follows. If the
action is unknown at the participant (due, for
example, to a crash), then the participant
replies aborted to the coordinator. Otherwise,
the current versions of all stable objects
modified by the action (all stable objects listed
in the MOS) are written to stable storage, read
locks for all objects read by the action but not
modified are released, and a prepared record is
written to stable storage. The participant then
replies prepared to the coordinator and enters
the completion phase.

4. Participant's Completion phase. Once e
participant has written the prepared record, it
must await a verdict from the coordinator. When
the participant receives a commit message, it
writes a committed record to stable storage,
releases write locks, replaces base versions
with current versions, and then replies
committed to the coordinator. If the participant
receives an abort message instead, it writes an
aborted record to stable storage, releases write
locks, and discards current versions. If a
participant has not heard from its coordinator it
can query the coordinator to find out the
outcome of the action. (An action identifier
contains enough information that each
participant knows who its coordinator is [13].)

As mentioned above, actions may be nested. In

particular, handler calls run as subactions of the calling

action. Subactions require extensions to the locking and
version management rules given above (see[12]); for
example, there is a separate version for each subaction that

modifies an object. But these extensions are not significant

as far as recovery is concerned because two-phase commit
is only carried out when top actions commit. (Top action8

149

are not subactions of any action.) When a top action

commits, only two versions exist for each object it modified:

the base version records the state of the object before the

action ran, and the current version records all changes

made to the object by the action and its descendants. It is

this current version that is written to stable storage.

3 . The Log

Two main methods have been used in systems to

organize stable storage: logging and shadowing. Like an

accounting journal that is a chronological record of

accounting transactions, a/og [3, 7, 10] is a kind of append-

only file used to record the versions of objects changed by

an action as well as the stages of the two-phase commit

protocol. The protocol information is needed to recognize

when all values of data objects modified by a committing

action have been written to the log, and when participants

and coordinators must be recreated. For example, if a crash

occurs before all modifications for an action have been
written, then on recovery all modifications for the action will

be discarded (and the action aborts).

In shadowing [7], storage is organized as a map,

which associates objects with their actual versions in stable

storage. As an action gets ready to commit, the new object

versions are.written to stable storage without destroying

existing versions. When an action actually commits, these

new versions are installed by making a new map that

contains the pointers to them, writing the map to stable

storage, and then switching from the old map to the new
map in one atomic step. The old versions are then

discarded. When an action aborts, the new versions are

discarded and the map is untouched.

In a distributed system, a map alone is not enough for

shadowing to work properly; information about the status of

actions (prepared, committed, or aborted) is needed. For

prepared actions, intentions fists [9] are also required. An

intentions list contains the new piece of the map for the

prepared action. A log might be used to maintain this

information.

A cursory comparison of logging and shadowing

would lead one to the conclusion that logging is faster

during normal execution, since there is no need to update a

possibly large map, but is slower during recovery, since an

ever expanding log must be scanned in its entirety. There

are, however, innumerable tricks and variations for each

scheme, and ultimate performance depends heavily on the

precise characteristics of the stable storage devices used.

We will return to this issue at the end of the paper.

We have chosen to use a log-based mechanism for

Argus, which we describe in the remainder of this section.

3.1. Log Abstraction Interface to Stable Storage

To avoid considering the details of implementing

stable storage on top of conventional storage devices, we

will simply assume the existence of a stable storage system

that provides an efficient implementation of stable logs. A

stable log resembles an array indexed by abstract objects

called log_addresses. ,

The (stable) log abstraction provides the following

operations:

1. create(). This operation creates a new log
object and returns it.

2. write(log, entry). This operation writes an
arbitrary length entry to the log, and returns its
log_address. The actual writing of the data to
the stable storage may not have happened
when this operation returns.

3. force_write(log, entry). This operation forces an
entry to the log, and returns its log_address.
The current entry and all older entries have
been written to stable storage when the
operation returns.

4. get_last(log). This operation returns the log
address of the last entry that was forced to the
log.

5. read(log, Iogaddress). This operation reads
the entry at the log address and returns it.

6. destroy(log). This operation destroys a log.

Each guardian has its own log; the Argus system

remembers (in stable storage) the association between a

guardian and its log.

3.2. Structure of the Log

Entries in the log can be classified as either data

entries or outcome entries. A data entry contains a copy of

a version of an atomic object; outcome entries indicate the

stages of an action, such as whether an action has

prepared, committed, or aborted. Figure 1 shows the

formats of these entries.

Each outcome entry contains a log pointer, linking the

entry to the previous outcome entry in the log. This reverse

chain will be used during recovery to reconstruct the stable

state. The outcome entries come in two varieties, one set

-- prepared, committed, aborted, base_committed, and

prepareddata -- for participants and the other set

-. committing and done -- for coordinators,

150

Data entry

I objectvalue I

Outcome entries for participants

prepared

<uid,log address>

action id
log pointer

base committed

I object uid
object value
log pointer

committed
action ~

log pointer

prepared data

object uid
object value

action id
log pointer

aborted

I action ~
log pointer

Outcome entries for ceordinators
committing

I guardian ids I action id
log pointer

done

I ect,°n, 1
log pointer]

Figure 1 : Format of log entries

A prepared outcome entry contains the action

identifier of the preparir~g action, and a list of <uid, log

address> pairs, where the uid is an identifier for an atomic

object and the log address points to a data entry containing

a copy of the object's version. This list is like the intentions

list or partial map in a shadowing scheme; there is a pair for
each atomic object that was both modified by the action and

accessible from the stable variables.

A committed outcome entry is written to a

participant's log by the recovery system when an action has
committed, and an aborted outcome entry is written when
an action has aborted. These entries contain the action
identifier of the completing action.

Two special participant outcome entries,

basecommitted and prepareddata, handle certain cases

arising from the dynamic nature of the guardian's stable

state. The use of these entries, which are combined data

and outcome entries, will be explained in the next section.

A committing outcome entry is written to a

coordinator's log by the recovery system when all

participants have prepared; it includes a list of all

participants. A done outcome entry is written when two-

phase commit is complete. Both entries contain the action

identifier of the completing action.

4. Writ ing Objects to the Log

Our recovery system is similar to others that use a log.

Whenever a participant receives a message from a

coordinator, it carries out the requested action. If the
message is a prepare, it writes out data entries containing

the current versions of all objects modified by the action,

followed b~ the prepared outcome entry. (Some of these
data entries may have been written already because of early
prepare as discussed in section 4.5 below.) Later, when it

receives a commit message it writes out a committed

outcome entry; when it receives an abort message, it writes

out an aborted outcome entry. The coordinator writes out a

committing outcome entry when all participants are
prepared, and a done outcome entry when all participants

acknowledge receipt of the commit message.

The result of this approach is that more recent

information occurs later in the log than older information.

During recovery, then, the recovery system will process the
log backwards. For each data entry, it considers the status

of the action on whose behalf that entry was written;

information about the action status will be encountered

before the entry since it was written to the log alter the
entry. If the action has aborted, or has no status, the
recovery system ignores the data entry. (An action may
have no status because, for example, a crash occurred

while the action was preparing.) If the action has prepared,

that is, a prepared outcome entry has been processed but

not a committed or aborted outcome entry, then the
recovery system uses the data entry to restore the object's

current version. It also grants a write lock on the object to

the prepared action; granting this lock allows us to resume

execution of the guardian before the prepared action

terminates. If the action has committed, the recovery

system uses the entry to restore the object's base version,

provided the base version has not yet been restored; if the

base version is already restored, the entry contains an older

and, hence, obsolete version of the object, so it is ignored.

This section discribes how we write information to the

log. First, we discuss how atomic objects are copied to

stable storage, and how we maintain the sharing

relationship among objects when they are stored in the log.

Next, we discuss how the system determines which modified

objects should be written to stable storage, and how we deal

with atomic objects that dynamically enter and leave a

guardian's stable state. Then we describe our general

writing method, and how to do early prepare.

151

4.1. Copying Data
The method we use for copying atomic objects to

stable storage works in an incrementa/ fashion: each

atomic object is copied to stable storage in a separate,

atomic step. To make incremental copying possible, each

atomic object contains, in addition to lock information and

versions, a unique object identifier called a uid. These uids

find their use in the log. They are stored in the intentions list

in the prepared outcome entry (see Figure 1), and also

support inter-object references: a version in the log can

refer to an atomic object by using that object's uid.

In volatile memory, objects are stored in a heap, and

garbage collection is used to reclaim storage. Suppose

object A contains object B as a component (for example, B

is an element of an array A). The data storage for B is not

physically contained within the storage for A; rather, B is an

independent object and A contains the volatile memory

address of B. (In actual practice, there are a few exceptions

that arise out of performance considerations. Integers, in

this example, would be contained in the storage for A, rather

than existing as an independent object 8 with a pointer to it

from A.)

Thus, a version of an atomic object may contain

references to other objects, both atomic and non-atomic,

which may in turn refer to other objects. An example of

such an object is given in Figure 2a. The figure shows an

atomic record with four components; the first component is

an integer, the second is a sequence of integers as is the

third, and the fourth is an atomic array. The figure shows

the current version of the object; notice that the second and

third components refer to the same sequence.

When a version is copied to the log, all non-atomic

objects accessible from the version are also copied, but

contained atomic objects are not. These contained atomic

objects will be copied in a separate atomic step if they were

modified by the preparing action.

In the copy on the log, contained non-atomic objects

are contiguous, the intra-object references to non-atomic

objects are replaced by relative offsets within the copy, and

the references to other atomic objects are replaced by the

uids of those objects. Figure 2b shows the log

representation for the current version of the object in Figure

2a. Notice that the reference to the contained atomic object

has been replaced by that object's uid.

Sharing relationships among the copied non-atomic

objects are preserved. For example, the sharing of the

sequence of integers is preserved in Figure 2b, and the use

of uids for the atomic objects allows the sharing

relationships among atomic objects to be preserved.

c u r r c n t ~ atomic record

I

sequenee[int]

a. An atomic record in volatile memory

1,7 ,I i i
b. A copy of the current version of the record on the log

Figure 2: Object Formats

Because of the incremental nature of the copying, however,

the sharing of a non-atomic object between several atomic

objects is not preserved.

4.2. The Accessibility Set
As mentioned earlier, for each action, the Argus

system keeps track of modified objects in a Modified

Objects Set (MOS) for the action. The recovery system

separates the objects in the MOS that are accessible from

the guardian's stable variables from those that are

inaccessible and only writes the accessible objects to the

log.

Determining the accessibility of an atomic object

could be accomplished by walking over the trees of objects

accessible from the guardian's stable variables. To avoid

race conditions, such a traversal must effectively block all

user processes from running. This kind of approach would

be extremely inefficient because there are likely to be many
accessible objects. Instead, the recovery system maintains,

for each guardian, an accessibi/ity set (AS) of atomic

objects accessible from the guardian's stable variables. The
AS is implemented with a single bit in each atomic object; to

determine whether an atomic object in the MOS must be
written to the log, the recovery system merely checks this
bit. The AS is initialized when the guardian is created by

152

performing an initial walk over the tree of objects accessible

from the stable variables, setting the bit in each atomic

object encountered. To maintain the AS, two problems

must be solved: discovering when an object is newly

accessible, and must be added to the AS, and discovering

when an object is no longer accessible, and can be deleted

from the AS.

Determining when an object is no longer accessible

can only be accomplished by a full tree traversal from the

stable variables. The current Argus implementation uses a

stop-the-world, mark-sweep garbage collector to reclaim

storage; recomputing the AS is done as part of the mark

phase and requires essentially no additional overhead.

Notice that this means the AS is really a superset of the

atomic objects actually accessible. For each inaccessible

object that remains in the AS, modifications to that object

will result in unnecessary writes to stable storage. Usually,

however, when an object is removed from the stable state it

becomes completely inaccessible, and subject to

reclamation at the next garbage collection. Such an object

will not be modified because no program can access it.

Therefore, waiting to recompute the AS until a garbage

collection involves little unnecessary writing of inaccessible

objects to stable storage.

4.3. Newly Accessible Objects
An atomic object is newly accessible if it is reachable

from the stable variables but is not in the AS. The object

may be newly created, or it may have existed for some time

but was reachable only from volatile variables. Since the

only way to make an object newly accessible is to modify

some object that is already accessible, the recovery system

can discover newly accessible objects simply by examining

the other atomic objects encountered while copying

accessible objects. In the process of copying an object,

whenever a reference to an atomic object is replaced with

the object's uid, the recovery system checks the referenced

atomic object to see if it is in the AS. If not, the object is

newly accessible and the recovery system must also copy it

to the log, as well as add it to the AS. Copying the newly

accessible object may, of course, result in finding more

newly accessible objects.

Newly accessible objects introduce some new

problems because the action that makes an object newly

accessible may not have modified that object. One problem

is that we may need to write the base version of the newly

accessible object, instead of writing the current version of

the object, which is what we always write for accessible

objects. But a more significant problem is that if the

preparing action did not modify the newly accessible object,

then some other active action might be using that object

concurrently. (Such concurrent use was not possible for

accessible objects since the preparing action held a write

lock on the object.) There are two situations to consider,

each involving two or more concurrent actions. In the first

situation, several actions make the object accessible; in the

second, one action makes the object accessible, while

another action modifies the object. The situations are

illustrated with scenarios.

Scenar io 1. Suppose two actions, T 1 and T 2,
both make some object, O, newly accessible
through different paths, but neither modifies O
itself. Suppose further that T 1 prepares before T 2.
When T 1 prepares, O is found to be newly
accessible, its base version is written to the log,
and then O is added to the AS. When T 2 prepares,
no version is written because O is already in the
AS. Now let us consider what happens if T 1
aborts, T 2 commits, and the node crashes. On
recovery, the version of O is ignored because it
was written on behalf of an aborted action. O is
still accessible via the commit of T 2, but there is no
version of O for the recovery system to use.

To ensure that newly accessible atomic objects

always have a base version at recovery, a special outcome

entry, base_committed, is used. Whenever a newly

accessible atomic object is encountered, its base version is

copied to the log as part of a basecommitted outcome

entry. Such an outcome entry is not tied to a particular

action (note that the entry does not contain an action

identifier), and will be processed at recovery even if the

action that caused it to be written ultimately aborts.

If a newly accessible object is in the preparing

action's MOS, the object's current version is also written to

the log as an ordinary data entry, to be included in the

action's prepared outcome entry. The current version,

however, must be copied in another case, as the following

scenario illustrates.

Scenar io 2. Suppose action T 1 makes object O
newly accessible, and that O has been modified
(but not made accessible) by some other action,
T 2. Suppose further that T 2 prepares before T 1.
When T 2 prepares, no version of O is copied,
since O is not accessible. When T 1 prepares, O's
base version is copied but not its current version,
since T 1 has not modified O. Now let us consider
what happens if both T 1 and T 2 commit and the
node crashes. On recovery, only the base version
of O is restored, even though T 2 has committed.
The modifications made by T 2 have been lost.

153

To avoid losing modifications, we use another special

outcome entry. When a newly accessible object is write-

locked by an action that has already prepared, the current

version of the object is copied to the tog as part of a

prepared_data outcome entry. This entry contains the
action identifier of the prepared action. At recovery, it will

be treated as a (belated) addition to the prepared outcome

entry of the specified action.

4.4. The General Writing Algorithm
We now present the full algorithm for preparing an

action at a participant guardian. This algorithm runs when a

prepare message is received at the guardian. The algorithm

uses two new sets, maintained separately for each
preparing action. An Intentions List (IL) is used to

accumulate the <uid, log address> pairs for eventual

inclusion in the prepared outcome entry. A Newly

Accessible Objects Set (NAOS) is used to keep track of

newly accessible objects.

The algorithm can be executed concurrently for

multiple actions at the same guardian; in steps 2 and 3

below, the processing for an individual object must occur

indivisibly with respect to concurrent prepares.

1. Create an empty NAOS and an empty IL.

2. V object 6 MOS do

a. lf object E AS, write a data entry
containing a copy of the object's current
version, and add the <object uid, data
entry log address> pair to the IL. For each
atomic object encountered while copying
the version, check the AS. If the object
AS then the object is newly accessible, so
add it to the NAOS for eventual
processing.

b. Delete the object from the MOS.

3. V object E NAOS do

a. If the object is still ~ AS (it may have been
added by a concurrent prepare), write a
base_committed entry containing a copy
of the object's base version. For each
atomic object encountered while copying
the version, if the object ~ AS then add it
to the NAOS.

b. Whether the object is still in the AS or not,
if the preparing action has a write lock on
the object, then write a data entry
containing a copy of the object's current
version, and add the <object uid, data
entry log address> pair to the IL. For each
atomic object encountered while copying

the version, if the object ~ AS then add it
to the NAOS.

c. If the object (E AS and some other action
holds a write lock on the object, check the
status of that action. If the locking action
has already prepared, write a
prepared_data entry containing a copy of
the object's current version and the
action identifier of the locking action. For
each atomic object encountered while
copying the version, if the object (~ AS
then add it to the NAOS. If the locking
action is preparing concurrently, simply
add the object to the NAOS of the locking
action if that action's IL does not yet
contain an entry for the object.

d. Add the object to the AS and delete it
from the NAOS.

4. Write a prepared outcome entry containing the
IL, forcing it and all previous entries to the log
with the lorce_write operation. The particpant
can then respond with a prepared message to
the coordinator.

As mentioned earlier, the AS is initialized as part of

guardian creation. Once the stable variables are initialized,

they become read-only. At this point, the uids of the atomic

objects that have been assigned to them are written to the
log in a special record. These objects are then used as an
initial NAOS, and a special version of step 3 of the algorithm

above is run to initialize the AS and to write base versions of

the stable objects to the log.

4.5. Early Prepare
The algorithm in the previous section delays all

prepare activity until the prepare message is received from

the coordinator. Once a handler call commits at a guardian,

however, local processing on its behalf is over, so there is

no reason why copying new versions of objects to the log
cannot take place before the prepare message arrives.

Early copying of versions to stable storage is called early

prepare. Early prepare is done in background mode when

the guardian is not busy. Ideally, by the time the prepare

message arrives at the guardian, all modified and newly
accessible objects have already been copied to the log. All

that remains to be done is to write the prepared outcome

entry itself.

Very few changes to the algorithm are needed to
support early prepare. Rather than running the algorithm

for each action, we can run it for each handler call made by

the action. That is, we keep a separate MOS, IL, and NAOS

for each handler call. The recovery system can start

154

running the algorithm (with the exception of the last step) as

soon as a handler call completes. When the prepare

message for the action is finally received, processing for

each handler call that was part of the preparing action is run

to completion, and then a merge of the resulting ILs is

performed. Several handler ILs may contain entries for the

same object, but with different object versions. The version

used in the merged IL depends on which handler calls were

retained by the action (an action may abort the effects of

individual handler calls), and the subaction ordering of

those committed handlers. Typically, the version for the last

handler call will be used. Once the ILs have been merged, a

prepared outcome entry is written to the log.

Early prepare may result in unnecessary information

being copied to stable storage. For example, the action may

ultimately abort, in which case all of the effort is wasted. If

the action visits a guardian multiple times, and modifies the

same object each time, multiple versions of the object may

be written to the log. If the guardian has sufficient idle time,

however, early prepare is almost always worth the effort,

since it reduces the real-time delay imposed by two-phase

commit.

5. R e c o v e r i n g O b j e c t s f r om the Log

After a crash, the recovery system reads the log

backwards starting with the last outcome entry,

reconstructing the stable state of the guardian as well as the

action state. The recovery system restores the objects to

the same state they were in before the crash. Three tables

are used during recovery:

1. A participant action table (PT) maps action
identifiers to participant action states:

PT: action id ---~ participant action state

where participant action state is either
prepared, committed, or aborted.

2. An object table (OT) maps object uids to object
states:

OT: object uid ~ object state
The object state is either partial or restored, and
contains the address of the object in volatile
memory.

3. A coordinator action table (CT) maps action
identifiers to coordinator action states:

CT: action id ~ coordinator action state

where coordinator action state is either
committing or done. The committing state
contains a list of the guardian identifiers of the
participants.

To restore a logged version to volatile memory, the

recovery system copies the version into volatile memory,

adds a base address to each contained relative offset to

obtain the new memory reference for a contained non-

atomic object, and replaces each contained uid of an atomic

object with a volatile memory reference to that object. Each

contained uid is looked up in the OT. If it is present in the

OT, then its volatile address is known, and its uid can be

replaced with that address. Otherwise, a "null" object is

created for it, and it is entered in the OT in the partial state.

An object remains in the partial state until its base version is

restored; the version (or versions) will be filled in as they are

encountered later during recovery.

In the recovery algorithm described below, two kinds

of object version restoration are used: base restoration and

prepared restoration:

1. base restore. This is used to restore the base
version of the object. Given an <object uid,
version log address> pair, look up the uid in OT.
If uid (~ OT, the version is restored from the log
and installed as the base version of the object,
and the entry <uid, restored, vm address> is
added to OT. If <uid, partial> E OT, the log
version is restored as the base version, and the
OT entry is changed to the restored state. If
<uid, restored> E OT, the log version is ignored.

2. prepared restore. This is used to restore the
current version of an object, and is therefore
run on behalf of an action that has prepared but
not yet committed. Given an <object uid,
version log address> pair and an action
identifier, look up the uid in OT. If uid ~ OT, the
version is restored from the log and installed as
the current version of the object, the action is
granted a write lock, and the entry <uid, partial,
vm address> is added to OT. If <uid, partial> E
OT, the log version is restored as the current
version, and the action is granted a write lock.
(<uid, restored> E OT is not possible since we
process the log backwards, and no action
whose outcome entry appears in the log after
the prepare record of this action can have used
the object, since this action held an exclusive
lock on it at the time of the crash.)

The general recovery algorithm can now be

described.

1. Create an empty PT, OT, and CT. Volatile
memory is empty.

2. Read the log backwards, starting with the last
outcome entry in the log. Process each entry as
follows.

a. done outcome entry. Insert <a/d, done) in
the CT.

155

b. committing outcome entry. If <aid, done)
E CT then ignore the entry. Otherwise,
insert <aid, committing(gids)> into the CT,
where gids are the guardian identifiers of
the participants as given in the outcome
entry.

c. committed outcome entry. Insert <aid,
committed> in the PT.

d. aborted outcome entry. Insert <aid,
aborted> in the PT.

e. prepared outcome entry. Look up the aM
in the PT.

i. <aid, committed> E PT. V <uid, log
address> pairs, do a base restore.

ii. <aid, aborted> E PT. Do nothing.

iii. aid ~ PT. Insert <aid, prepared> in
the PT, and V <uid, log address>
pairs, do a prepared restore.

f. base_committed outcome entry. Do a
base restore with the <uid, log address>
pair.

g. prepared_data outcome entry. Look up
aid in the PT.

<aid, committed> E PT. Do a base
restore with the <uid, log address>
pair.

ii. <aid, aborted> E PT. Do nothing.

iii. aid ~ PT. Do a prepared restore
with the <uid, log address> pair.

3. The special log record identifying which objects
are assigned to the stable variables is read, and
the stable variables are initialized. The recovery
system traverses the objects accessible from
the stable variables, recreating the AS.

4. The PT and CT are returned to the Argus
system, to recreate two-phase commit activities.

We now present an example of recovery. Suppose we

have the log depicted in Figure 3. In this figure the log

grows to the right. The symbols in the log have the following

meaning. T 1 and T 2 are action identifiers. Action T 1 has

committed; action T 2 has prepared. 01 and 02 represent

unique object identifiers, and V 1 and V 2 are the object

values, that is, the versions of objects. L 1 and L 2 are log

addresses. The arrows are back pointers either to data

entries or to other outcome entdes.

The following is a step-by-step explanation of how the

objects in the log depicted in Figure 3 are recovered.

L2 L1

I 4 l

v, I i I <°''L''
O1 I 02 <O2,L2> T1

1 L I" !';
Iog'send

Figure 3: Log after the prepare phase

The recovery system reads the log backwards starting

with the last outcome entry.

1. For outcome entry <prepared, <01, L1), T2> the
recovery system checks the PT for T 2 and
enters <T2, prepared> into the PT.

For the <01, LI> pair the recovery system
checks the OT for the uid, finds it is not there,

"follows the L 1 pointer to the data entry, copies
the object version V 1 to volatile memory as the
current version for an atomic object, and grants
T 2 a write lock. The recovery system enters
<01, partial, vm address> into the the OT and
follows the log pointer to the previous outcome
entry.

2. For outcome entry <committed, Ti> the
recovery system enters <T 1 , committed> into the
PT, and follows the log pointer to the previous
outcome entry.

3. For outcome entry <prepared, <0 2, L2>, TI> the
recovery system looks up T 1 in the PT and finds
the <T 1 , committed~ entry.

For the <0 2, L2> pair the recovery system looks
up 0 2 in the OT, finds it is not there, follows the
L 2 pointer to the data entry, and copies the
object version V 2 to volatile memory as the base
version of the object. The recovery system
enters <0 2, restored, vm address> into the OT,
and follows the log pointer to the previous
outcome entry.

4. For outcome entry <base_committed, 0 2, V2),
the recovery system looks up 0 2 in the OT.
Since the object already appears in the OT with
state restored, the most current version of the
object has already been copied, so the recovery
system ignores the entry. The recovery system
follows the log pointer to the previous outcome
entry.

5. For outcome entry <base_committed, 01, Vl>,
the recovery system looks up up 01 in the OT.
Since the state of the object is partial, the
recovery system copies V 1 into volatile memory

156

as the base version of the object and changes
the object state to restored. The log pointer is
null, so there are no more outcome entries to
consider.

6. Housekeeping the Log

We have seen that the log is a repository of all the

atomic objects that were ever part of the guardian's stable

state during the guardian's lifetime. As time goes on, the log

will eventually become quite large. Although the recovery

system need not read all data entries, it must read every

outcome entry to reconstruct the stable state. If the log is

too large, recovery will be unacceptably slow. Furthermore,

the recovery system cannot determine the stable state until

all objects have been recovered from the log. As new

objects replace older objects in the stable state, the total

number of objects restored from the log may be much larger

than the number of objects actually contained in the final

stable state, perhaps even more objects than will fit in

volatile memory.
One way to reduce the size of the log is to produce

periodically a snapshot representing the stable state of a

guardian and to write that snapshot into a new log. This

new log replaces the old log when the snapshot is complete.

For example, a snapshot could be taken immediately after

recovering from a crash if the log is large compared to the

final size of the stable state. For very active guardians

running on reliable nodes, however, waiting for a crash to

take a snapshot is inadequate, and it is undesirable to force
the guardian to crash just to clean up the log. Stopping the

guardian to take a snapshot is just as bad as crashing it,

because activity may be suspended for an undesirable

length of time. Therefore, we describe a dynamic snapshot

scheme below. This scheme does not affect the recovery

algorithm at all, and requires only minor changes to the

writing algorithm.

A snapshot takes place in two stages. First, the

recovery system copies the accessible objects into a new

log. Second, it copies to the new log all outcome entries

(together with their associated data entries) written to the

old log since the snapshot began. The snapshot is

performed by a process running in parallel with other

system and recovery operations, synchronizing with them as

needed. The snapshot process generally runs only when

the guardian is otherwise idle, although if little progress is

being made on the snapshot, it may be necessary to give the
process more time.

When the snapshot process first starts up, it

determines the earliest log address recorded in the ILs of

actions being prepared (or early prepared) by the recovew

system, and remembers that address. The snapshot

process also creates a new, empty accessibility set (the

snapshot AS), and a new, empty log (the snapshot log). It

then traverses the graph of atomic objects accessible from

each of the guardian's stable variables. For each atomic

object it encounters, it checks whether the object is already
in the snapshot AS. If not, it adds the object to the snapshot
AS, and writes a basecommitted entry containing the base

version of the object to the snapshot log.

When the snapshot process has completed its

traversel of the stable state, it enters the second stage of the
snapshot, to deal with entries written to the normal log while

the snapshot was being taken. These entries must be

copied over to the snapshot log. Starting with the entry at

the log address recorded when the snapshot proces,~ first

started, the snapshot process reads each entry (in forward

order) from the normal log and writes a new copy of the

entry to the snapshot log. For each data entry copied over
to the snapshot log, the snapshot process maintains a

mapping from log address in the normal log to

corresponding log address in the snapshot log. When a

prepared outcome entry is read from the normal log, the
snapshot process must update each contained <uid, log

address) pair with the new snapshot log address before

writing the entry to the snapshot log.

When all entries in the normal log have been copied,

the normal recovery system is suspended while the normal

log is replaced with the snapshot log, and all log addresses

in all ILs of preparing actions are mapped to their new

addresses. The recovery system then resumes writing log

entries to the new log.

This snapshot algorithm can result in unnecessary

copying of data. For example, the first stage may write a

base version, only to have that version supplanted by a

version from an action that commits while the snapshot is

being taken. The amount of extra copying is proportional to

the amount of processing that occurs against the old log

while the snapshot takes place. We assume that the extra

copying is not significant compared with the total size of the
stable state.

7. Discussion

We have described a log-based organization of stable

storage, and presented algorithms for writing objects to the

log and recovering objects from the log after a crash. A

significant feature of these algorithms is the handling of a

dynamic, implicitly changing stable state via a guardian's

Accessibility Set. We introduced an early prepare

157

mechanism to speed up two-phase commit, and a snapshot

mechanism to speed up crash recovery,

We believe this is a reasonably efficient method for

organizing stable storage. In the expected normal case,

assuming enough idle time for early prepare to finish, the

total delay a user process incurs for two.phase commit is

approximately one message round trip time (prepare and

prepared messages) plus the time for two stable storage

writes (prepared and committing entries); no delay accrues

from phase two of the protocol, as it can be carried out in

background. This is about the best one can hope for with

any method. Although the log is biased somewhat in favor

of normal processing at the expense of recovery speed, the

snapshot mechanism should provide recovery times

reasonably close to those possible with a shadowing

scheme, again assuming guardians have sufficient idle time.

Argus is running on VAX-11/750 processors under

Berkeley Unix 4.2. The basic writing and recovery

algorithms have been implemented and are in use in the

Argus system, although we are currently using conventional

disks instead of true stable storage. Early prepare and

snapshots are not yet implemented.

Current time Estimated time
conventional disks stable storage

message round trip 35 15
one block disk write 60 20
total user delay 265 95

Figure 4: Current and Estimated Performance Figures

Figure 4 presents our current and estimated

performance figures. A message round trip time is

approximately 35 milliseconds; measurements show that

more than half of this time can be attributed to unnecessary

kernel overhead. Our measurements show that a typical

one block raw disk write takes about 20 milliseconds;

however, we are using a network-based disk server, with a

write time of about 60 milliseconds. With this configuration,

two-phase commit delays a user process a minimum of 155

milliseconds, but because Unix lacks non-blocking raw disk

writes, the writes done in "background" in phase two of the

protocol block the entire guardian, so the delay with

sustained activity is closer to 265 milliseconds. The

estimated delay of 95 milliseconds assumes one round trip

message and four disk writes, two each for writing the

prepare and committing records. If we are willing never to

overwrite disk pages as is done, for example, in Swallow

[16, 17]: then the delay can be reduced to 55 milliseconds.

During recovery the system must read every outcome

entry, but may only look at a fraction of the data entries in

the log. To reduce the number of unnecessary reads during

recovery, it might be better to keep two separate logs, one

containing information about actions (outcome entries), and

the other containing information about data (data entries).

We have merged the outcome and data entries into one log

to minimize the number of sequential stable storage writes,

under the assumption that writes are expensive. Suppose,

however, one built a large stable buffer out of highly reliable

direct access memory, so that disk operations could

generally take place in background. Write times are then

almost negligible, perhaps making other stable storage

organizations more attractive.

We have organized stable storage under the

assumption that volatile memory has been discarded, or at

least cannot be trusted, after a crash, which is certainly true

of most operating systems. If, however, we were to design

an operating system kernel specifically for Argus, we might

use the virtual memory system as part of the stable storage

system, in the following way. Notice that the version

management used for atomic objects in volatile memory is

essentially a shadowing scheme: the base version is the

shadow and committing an action installs a new shadow. If

we assume that after a crash the backing store portion of

virtual memory on disk is intact, then recovery can be done

starting with the object versions in virtual memory and

consulting the log to bring the objects up to date. Changes

of uncommitted actions can be undone simply by discarding

the current versions of objects; for the prepared actions we

must retain the current versions. Since some modified

pages in volatile memory may not have been paged out to

backing store before the crash, we cannot be sure whether

needed base and current versions were written to disk. To

keep backing store approximately up-to-date, we can create

checkpoints, somewhat like those in System R [7], by

periodically suspending activity long enough to flush all

modified pages containing stable objects and their base

versions to backing store. After a crash only the part of the

log after the checkpoint, plus data entries before the

checkpoint for actions whose prepare or commit record

appears after the checkpoint, will have to be processed.

Such a method is likely to be faster for recovery than

our current scheme. One problem arises, however: what

happens if a crash occurs during garbage collection? Such

a crash is not a problem with our current scheme because

virtual memory is discarded after the crash. However, if

virtual memory is retained, it must be possible to restore

objects from it even if it was being reorganized by garbage

collection when the crash occurred.

158

Many garbage collection schemes make virtual

memory unreadable while they are running. Our own

scheme is one of these; we use a mark-sweep collector that

stores information in the objects themselves. Other

schemes, such as a copying garbage collector, do not

destroy virtual memory, but these appear to be the less

efficient than our scheme given our current hardware

constraints. Such schemes are safe because they consist of

a sequence of atomic steps. We intend to explore

alternative garbage collection methods that are both atomic

and efficient as part of our future research.

R e f e r e n c e s

1. Arens, Gall C. "Recovery of the Swallow Repository".
Tech. Rep. MIT/LCS/TR-252, M.I.T. Laboratory for
Computer Science, January, 1981. Master's thesis.

2. Astrahan, Morton M., et al. "System R: A Relational
Approach to Database Management". ACM Transactions
on Database Systems 1, 2 (June 1976), 97-137.

3. Bjork, L.A. "Generalised Audit Trail Requirements and
Concepts for Data Base Applications". /BM Systems
Journal 14, 3 (1975), 229-245.

4. Davies, Charles T. "Recovery Semantics for a DB/DC
System". Proceedings of the 1973 ACM National
Conference, 1973, pp. 136-141.

5. Davies, Charles T. "Data Processing Spheres of
Control". /BM Systems Journal 17, 2 (February 1978),
179-198.

6. Eswaran, Kapal P., Gray, James N., Lode, Raymond A.,
and Traiger, Irving L. "The Notion of Consistency and
Predicate Locks in a Database System". Communications
o/the ACM 19, 11 (November 1976), 624.633.

7. Gray, James N. "Notes on Database Operating
Systems". In Lecture Notes in Computer Science 60, Goos
and Hartmanis, Eds., Springer-Verlag, Berlin, 1978, pp.
393-481.

8. Israel, Jay E., Mitchell, James G., and Sturgis, Howard.
"Separating Data from Function in a Distributed File
System". Tech. Rep. CSL-78-5, Xerox Palo Alto Research
Center, September, 1978.

9. Lampson, Butler W. and Sturgis, Howard E. "Crash
Recovery in a Distributed Data Storage System". Xerox
Palo Alto Research Center,Palo Alto, California (1976).
Unpublished paper. This 1976 paper is the first to mention
the notion of intentions lists.

10. Lampson, Butler W. and Sturgis, Howard E. "Crash
Recovery in a Distributed Data Storage System". Xerox
Palo Alto Research Center,Palo Alto, California (April, 1979).
Unpublished paper. This later paper mentions nothing about
intentions lists.

11. Lampson, Butler W. Atomic Transactions. In Lecture
Notes in Computer Science, Volume 105: Distributed
Systems: Architecture and Implementation, Goos and
Har-tmanis, Eds., Springer-Verlag, Berlin, 1981, ch. 11, pp.
246-265.

12. Liskov, Barbara H. and Scheifler, Robert W.
"Guardians and Actions: Linguistic Support for Robust
Distributed Programs". ACM Transactions on Programming
Languages and Systems 5, 3 (July 1983), 381-404.

13. Liskov, Barbara H. "Overview of the Argus Language
and System". Available as Programming Methodology
Group Memo 40, M.I.T. Laboratory for Computer Science,
February, 1984.

14. Moss, J. Eliot B. "Nested Transactions: An Approach
to Reliable Distributed Computing". Tech. Rep.
MIT/LCS/TR-260, M.I.T. Laboratory for Computer Science,
June, 1981. Ph.D. thesis.

15. Oki, Brian M. "Reliable Object Storage to Support
Atomic Actions". Tech. Rep. MIT/LCS/TR-308, M.I.T.
Laboratory for Computer Science, May, 1983. Master's
thesis.

16. Reed, David P. and Svobodova, Liba. "Swallow: A
Distributed Data Storage System for a Local Network". In
Local Networks for Computer Communication, West, A. and
Janson, P., Eds., North Holland Publishing Company, 1981,
pp. 355-373.

17. Svobodova, Liba. Management of Object Histories in
the Swallow Repository. Tech. Rep. MIT/LCS/TR.243,
M.I.T. Laboratory for Computer Science, July, 1980.

18. Weihl, William E. and Liskov, Barbara H. "Specification
and Implementation of Resilient Atomic Data Types".
Available as Computation Structures Group Memo 223,
M.I.T. Laboratory for Computer Science, December, 1982.
This memo contains a detailed discussion of mutex.

159

