
Abstract

The Robustness of NUMA Memory Management*

Richard P. LaRowe Jr.t

Carla Schlatter Ellis$

Laurence S. Kaplan~

The study of operating systems level memory man-

agement policies for nonuniform memory access time

(NUMA) shared memory multiprocessors is an area of

active research. Previous results have suggested that

the best policy choice often depends on the application

under consideration, while others have reported that

the best policy depends on the particular architecture.

Since both observations have merit, we explore the con-

cept of policy tuning on an application/architecture ba-

sis.

We introduce a highly tunable dynamic page place-

ment policy for NUMA multiprocessors, and address is-

sues related to the tuning of that policy to different

architectures and applications. Experimental data ac-

quired from our DUnX operating system running on two

different NUMA multiprocessors are used to evaluate

the usefulness, importance, and ease of policy tuning.

Our results indicate that while varying some of the

parameters can have dramatic effects on performance,

it is easy to select a set of default parameter settings

that result in good performance for each of our test ap-

plications on both architectures. This apparent robust-

ness of our parameterized policy raises the possibility of

machine-independent memory management for NUMA-

class machines.

*This research was supported in part by NSF grants CCR-

87217S1 and CCR-8821809. LaRowe was partially supported by

a Computer Measurement Group (CMG) Fellowship.

t Encore Computer Corp., 257 Cedar Hill Street, Marlborough,

MA 01752. internet: rlarowe~encore. com

t Department of Computer Science, Duke University, Durham,

NC 27706. internet: carlaQcs. duke .edu
$BBN Advanced Computers Inc., 70 Fawcett Street, Cam-

bridge, MA 02238. internet: lkaplanQbbn. com

Permission to copy without fee SH or part of this material is

grsnted provided that the copies are not made or distributed for

diract commercial advantaga, tha ACM copyright notice and the

title of thu publication and it= d~te -pp==., end no+~ea ;S ~iv~n

that copying is by permission of the Aaaociation for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

01991 ACM 0-89791-447-3/911000910~ 37...$1.50

1 Introduction

Multiprocessor designs that can be classified as NUMA

(~on~niform ~emory ~ccess time) architectures are be-

coming increasingly important with the drive to provide

shared memory on a larger scale. Distributing the mem-

ory of a large scale multiprocessor among the processors

so that each memory module can be considered close to

some processor(s) while being distant from others offers

clear price/performance advantages. The implication of

this design decision is that the placement and movement

of code and data become crucial to performance. Un-

fortunately, presenting the programmer with an explicit

NUMA memory model results in a significant additional

programming burden. The operating system can play a

major role in managing placement through the policies

and mechanisms of the virtual memory subsystem (e.g.,

by migrating and replicating shared pages).

OS-level NUMA memory management is an area of

active research [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13]. This body

of work has demonstrated that dynamic page placement

is indeed effective. In fact, the effectiveness question

has been the focus of many of the previous studies that

took the approach of proposing an algorithm and eval-

uating its performance (e.g., by comparing it against

some static, often random, page placement policy on a

particular architecture). The next level of questioning

involves exploring the policy design space to gain an

understanding of the range of possible management op-

tions, of why certain policy alternatives behave as they

do, and of how that behavior depends on the memory

reference patterns of applications and architectural pa-

rameters. This has been the goal of our recent work.

In order to do comparative policy studies, we devel-

oped the DUnX kernel for the BBN GP1OOO as a frame-

work for implementing a wide assortment of dynamic

page placement strategies. We initially viewed the pol-

icy design space in terms of distinct points; individual

policies that captured various combinations of the large

number of factors that we suspected might affect perfor-

mance. Nearly fifty policies were tested, including (at

least approximations of) most of the published policies,

and the experimental results were reported in [9]. The

DUnX policy space covered both pull- and push-based

page movement, the collection and use of reference his-

137

tory information of various kinds and levels of detail,

different mechanisms for triggering new placement de-

cisions, different means of limiting excessive page move-

ment (page bouncing), and different criteria for choosing

between migration and replication operations.

One of the key observations made in those early ex-

periments was that the application program under con-

sideration often seemed to determine which placement

policy delivered the best performance. For example, a

policy that was eager to migrate and replicate pages

performed poorly when faced with an application that

had a substantial amount of active sharing. Similarly,

conservative policies did not perform well when faced

with applications exhibiting very neat sharing patterns

that were ideal for page migration.

It is intuitively obvious that architectural features

can influence the behavior of dynamic page placement

policies as well. For example, in a system with very

fast page transfers but incredibly slow remote reference

times, migration and replication are very desirable. On

the other hand, in a system in which page transfers

are very slow, the desire to migrate pages is much less.

Bolosky et al. consider the importance of architectural

dependencies in [4]. The importance of page transfer

speed for the policy implemented in the Platinum oper-

ating system on the BBN Butterfly Plus multiprocessor

is discussed by Cox and Fowler [5].

The approach originally used to specify policies in

the first version of the DUnX kernel favored the com-

parison of qualitatively different policies (e.g., evaluat-

ing the effect of different features). It became apparent

that many of the remaining questions involved explor-

ing the degree to which some of the techniques should

be applied, raising the issue of policy tuning. Our ex-

perience also allowed us to prune and consolidate tech-

niques. Thus, it appeared that our further investigation

of policy issues could best be formulated in the context

of a single parameterized policy and studied by vary-

ing the parameter settings and measuring the effect on

performance. This insight led to the development of

version two of DUnX, which supports such a tunable

policy. This single policy seems to capture a fairly large

region of the policy design space, including the most

successful policies identified in our earlier experiments.

one of the potential bcncfi~s of a pmameterized

NUMA memory management policy, incorporated into

a virtual memory subsystem that has been structured

for portability (DUnX is a descendent of Mach [14]),

may be an ability to tune for architectural differences.

We investigate the premise that one policy maybe used

on different architectures for different applications and

be tuned with relative ease to deliver acceptable per-

formance. We address this issue by considering the ef-

fects that the differences between BBN’s GP1OOO and

TC2000 architectures have on the tuning of policy pa-

rameters using DUnX implementations on both ma-

chines.

In the next section, we describe our parameterized

policy and its implement ation. In Section 3, we discuss

our experimental methodology for investigating issues

related to tuning, and in Section 4, we present the re-

sults of our experiments. Our results indicate that while

varying some of the parameters can have dramatic ef-

fects on performance, it is easy to select a set of default

parameter settings that result in good performance for

each of our test applications on both architectures. We

summarize and conclude in Section 5.

2 A Parameterized Dynamic

Page Placement Policy

Our policy is a highly parameterized dynamic page

placement policy that can move a page to a local

frame upon demand (i.e., it is pull-based). It supports

both migration and replication with the choice between

the two operations based on reference history (the re-

cent history of modifications made to the page). A

directory-based invalidation scheme is used to ensure

the coherence of replicated pages. The policy applies

a freeze/defrost strategy (an idea adopted from [5]) to

control page bouncing. This means that excessive page

movement is controlled by freezing the page in place and

forcing remote accesses. The freezing criterion is based

on the time since the most recent invalidation of the

page. Determining when to defrost a frozen page and

trigger reevaluation of its placement is based on both

time (by how often such decisions are made) and ref-

erence history (the recent remote/local usage). At the

same time, choosing how to trigger new placement de-

cisions is based on reference data (recent modification

history).

Six parameters control the behavior of the pol-

icy. One set of parameters controls the frequencies at

which certain events take place (defrost and triggering

decision-points, reference data collection, and aging of

usage counts). Other parameters set thresholds on the

interpretation of reference data (e.g., defining “recent”

history). These parameters are not intended to be or-

thogonal, but they do provide a means to systematically

study the policy design space. With appropriate param-

eter settings, behavior of the policy can be adjusted to

mimic a wide variety of freeze-based policies. In addi-

tion, we can use parameter tuning to study the effects

of individual policy features on performance when faced

with different application programs or different memory

architect ures. The parameters and their roles are sum-

marized in Table 1, and are discussed in the following

subsections.

The policy is comprised of two parts. The first defines

138

Pararn Role

freeze-window defines size of “recent invalidations” window for freezing decisions

recent-mod controls the replication vs. migration decision

scan-delay sets the rate of scanner daemons

sample-passes adjusts the number of reference collection samples

defrost-trigger remote count ~ local count “successes)’ needed to defrost

trigger-method controls the “invalidateall” vs. “invalidater emote” trigger decision

Tablel: Policy Parameter Summary

the behaviorofthe policy when faced with apage fault,

and the second defines the behavior ofthe page scanner

daemons usedto trigger the reevaluation ofearlier page

placement decisions.

2.1 Fault Time Behavior

The policyspecifies how afaulton apage that isalready

resident in some physical frame is to be handled. The

chosen course of action depends primarily on the recent

reference history for the page and the settings of the

freeze-window and recent-mod policy parameters.

The processing of a fault on a page that is not cur-

rently replicated depends on whether the frame in which

it resides is local or remote. If the frame is remote, the

policy must decide between installing a remote mapping

and migrating or replicating the page.

The first step involves determining whether the page

should be frozen by checking to see whether the most

recent invalidation of the page (due to a page mi-

gration or coherency fault) occurred within the past

freeze-window milliseconds. If the page is frozen

(either imposed just now or sometime in the past),

the remote frame is used to service the fault. The

freeze-window parameter essentially limits the rate

at which invalidations of a page can occur. When

freeze-window is set to zero, the policy behaves much

like the caching policies used in the proposed distributed

shared memory environments (e.g., [11, 12]). When

freeze-window is set to infinity, a page may only be

invalidated once (migrated once, or replicated until the

first coherency fault occurs) before it is frozen. Values of

freeze-window between these two extremes allow vary-

ing amounts of dynamic page placement activity (migra-

tion and replication). In essence, the freeze-window

parameter controls the eagerness of the policy to mi-

grate and replicate pages.

Once it is determined that the page can move, it

is necessary to decide between migration and replica-

tion. The recent -mod parameter controls the replica-

tion versus migration decision. The policy checks to

see if the page has been recently modified by compar-

ing the modification history (maintained by the page

scanners through aging of the hardware modification

bits) to the recent-mod parameter. If the aged modi-

fication counter exceeds the recent -mod threshold or if

a write reference triggered the current fault, the page

is migrated to a local free frame. otherwise, a local

free frame is used to create a copy of the page. Write

access to all copies is prohibited, allowing the fault han-

dler to ensure data coherency. When recent-mod <0,

migration is always chosen in favor of replication (i.e.,

replication is not allowed). When recent-mod = co,

replications are chosen over migrations on any fault not

triggered by a write reference. If we sssume that the

goal of the policy is to replicate only pages being refer-

enced in a read-only fashion, then we can characterize

recent-mod as the point at which the policy concludes

that the last modification of the page is far enough in

the past that it can assume that the page is now being

referenced in a read-only fashion.

The handling of a fault on a page that is already repli-

cated requires that data coherence must be maintained.

If a write memory reference triggered the fault, all but

the copy eventually used to satisfy the fault must be in-

validated. If no local copy of the page exists, one of the

existing replicas is migrated to a local frame. If a read

memory reference triggered the fault, then the policy

either uses an existing replica, or creates an additional

local one if none already exists. There is no need to

check for freezing, since it is impossible for a page that

should be frozen to be replicated.

2.2 Page Scanner Behavior

A dynamic page placement policy that relies solely on

page faults to trigger placement decisions is severely lim-

ited, since even if it can detect when the placement of

a page should be reevaluated, there is no way for the

policy to gain control unless a page fault occurs. Our

policy uses a page scanner on each processor node to

trigger the reevaluation of earlier placement decisions.

The page scanners run every scan-delay seconds.

Each time a scanner runs, it collects page reference and

modification information for the frames on its processor.

Separate local and remote reference counts are main-

tained, so that the policy can tell whether only local

processes, only remote processes, or both local and re-

139

mote processes are referencing each page.

After sample-passes runs in which a scanner simply

collects data, it executes an additional phase in which

it examines its frames to check for earlier placement

decisions that ought to be reevaluated. In the DUnX

implementation of the policy, the scanners also work to

support the page replacement policy at this time.

The scan-delay and sample-passes parameters

control the frequency that the scanners consider trig-

gering the reevaluation of earlier placement decisions.

Setting scan-delay to infinity essentially disables the

scanner (making the other scanner parameter settings

irrelevant). Values of ssmple-pass es greater than zero

allow the scanners to collect more accurate reference in-

formation (more samples) between checks on whether

to trigger placement decision reevaluations. Of course,

higher sample-passes values also increase the time, for

a fixed scan-delay, between such checks.

The frames of primary interest are those containing

frozen pages, for those are the pages which the policy

forced some process to use remotely. For each of the

frames containing a frozen page, the policy compares the

local and remote reference counts for that frame. If the

remote reference count is as great aa the local reference

count, a counter stored with the frame data structure

is incremented. Otherwise, the counter is reset to zero.

Once the counter reaches defrost-trigger, the policy

chooses to trigger the reevaluation of the earlier decision

to use that frame.

The defrost-trigger parameter controls the eager-

ness of the scanner to trigger the reevaluation of ear-

lier decisions. When defrost-trigger is set to zero,

frozen pages are defrosted the first time the scanner

considers doing so (this is the defrost strategy used

by the Platinum policy [5]). Higher values ensure that

reevaluations are triggered only when there is sufficient

evidence that remote processes are using the page at

least as much as local processes. Intuitively, when the

cost of reevaluating a placement decision is high, higher

defrost-trigger values would be more appropriate.

The policy triggers the reevaluation of earlier place-

ment decisions in one of two ways, choosing between

them by comparing the trigger-method parameter to

the aged modification count. This is used aa an indica-

tion of whether write access is likely in the near future.

If a read access and, as a result, replication is to be

expected, it is appropriate to invalidate remote map-

pings, causing page faults for all remote processes still

using the page but not requiring local processes to incur

extra faults. The more conservative triggering method

involves invalidating all mappings (even those by local

processes) to the frame. Both methods defrost the frame

(clear the frozen bit). We suspect that in most cases,

setting trigger-method equal to recent-mod is appro-

priate.

Operation GP1OOO TC2000

Cache Read — o.061ps

Local Read 0.6ps 0.502ps

Remote Read 7.5ps 1.766ps

Migration 4.5ms 4.8ms

Replication 4.6ms 4.6ms

Coherency Fault 2.lms l.orns

Table 2: GP1OOO and TC2000 Memory Operation Costs

3 Methodology

We study the effects of tuning our policy for different

applications and architectures using implementations of

DUnX on the BBN GP1OOO and TC2000 shared mem-

ory multiprocessors and a collection of six parallel ap-

plication programs obtained from various Butterfly user

communities. In this section, we describe the differences

in the two architectures under consideration, our work-

load collection, and our experimental approach.

The BBN GP1OOO and TC2000 shared memory mul-

tiprocessors share many common features, yet also dif-

fer in several important aspects. Both architectures

are Local/Remote NUMA multiprocessors based on a

multistage Butterfly interconnection net work. A Lo-

cal/Remote architecture is one in which each memory

module is physically associated with a processor. Pro-

cessors can issue memory requests to any memory, but

accesses to local memory are faster than remote. All

remote memories are considered equally distant.

The most significant architectural differences between

the GP1OOO and TC2000 involve the microprocessors

used by the machines (a Motorola 68020 in the GP1OOO

and a Motorola 88100 RISC processor in the TC2000)

and the existence of data caches and interleaved memory

on the TC2000. The TC2000 caches are not kept consis-

tent via hardware, however, sot ypically only non-shared

data are cached. In the current TC2000 DUnX imple-

ment ation, we also allow replicated pages to be cached,

using the software coherence mechanism in DUnX to

ensu~e hardware cache consistency as well. Currently,

other shared data are not cached, though we suspect

that extensions to DUnX to support software consis-

tency of the hardware caches for other shared data may

prove effective. Also, in our experiments on the TC2000,

we ignore the existence of interleaved memory. We sus-

pect that the interleaved memory may prove useful for

storing frozen pages, but we have not yet investigated

this idea.

The most important difference between the two archi-

tectures, with respect to the performance of dynamic

page placement, concerns the costs of different mem-

ory operations. In Table 2, the basic costs are summa-

rized. It is important to note that the TC2000 used for

140

our experiments consists of older processor nodes that

run at 16 Mhz (as opposed to the 20 Mhz boards used

in production models) and have only four megabytes

of memory per node (as opposed to the typical six-

teen megabytes). Thus, performance of a production

TC2000 is likely better than that achieved in our exper-

iments.

Several featurea of the data in Table 2 are worth

pointing out. First, we see that the remote reference

cost is significantly lower in the TC2000, resulting in a

remote/local reference time ratio of just 3.5 as opposed

to the 12.5 ratio on the GP1OOO. On the other hand,

when pages are replicated the ratio of importance is the

remote/cache ratio, which at 28.95, is much greater than

the GP1OOO remote/local ratio. The costs of migrating

and replicating pages are similar for the two architec-

tures, due to the fact that the TC2000 has no hardware

support for block transfers whereas the GP1OOO does.

This implies that these costs relative to processor speed

may seem as much as an order of magnitude greater in

the TC2000. To see the significance of these cost dif-

ferences, consider that if we ignore assorted contention

factors, it generally pays to migrate a page when

atj+ik<atr, (1)

where a is the number of accesses the processor will

make to the page, ti is the local memory reference cost,

t, is the remote memory reference cost, and M is the

page migration cost. Using the values in Table 2, the

minimum a for which it pays to migrate a page on the

GP1OOO is 652, whereas for the TC2000, at least 3798

references are required. Using a similar expression for

the page replication case, and accounting for the fact

that replicated pages can be cached on the TC2000, we

see that it pays to replicate a page on the GP1OOO when

at least 667 references to the page will be made, yet

for the TC2000, 2698 references are required. This sug-

gests that a more conservative approach to using migra-

tion and replication may be appropriate for the TC2000

than the GP1OOO. As we shall see, however, our results

indicate that these architectural differences are not as

significant to policy tuning as they first appear.

The workload used for our experimentation was de-

veloped independently from our project, in an effort to

prevent unconscious attempts at making design deci-

sions that might favorably affect our results. For most

of the applications that comprise our workload collec-

tion (listed in Table 3), there are versions written in

both UMA and NUMA styles. The exception is resort,

for which we have no NUMA version. The UMA version

does no NUMA-specific memory management, such as

manually placing shared data pages or manually repli-

cating read-only data structures. The NUMA version,

on the other hand, is a highly-tuned implementation of

the same program written to optimize memory reference

locality. As one would expect, the NUMA version of an

application is typically more complicated, less portable,

and much more difficult to write. Preliminary exper-

iments [9] have verified that dynamic page placement

has an impact on the performance of the UMA version

of these programs when run on a GP1OOOI

For each application in our workload collection, we

began our study by “tuning” the parameter settings to

achieve the best possible performance for that appli-

cation on the GP1OOO within the limits of the some-

what ad hoc tuning process. The search involved re-

peatedly picking a set of parameter values, monitoring

behavior of the application with those settings, and then

adjusting the settings appropriate y. For example, if

there appeared to be an excessive amount of page mi-

gration and replication activity, we might increase the

f reeze-uindow setting to see if performance would im-

prove. The process requires a fair level of understanding

of the role of the parameters, but our experience is that

it is fairly easy to derive settings that deliver perfor-

mance reasonably close to the best we have achieved for

each application. Once we arrived at those parameter

settings for an application, we designated them as the

default settings for that application. The default set-

tings are given in Table 3. We found that for all the

applications in our workload collection, the default set-

tings derived for the GP1OOO also proved adequate for

the TC2000. Thus, in all the experiments presented in

this paper, the default settings for all but the parameter

being varied were used. These settings are indicated in

the figure captions.

In most of the figures in this paper, there are two

heavy lines that mark the levels of performance ob-

tained by the UMA and NUMA versions using static

page placement (the upper line is the UMA result, and

the lower the NUMA result). It must be noted that

the static placement strategy is reasonably intelligent,

placing pages in the memory of the faulting processor

node during pagein, unless the data are explicitly bound

to some other node. Each diamond in a plot is an ex-

perimental data point obtained with the UMA version

of the program run under our dynamic policy with the

corresponding parameter setting (multiple trials were

done to check validity of data). The dotted lines con-

nect the maximum and minimum levels of performance

measured, and the thin solid line plots the mean values.

In all plots in this paper, time on the y-axis is measured

in elapsed seconds.

1Not included in this discussion are two other applications

studied in [9] that were found not to benefit from dynamic place

ment, implying that the ability to disable such activity altogether

might be valuable in a production system.

141

Prog Description
freeze- recent- scan- sample- defrost- trigger-

uindou mod delay passes trigger method

simulates gaussian

gauss elimination with 125ms 216 1.5s o 4 21’3

integer arithmetic

simulates electrical

hh3d conduction 312.5ms 216 10s o 4 216

in cardiac tissue

solves AZ = bfor

psolu sparse A using 187.5ms 216 10s o 1 21’3

block chaotic relaxation

bough
computes bough

31.25ms 216 10s o 1 216
transforms
merge sort of an

resort 50ms o 10s o
integer array

o 0

solves the wave equation

Wave on a square grid 250ms 216 10s 10 4 216

with periodic boundary

Table 3: Experimental Workload Collection

4 Evaluation and Results without replication (the recent-mod <0 case), but fail

In this section, we investigate the effects of varying the

policy parameters. The goal of these experiments is

to determine the importance and sensitivity of policy

parameter tuning to the performance of our test appli-

cations on the two architectures considered.

4.1 Effect of Varying recent-mod

Intuitively, it seems that the recent-mod parameter,

which controls the migration versus replication decision,

should be important in balancing the costs of unneces-

sary coherency faults against missed opportunities for

local accesses. For applications that use a significant

amount of read-onl y sharing, page replication is highly

desirable and should be chosen over migration when-

ever possible. On the other hand, a strong preference

for replication when writing activity is high incurs the

overhead of coherency faults.

The results of varying recent-mod for the gauss ap-

plication on the GP1OOO are given in Figure 1 (note

that we also vary trigger-method so that it remains

equal to recent-mod). It is clear that the higher the

preference for replication over migration, the better the

measured performance. Since the primary mode of shar-

ing in gauss involves reading pivot rows of the ma-

trix, which are never modified once they become pivot

rows, the value of replication is not surprising. Fig-

ure 1 shows that when replication is always chosen over

migration on read faults (recent-mod = 216), perfor-

mance of the UMA version of gauss is nearly as good as

with the NUMA version of the program. Intermediate

recent-mod values result in performance better than

to take advantage of some potential page replications

that further improve performance in the recent-mod

= 216 case. Results of recent-mod experiments with

the psolu, bough, and wave applications on the GP1OOO

resemble those obtained for the gauss program.

On the other hand, the resort application is an exam-

ple of an application that does not benefit when repli-

cation is preferred over migration on the GP 1000. The

data are shown in Figure 2. This behavior is explained

by the fact that there is no read-only sharing in resort

which can benefit from page replication. As a result,

when recent -mod = 216, we see a slight (barely no-

ticeable) performance degradation due to using replica-

tion/coherency fault pairs to effectively migrate pages,

which is a bit more costly than simply migrating the

page. The hh3d results are similar to those of resort

(though there is some slight improvement in hh3d per-

formance with replication).

These data provide little evidence supporting the use-

fulness of intermediate recent-mod values. We believe

that this is because the cost of incorrectly choosing repli-

cation over migration (a coherency fault) is not that sig-

nificant in our DUnX implementation on the GP1OOO.

The importance of avoiding coherency faults is simply

not great enough to overcome the cost of avoiding or

delaying desirable page replications.

Avoiding coherency faults may be more important for

architectures in which processing of a coherency fault

is very expensive. The results for the bough applica-

tion on the TC2000 begin to illustrate this behavior.

The GP1OOO results with bough look very similar to the

gauss results shown in Figure 1. On the TC2000, how-

ever, we see in Figure 3 that the import ante of increas-

142

Effect of recent-mod on gauss Performance

2000 I I I I I I I I I I 1

1800 -

1600 “ Dynamic Policy Points 0

Max and Min Dynamic Policy .
1400 “ Average Dynamic Policy —

1200 - UMA and NUMA Static —

T&; 1000” -

800 -

600 -

400 -

200 -

0
I I I I I I I I I I I

-1 0 2’J 22 24 26 2s 210 212 214 216

recent -mod

Figure 1: Effects of recent-raod on gauss/GP 1000 Performance

(freeze-window = 125ms, scan-delay = 1.5s, sample-passes = O,

defrost-trigger = 4, trigger-method = recent-mod)

Effect of recent-mod on resort Performance

350 I I I I I I I i I I I

300 - Dynamic Policy Points O

Max and Min Dynamic Policy

Average Dynamic Policy —
250 - UMA Static —

~e&: 200 -

150 -

50
I I I I I I I I I I I

-1 0 20 22 24 26 28 210 212 214 216
recent-mod

Figure 2: Effects of recent-mod on msort/GPIOOO Performance

(freeze-window = 50ms, scan-delay = 10s, sample-passes = O,

defrost-trigger = O, trigger-method = recent-mod)

143

Effect of recent-mod on bough Performance

50 ~

t I
45

1

Dynamic Policy Points O

Max and Min Dynamic Policy

40 Average Dynamic Policy —

UMA and NUMA Static —
1

Time 35
sees

1$~~+$=$

..0. ,

30 .’”” ”””” ””””’ a”” .A. a“’’””’
.,.,,,

I

20 I I I I I I I I I I I I I

-1 0 ‘o 22 24 26 2’3 210 212 214 216

recent -mod

Figure 3: Effects of recent-mod on bough/TC2000 Performance

(freeze-window = 31.25ms, scan-delay = 10s, sample-passes = O,

defrost-trigger = 1, trigger-method = recent-mod)

ing recent-mod values is not nearly as great as in the

GP1OOO case. In fact, when replication is always pre-

ferred over migration (recent-mod = 216), some per-

formance degradation is evident. This is due to the

fact that relatively speaking, coherency faults are more

expensive on a TC2000 than on a GP1OOO. The ab-

solute time to process a coherency fault is greater on

the GP1OOO, but the TC2000 is able to do a significant

amount more processing in the time it takes for a co-

herency fault to complete. Since coherency faults are

relatively more expensive, the cost associated with mis-

takenly replicating a page rather than migrating it is

more import ant, and a more conservative approach to

selecting replication (i.e., recent-mod < 216) is more

appropriate. In an architecture in which the relative

cost of processing a coherency fault is even greater, the

intermediate recent-mod values may be essential to ob-

taining the best performance.

The experiments varying the recent-mod parameter

for the rest of our workload on the TC2000 yielded qual-

itatively similar results to thoee obtained on the GP1OOO

(absolute performance changed since the TC2000 is a

much fsster machine). One might anticipate that an in-

creasing preference for replication over migration would

deliver increased benefits since the remote to cache ac-

cess time improvement supplants the more modest re-

mote to local improvement possible with migration. It

appears, however, that the overhead of additional co-

herency faults can overwhelm that effect.

4.2 Effect of Varying freeze-window

The freeze-window parameter essentially controls the

imposition of freezing to limit the amount of dynamic

page placement activity. When freeze-window is set to

zero, there is no limit on the frequency of page migra-

tions and coherency faults, and for most of our applica-

tions on both machines, the page bouncing problem sets

in, resulting in incredibly poor performance. In order

to prevent such situations, higher freeze-window val-

ues must be used. However, if freeze-window is set too

high, the prevention or delay (until defrost) of desirable

migrations and replications becomes a real possibility.

The results of our freeze-window experiments with

psolu on a TC2000, shown in Figure 4, are typical. The

plot shows that performance with lower freeze-window

values suffers relative to higher values. If we let

freeze-window go to zero, performance degrades to the

point that we have never been able to let the computa-

tion complete. An important characteristic of the psolu

freeze-window results is that once the freeze-window

setting is “high enough,” further increases have little ef-

fect on performance. This is true of the bough, gauss,

hh3d, and resort results as well, on both the GP1OOO

and the TC2000. This suggests that the potential prob-

lem of delaying desirable operations is not a concern for

these applications on these architectures, either because

the effects of such delays are negligible (e.g., delays are

short since defrost comes soon), or because there are

few such operations. We suspect that a combination of

144

Effect of freeze-window on psolu Performance

360 I I I I

340 -

320 - Dynamic Policy Points O

Max and Min Dynamic Policy
300 - Average Dynamic Policy —

280 - UMA and NUMA Static —

~e~l 260 -

240

160 I I I I

o 125 250 375 500 625

freeze-window (ins)

Figure 4: Effects of freeze-window on psolu/TC2000 Performance

(scan-delay = 10s, recent-mod = 64k, sample-passes

the two factors is the reason.

The results of our GP1OOO freeze-window experi-

ments with the wave application differ and are shown

in Figure 5. We see that we can easily pick a “best”

freeze-window setting for wave running under the

DUnX parameterized policy on a GP1OOO. Values lower

than the minima (around 250ms) allow too much dy-

namic placement activity, whereas higher values pre-

vent desirable migrations and replications. This result

indicates that when performance is best, at least some

shared pages are migrated or replicated more than once

before being frozen, since otherwise performance would

not degrade with further increases in freeze-window.

Even though this application exhibits a best setting

for freeze-window, the wide range of acceptable val-

ues suggests that the task of tuning to an appropri-

ate freeze-window value is not exceptionally difficult.

In fact, a range of freeze-window settings from about

100rns to 300rns work well for any of our six applica-

tions on either architecture. This is at first somewhat

surprising since the TC2000 is so much faster than the

GP1OOO, however, it is apparent that freeze-window is

not so sensitive to architectural differences to necessi-

tate significant tuning changes for the degree of differ-

ence that exists between the two machines.

Behavior of the wave application on the GP1OOO with

respect to the freeze-window parameter provides an in-

teresting opportunity to study architectural dependen-

cies on freeze-window parameter settings, since we can

see whether and how the freeze-window minima shifts

= O, defrost-trigger = 1, trigger-method = 64k)

with changes in the architecture. To study the effects

of varying the costs of migrations, replications, and co-

herency faults while holding the memory reference costs

constant, we use a simple modification to the DUnX ker-

nel that allowed us to introduce an arbitrary amount

of delay into the handling of such operations. Though

this does not provide the ability to consider systems in

which these operations are fast er, it does let us inves-

tigate hypothetical systems in which they are slower.

For example, consider the data of Figure 6 where five

curves are plotted representing the average performance

of wave in each of five hypothetical systems (experimen-

tally modeled using our GP1OOO DUnX modifications).

The best overall performance is obtained with the basic

DUnX GP1OOO costs (i.e., replication (R) cost of 4.6rns,

migration (M) cost of 4.5ms, and coherency fault (C)

cost of 2. lms). As these basic costs are increased, we

see a slight shift in the freeze-window minima towards

higher values, as well as a “flattening” of the curves.

The shift of the minima is not at all surprising, since

as the costs of dynamic placement operations increases,

one would expect that more conservative control over

dynamic placement would be appropriate. The “flat-

tening” of the freeze-window curves is a result of the

fact that some dynamic operations prevented by higher

freeze-window values when operation costs are low be-

come undesirable as those operation costs incresse. The

number of references needed to justify the dynamic op-

erations (a in equation (l)) increases as the costs for

those operations is increased. For example, plugging

145

500

450

400

350

yey; 300

250

200

150

100

Effect off reeze-window on wave Performance

Dynamic Policy Points O

Max and Min Dynamic Policy

Average Dynamic Policy —

UMA and NUMA Static —

)
A A. &
v

0 125 250 375 500 625

freeze-window (rns)

Figure 5: Effects of freeze-window on wave/GPIOOO Performance

(scan-delay = 10s, recent-mod = 64k, sample-passes = 10, defrost-trigger =4, trigger-method = 64k)

500

450

400

T&: 35(J

300

250

200

Effect of freeze-window on wave Performance

‘/
R=4.6 M=4.5 C=2.1 +

R=6.6 M=6.5 C=3.1 +

i

R=8.6 M=8.5 C=4.1 -8-

R=1O.6 M=1O.5 C=4.1 *

R=12.6 M=12.5 C=6.1 *

1 I I I I I I

o 125 250 375 500 625 750

freeze-window (ins)

Figure 6: Effects of freeze-window and Dynamic Operation Times on

(scan-delay = 10s, recent-mod = 64k, sample-passes = 10, defrost-trigger

875 1000

wave Performance

= 4, trigger-method = 64k)

146

the cost factors used in the experiments of Figure 6 into

equation (1), we see that the minimum a value needed

to justify a migration increases from 666, to 956, 1246,

1536, and finally to 1826. An interesting question con-

cerns how decreasing the basic operation costs would

affect performance. If the trend in Figure 6 continued

in the opposite direction, it would indicate that as those

costs decreased, tuning of the freeze-window parame-

ter for the wave application might play a more signifi-

cant role than in our base system.

Performance of the wave application on the TC2000

with respect to the f reeze-wi.ndow parameter might

have been predicted from the Figure 6 data, since for the

TC2000, the minimum a for which migration would be

justified is 3798, which is greater than any oft hose con-

sidered in the Figure 6 experiments. Based on this, one

would expect the performance of wave on the TC2000

to resemble that of our other applications, such as the

psolu results shown in Figure 4. As expected, the re-

sults of the TC2000 wave freeze-window experiments,

not included here due to space limitations, are similar

to the psolu results.

4.3 Effect of Varying scan-delay

The rate at which the page scanners are run is con-

trolled by the scan-delay parameter. An important

function of the scanners is to defrost frozen pages. Since

defrosting a page is only desirable when migrating or

replicating that page would improve performance, the

need to defrost a correctly frozen page is likely to come

only after some sort of memory reference phase change.

Thus, the appropriate scan-delay setting for an appli-

cation depends partially on the phase change behavior

of the application.2 If scan-delay is set very low (with

reasonable sample-passes and defrost-trigger set-

tings), defrost operations may occur more frequently

than desired, causing additional overhead in the form

of extra page faults, migrations, replications, coherency

faults, and freezing operations. Low scan-delay values

of our other applications on either machine, the sav-

ings associated with not using the scanners (i.e., setting

scan-delay = oo) are not as great as in the GP1OOO

hh3d case. For example, Figure 8 shows the effects of

scan-delay on the bough application on a TC2000.

Only one of our application/architecture combina-

tions, bough on a GP1OOO, performs better with the

scanners than without. This is shown in Figure 9,

where scan-delay values around 12s give the best per-

formance. This is an example in which defrosting is

necessary to achieve the best performance possible.

The results of our scan-delay experiments indi-

cate that scanner overhead is an important factor,

but that the overhead can be minimized by using

larger scan-delay values. For at least one applica-

tion/architecture combination (bough on a GP1OOO),

the scanners provide a beneficial service. We expect

that there exist many other real applications for which

this is true on both architectures, each with its own

optimal scan-delay value, though our results do not

support this intuition.

The data of Figures 8 and 9 are interesting in another

way. In Figure 9, we note that using the parameterized

policy on the GP1OOO, performance of the UMA version

of bough is better than that obtained with the hand-

tuned NUMA version of bough, whereas on the TC2000

(Figure 8), this is not the case. This is because on the

GP1OOO, the costs associated with dynamically achiev-

ing better page placements through migration and repli-

cation are low enough that the benefits outweigh those

costs. On the TC2000, the costs are relatively higher so

the overall benefit of the improved placements are not

as great. The NUMA version of bough may not have

the best placement, but the (static) placement it has

is extremely cheap to obtain. We suspect that if the

TC2000 had support for page-size block transfers, thus

decreasing the costs of migrations and replications, per-

formance of our policy in DUnX would be better than

the NUMA version just as it is on the GP1OOO.

also incur more overhead just running the scanners. On

the other hand, if scan-delay is set too high, a page
4.4 Other Parameters

correctly frozen in one phase of an application may end

up incorrectly placed for a long time in later program

phases.

For some application/architecture combinations, such

as hh3d on a GP1OOO (Figure 7), and to a lesser ex-

tent, hh3d on a TC2000, performance is best when

scan-delay = co. Note that in the plots in which

scan-delay is varied, the final point along the x-axis

is infinity. The data in Figure 7 show that small

scan-delay values can be costly, and that at higher

values, performance is significantly better. For most

The sample-passes parameter also plays a role in con-

trolling the rate at which defrost operations are possi-

ble. Intuitively, higher sample-passes values may de-

lay some desirable defrost operations, but with a con-

stant scan-delay value, the accuracy of the reference

information used to make decisions about defrosting

pages is better (due to more samples of the hardware

reference bits). The greater number of samples used

when making defrost decisions should improve the se-

lection of pages to defrost and result in fewer unwanted

defrosts. Higher sample-passes values should provide

2 In a recent paper [1 O] we demonstrated that “phase change
enhanced performance for applications that exhibit ac-

hints” inserted by the progr ammer or compiler can also be used tive sharing, yet have identifiable predominate users of

to trigger the defrosting of frozen pages. each page.

147

1800

1600

1400

Tiei: 1200

1000

800

600

Effect of scan-delay onhh3d Performance

I I I I I I I I

Q Dynamic Policy Points O

Max and Min Dynamic Policy

Average Dynamic Policy —

UMA and NUMA Static —

1 1

0 2 4 6 8 10 12 14 co

scan-delay (sees)

Figure 7: Effects of scan-delay on hh3d/GPIOOO Performance

(freeze-window = 312.5ms, recent-mod = 64k, sample-passes = O,

defrost-trigger = 4, trigger-method = 64k)

Effect of scan-delay on bough Performance

50 ~

20 I I I I I I I I I I

O 2 4 6 8 10 12 14 00

scan-delay (sees)

Figure 8: Effects of scan-delay on bough/TC2000 Performance

(freeze-window = 312.5ms, recent-mod = 64k, sample – passes= 10,

defrost-trigger = 4, trigger-method = 64k)

148

Effect of scan-delay on bough Performance

I I I I I 1 I I

180 ‘

160 -
‘i-

Dynamic Policy Points O

~e-ll 140 - Max and Min Dynamic Policy

Average Dynamic Policy —

UMA and NUMA Static —

120

0

100 - ,, 8-I I I
0 2 4 6 8 10 12 14 00

scan-delay (sees)

Figure 9: Effects of scan-delay on bough/GPIOOO Performance

(freeze-window = 31.25ms, recent-mod = 64k, sample-passes = O,

defrost-trigger = 1, trigger-method = 64k)

In our experiments, we have looked at sample-passes

values ranging from zero to ten. For our application

suite, varying sample-pass es appears to have only mi-

nor effects on performance on either the GP1OOO or the

TC2000. These results suggest that there may be little

use in continuing to support the ssnple-pass es param-

eter.

The defrost decision-making process is partially con-

trolled by the defrost-trigger parameter. When

defrost-trigger = O, reference information is not

used to make defrost decisions; the scanners simply de-

frost every frozen page. Higher defrost-trigger val-

ues are more conservative, deciding to defrost only when

it appears very clear that a migration or replication of

the page is appropriate.

In our experiments, we considered defrost-trigger

values ranging from zero to seven. For nearly all of

our applications, the defrost-trigger parameter had

only minor effects on performance on either architec-

ture, generally resulting in slightly better performance

for higher values but rarely resulting in a major perfor-

mance improvement.

Similarly, maintaining a separate trigger-method

parameter, decoupled from the recent -mod value, can

not be justified by our data.

4.5 General-Purpose Settings

The results of the experiments presented thus far in this

paper suggest that tuning of our policy parameters is

149

not as important as we initially expected. While it is

possible to choose especially bad settings for some of

the parameters (e.g., freeze-window and recent-mod),

our results suggest that a wide range of possible settings

would likely prove acceptable for any of the applications

on either architecture.

To test this hypothesis, we selected a set of default

parameter values based on our experimental results. We

compared performance of our six applications with their

respective tuned parameter settings to the performance

obtained with the default settings selected when run on

a GP1OOO. The default parameter settings we selected

are as follows: freeze-window = 150ms, recent-mod

= 216, scan-delay = 10s, sample-passes = O,

def rest-trigger = 1, and trigger-method = 216.

We should note that a different version of the DUnX

kernel was used for this experiment than for the results

presented previously, so the numbers reported in this

subsection should not be directly compared to earlier

results. We used the same tuned policy parameter set-

tings reported in Table 3.

The results are reported in Table 4. For each of the

two parameter set tings (the application’s tuned values

and the system defaults), we report the upper and lower

bounds of a 99% confidence interval determined using

the Student-t distribution and a sample size of twenty.

The mean value is also reported for each case. Finally,

in the rightmost column of the table, we report the per-

centage improvement (calculated with reference to the

Program Itined Default %lmprove

Lower Mean Upper Lower Mean Upper

gauss 220.033s 234.12s 248.207s 232.735 248.795 264.855 5.9%

hh3d 772.688s 787.53s 802.372s 788.799 800.81 812.821 1.6%
psolu 565.906s 569.53s 573.154s 561.23 564.86 568.49 -0.8%
bough 100.539s 101.1s 101.661s 99.9675 100.225 100.482 -0.9%
resort 72.9939s 75.235s 77.4761s 77.6131 78.515 79.4169 4.2%

wave 267.083s 276.57s 286.057s 264.901 267.75 270.599 -3.3%

Table 4: Comparison of Default and Tuned Performance.

mean values) obtained through application-specific pol-

icy tuning.

The first important point to notice about the results

is that in all but two cases (bough and resort) the con-

fidence intervals overlap, indicating that the differences

are statistically insignificant. Thus it is clear that for

the other four applications, per-application tuning pro-

vides little additional benefit. Even for the two appli-

cations for which the differences are statistically signifi-

cant, the differences are quite small. The improved per-

formance of resort with the tuned settings could have

been predicted besed on the fact that resort performed

best when recent-mod is negative. However, the im-

provement of just 4.2% is not overwhelming. The bough

results indicate that performance is slightly better with

the default settings than with the tuned settings. This

is an artifact of our ad hoc tuning process, in which

in this case, we selected parameter values that are not

quite optimal.

In any case, the results of this subsection demonstrate

the primary conclusion of this paper. NUMA memory

management is robust. Even with a highly parametri-

zed policy, a single set of default parameter values can

easily come within 5% of the tuned performance.

5 Conclusions

Both intuition and previous studies have suggested that

NUMA memory management policy depends on the

memory reference patterns of applications and on the

target architectures. We have attempted to experimen-

tally explore these dependencies, determine which of the

many possible factors that might affect behavior are the

most important, and assess the potential utility of pol-

icy tuning as a way to accommodate different memory

features and workloads. To investigate these issues of

policy tuning, we developed a version of the DUnX ker-

nel for the BBN GP1OOO and TC2000 multiprocessors

that supports a highly parameterized policy.

Our experiments have provided evidence to support

the following conclusions:

1. The results again confirm the effectiveness of dy-

2,

3%

namic placement policies, shown by previous stud-

ies, in that the measured performance of the UMA

versions of the workload programs running with

appropriate tunings often approaches the perfor-

mance of the hand-tuned NUMA versions.

A policy as highly parameterized as the one

used in our experiments does not appear neces-

sary. The most interesting parameters appear

to be recent-mod and freeze-uindou. In set-

ting recent -mod, the most import ant considera-

tion is to enable some amount of replication. For

freeze-window, the setting must be high enough

to avoid bouncing. Beyond those concerns, there

are a wide range of acceptable values from which to

choose. Several of the parameters have only a neg-

ligible effect on performance and can be dropped

from the list.

The data indicate that our NUMA memory man-

agement policy is robust. We have shown ‘that it

is easy to find a “general-purpose” set of parame-

ter values for the GP1OOO that delivers good per-

formance across our entire suite of test programs.

Although experiments with the system default set-

tings were not also performed on the TC2000, the

similarity of other GP 1000 and TC2000 results sug-

gests that a single set of default tunings may be

successfully applied to that architecture as well.

Our experience leads us to believe that a reasonably

simple parameterized policy may form the basis for the

development of machine-independent memory manage-

ment subsystems for the class of Local/Remote NUMA

machines.

Acknowledgements

The authors wish to thank the SOSP program commit-

tee and outside reviewers for their helpful suggestions

for improving this paper.

150

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

D. Black, A. Gupta, and W-D Weber. Compet-

itive management of distributed shared memory.

In Spring COMPCON 89 Digest of Papers, pages

184-190, 1989.

David Black and Daniel Sleator. Competitive

algorithms for replication and migration prob-

lems. Technical Report CMU-CS-89-201, Carnegie-

Mellon University, November 1989.

W. Bolosky, M. Scott, and R. Fitzgerald. Simple

but effective techniques for NUMA memory man-

agement. In Proceedings of the Twelfth ACM Sym-

posium on Operating Systems Principles, Decem-

ber 1989.

W. Bolosky, M. Scott, R. Fitzgerald, R. Fowler,

and A. Cox. NUMA policies and their relationship

to memory architecture. In Proceedings, Architec-

tural Support for Programming Languages and Op-

erating Systems, pages 212–221, April 1991.

A.L. Cox and R.J. Fowler. The implementation of

a coherent memory abstraction on a NUMA multi-

processor: Experiences with Platinum. In Proceed-

ings of the Twelfth ACM Symposium on Operating

Systems Principles, pages 32-43, December 1989.

M. Holliday. Page table management in lo-

cal/remote architectures. In ACM SIGA RCH Int.

Conf. on Supercomputing, pages 1-8, July 1988.

M. Holliday. Reference history, page size, and

migration daemons in local/remote architectures.

In Proceedings, Architectural Support for Program-

ming Languages and Operating Systems, pages

104-112, April 1989.

R. P. LaRowe Jr. Page Placement for Nonuni-

form Memory Access Time (NUMA) Shared Mem-

ory Multiprocessors. PhD thesis, Duke University,

1991.

R. P. LaRowe Jr. and C. S. Ellis. Experimen-

tal comparison of memory management policies

for NUMA multiprocessors. Technical Report CS-

1990-10, Duke University, April 1990. To Appear

in ACM Transactions on Computer Systems.

R. P. LaRowe Jr., J. T. Wilkes, and C. S. Ellis.

Exploiting operating system support for dynamic

page placement on a NUMA shared memory multi-

processor. In Proceedings of the Symposium on the

Principles and Practice of Parallel Programming,

pages 122-132, April 1991.

[11]

[12]

[13]

[14]

K. Li and P. Hudak. Memory coherence in shared

virtual memory systems. In Proceedings of the

Fifth ACM Symposium on Principles of Distributed

Computing, 1986.

Kai Li and Richard Schaefer. A hypercube shared

virtual memory system. In Proceedings of the 1989

International Conference on Parallel Processing,

pages 1-125-132, August 1989.

J. Ramanathan and L. M. Ni. Critical factors in

NUMA memory management. In Proceedings of the

Eleventh International Conference on Distributed

Computer Systems, may 1991.

Richard Rashid, Avadis Tevanian, Michael Young,

David Golub, Robert Baron, David Black,

William Bolosky, and Jonathan Chew. Machine-

independent virtual memory management for

paged uniprocessor and multiprocessor architec-

tures. In Proc. ASPLOS-11, October 1987.

151

