
Protocol Service Decom~osition for

High-Performance Networking

Chris Maeda Brian N. Bershad

School of Computer Science Department of Computer Science

Carnegie Mellon University and Engineering

5000 Forbes Ave. University of Washington

Pittsburgh PA 15213 Seattle, WA 98195

cmaedaC!cs. cmu. edu bershad@cs. Washington. edu

Abstract

In this paper we describe a new approach to im-

plementing network protocols that enables them to

have high performance and high flexibility, while re-

taining complete conformity to existing apphcation

programming interfaces. The key insight behind our

work is that an application’s interface to the net-

work is distinct and separable from its interface to

the operating system. We have separated these inter-

faces for two protocol implementations, TCP/IP and

UDP/IP, running on the Mach 3.0 operating system

and UNIX server. Specifically, library code in the

application’s address space implements the network

protocols and transfers data to and from the network,

while an operating system server manages the heavy-

weight abstractions that applications use when ma-

nipulating the network through operations other than

send and receive. On DECstation 5000/200 systems

connected by 10Mb/see Ethernet, this approach to

protocol decomposition achieves TCP/IP throughput

This research was sponsored in part by the Advanced

Research Projects Agency, Information Science and Technol-
ogy Office, under the title “Research on Parallel Computing”,

ARPA Order No. 733o, issued by ARPA/CMO under Con-

tract MDA972-90-C-O035, the Xerox Corporation, and Digital

Equipment Corporation. Bershad was partially supported by

a National Science Foundation Presidential Young Investigator

Award. Maeda was partially supported by a National Science

Foundation Graduate Fellowship. The views and conclusions
contained in this document are those of the authors and should

not be interpreted as representing the official policies, either ex-

pressed or implied, of the Advanced Research Projects Agency,

Xerox Corporation, Digital Equipment Corporation, the Na-

tional Science Foundation, or the U.S. Government. Bershad

performed this work while at Carnegie Mellon University.

~ermlss, on to copy without fee all or part of this material IS

granted provided that the copies ara not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and Its date appear, and nottice is given

that copying is by permission of the Assoc!atlon for Computing

Machinery. To copy otherwise, or to republish, requires a fee

andlor specific permission.

SIGOPS ‘931121931 N. C., USA

e 1993 ACM 0-89791 -632 -8/93 /0012 . ..$l .50

of 1088 KB/second, which is comparable to that of a

high-quality in-kernel TCP/IP implementation, and

substantially better than a server-based one. Our

approach achieves small-packet UDP/IP round trip

latencies of 1.23 ms, again comparable to a kernel-

based implementation and more than twice as fast as

a server-based one.

1 Introduction

In this paper we describe a new approach for im-

plementing net work protocols that enables them to

have high performance and high flexibility. The key

insight behind our work is that an application’s in-

terface to the network is distinct and separable from

its interface to the operating system. By separating

the interfaces, we can provide a fast path between

the application and the network while maintaining

the semantics of operating system abstractions speci-

fied by standard application programming interfaces.

Specifically, code in the application address space im-

plements the network protocols and transfers data

to and from the network, while an operating system

server implements the machinery required when ap-

plications manipulate a network session through op-

erations other than send and receive. By placing the

critical paths of the protocol in the application’s ad-

dress space, we avoid protection boundary crossings,

data copying, and unnecessary software layers in the

important common case of send and receive. We pro-

vide flexibility because the user-level networking soft-

ware may be developed, configured, and specialized

independently from the rest of the operating system.

We have implemented our protocol architecture in

the context of the Mach 3.0 operating system [Ac-

cetta et al. 86] and CMU’S UNIX server [Golub et al.

90] on MIPS R3000 [Kane 88] and Intel i486 [Intel 90]

244

processors running on 10 Mb/see Ethernet-based net-

works. Our system includes a complete TCP/IP and

[JDP/IP stack implemented as a code library linked

with each application program, and a set of operat-

ing system facilities that emulate completely the BSD

socket programming interface [Stevens 90].

Our approach of separating the protocol implemen-

tation into two pieces, one fast that resides in the

application’s address space providing network con-

nectivity, and one complete that resides in an oper-

ating system server providing full interface compat-

ibility, has resulted in substantial performance im-

provements relative to a server-based implementa-

tion. More importantly, our user-level protocol li-

braries achieve performance (both throughput and

latency) that is comparable to, and in some cases bet-

ter than, well-tuned kernel-based implementations.

The rest of this paper

In the next section we detail the motivation and

goals for application-level protocols. In Section 3 we

present an overview of our design. In Section 4 we de-

scribe the system’s performance, and an application-

specific protocol optimization that demonstrates the

flexibility of our approach. In Section 5 we discuss

related work. Finally, in Section 6 we present our

conclusions.

2 Motivation and goals

Our work is motivated by the desire to have network

protocol software execute at user-level with the same

or better performance than when it executes in the

kernel. Protocol software is generally implemented

as part of an operating system kernel [Leffler et al.

89], or as part of a dedicated server process [Rashid

& Robertson 81, Golub et al. 90]. The main ad-

vantage of a server-based protocol implementation

is flexibility because the protocol code is decoupled

from the kernel [Mogul et al. 87], allowing it to

be more easily modified [Jacobson et al. 92, Clark

et al. 91, Clark et al. 92] and optimized [Clark &

Tennenhouse 90, Forin et al. 91], especially on an

application-specific basis [Felten 92].

Protocols implemented in user-level servers, al-

though flexible, have tended towards worse perfor-

mance than when implemented in the kernel. In a

server-based protocol, control and data cross twice

as many protection boundaries when traveling be-

tween the network and the application. In one case,

the extra overhead resulted in performance that was

two to four times worse than an in-kernel implemen-

tation [Maeda & Bershad 92].

Clearly, neither a server-based nor a kernel-based

strategy is ideal because each demands a tradeoff be-

tween efficiency and flexibility. The remaining strat-

egy, and the one described in this paper, is to imple-

ment network protocols as a library linked into the

address space of each application. This approach can

retain the performance advantages of an in-kernel im-

plementation and the flexibility advantages of a user-

level implementation. Good performance is achieved

because the number of boundary crossings on the

send and receive paths is the same as the in-kernel

case. Flexibility is achieved because the application,

not the operating system, can define the behavior of

the network protocol.

The difficulty with application level protocols

The key challenge with application-level protocols,

which control the format of data on the wire, is their

integration with the rest of the operating system,

which provides abstractions to manage process state,

1/0 channels, and other machine resources. We ad-

dress this challenge by identifying and providing a set

of key interfaces between the application, the oper-

ating system, and the network. The protocol library

provides for services such as rapid data movement be-

tween hosts. This interface must be efficient, but it

does not need to be particularly complex. The op-

erating system provides for important abstractions

such as the network as a first-class 1/0 channel. This

interface must be complete in that it supports all op-

erations that may be applied to a network connec-

tion layered beneath a file abstraction, but it does

not need to be particularly efficient.

2.1 Other goals

In addition to flexibility and good performance, we

have the following goals in our design:

●

●

Reuse of extstmg protocol code. Our interfaces

allow the use of existing network protocol code

as protocol libraries. This allows us to leverage

the protocol construction work of others [Jacob-

son 88, Hutchinson & Peterson 91], and to more

easily compare the performance of a given pro-

tocol implementation running in the kernel, in a

protocol server, and in an application.

Source-level compatibihty with existing protocol

cltents. We are willing to recompile or relink

existing protocol clients against our new imple-

mentation, but we (as we expect most others) are

unwilling to modify these clients. Consequently,

our operating system and protocol interface is

245

syntactically and semantically compatible with

existing interfaces.

. Security. A protocol implementation must not

degrade the security of the network. our de-

sign offers the same level of network security as

is found in the protocol implementation that it

supplants.

● A portable architecture. We intend to use oui-

protocol architecture on uniprocessors, shared

memory multiprocessors, and multicomputers in

which processors share a high-speed dedicated

mesh. The application protocol library is struc-

tured as a component of a distributed system in

which protocol state is maintained by both the

operating system server and the application.

While this work has been performed in the context

of a specific microkernel-based operating system, it is

neither specific to it, nor to microkernel-based oper-

ating systems in general.

3 Design overview

In this section we present the design of our protocol

architecture in the context of a reliable, byte-stream

protocol (TCP) and an unreliable datagram protocol

(UDP) accessed through the BSD UNIX socket inter-

face. We first describe the resp onsibility and relation-

ships of each major component. Next, we discuss the

system’s behavior during the establishment of con-

nections and the transfer of data. Throughout, we

highlight techniques that we use to handle many of

the complex cases that arise during application-level

protocol management.

3.1 The major components

Our application-level protocol architecture includes

three software components as shown in Figure 1.

1. The operating system server is responsible for

network operations that have non-critical per-

formance requirements, such as connection es-

tablishment, teardown, and the handling of ex-

ceptional network packets like ARP queries. In

addition, the operating system maintains long-

lived, and shared, protocol state such as routing

information and TCP port namespaces. The op-

erating system also provides applications with

network service in cases where application-level

networking becomes difficult due to a conflict

between a library-based protocol and operating

system semantics. Finally, the operating system

Application

;;:,g.cj
tnetwork

the network)
{

= interface’

Operating
System
Server

(routing/ARP,
connection setup,
forldselect)

E
Figure 1: In our protocol architecture, critical-path

functionality is implemented by libraries in the appli-

ca tion’s address space. The operating system server

manages shared pro t ocol databases, h an dies corm ec-

tion set up, and implements high-level abstractions.

The kernel exports a packet send and receive inter-

face.

2

3

provides an interface that allows the application

to integrate its own protocol management with

the operating system’s file abstraction.

A multithreaded library within each application

implements a protocol stack, in particular the

send and receive components.

The network interface provides a thin software

layer on top of the raw network hardware. It is

used to both send and receive packets. As its

performance limits that of applications, it is re-

quired to have low latency and high bandwidth.

The operating system server and protocol libraries

cooperate to manage network sessions. A network

session is specified by a 3-tuple consisting of a pro-

tocol, a local endpoint, and a remote endpoint. The

state of a network session consists of a set of protocol-

specific state variables. For example, a TCP session

has state variables for the send and receive window

sizes, the send and receive sequence numbers, and any

unacknowledged or undelivered data on the send and

receive queues [Postel 81]. UDP, as a connectionless

and statelem protocol, has no session state variables.

Sessions are created and terminated by the oper-

ating system. Once established, a network session is

migrated into the address space of the application for

which it was created. The application then manages

the session until it executes an exceptional operation

that makes application management difficult, or un-

til the session is terminated. For example, the BSD

UNIX fork system call makes a copy (the “child”) of

the process doing the fork (the “parent”), and the file

246

descriptors in both the parent and child must refer to

the same 1/0 stream. These semantics are difficult to

emulate if the session is maintained in either the par-

ent’s or child’s address space, instead of the operating

system’s. 1 In such cases, the active protocol session

migrates back from the application to the operating

system, and all subsequent network operations are

routed through the server.

The protocol library relies on the kernel’s network

interface to send and receive packets. Applications

send packets directly to the network interface using a

low-latency system call. For security reasons, packets

are received through the packet jilter [Mogul et al.

87, McCanne & Jacobson 93, Yuhara et al. 94]. The

operating system creates and installs a new packet

filter for each network session.

3.2 Emulating an existing interface

We emulate the BSD UNIX socket interface through a

simple proxy structure that distributes protocol state

across the operating system and the application’s ad-

dress space. A proxy is a small body of code that re-

sides in the application’s address space. It exports a

procedure call interface that is identical to the socket

system call interface otherwise exported by the oper-

ating system. An application’s system call involving

sockets is first routed through its proxy where the

call is either handled locally, forwarded untouched

to the operating system server, or translated into an

alternate sequence of calls on the operating system

server. Table 1 lists the calls implemented by the

proxy module in the library, and the corresponding

calls exported by the operating system server to assist

the proxy in its implementation.

Creating network sessions

The socket call creates a file descriptor to represent a

network session. In the case of a connection-oriented

protocol such as TCP, all three components of a ses-

sion’s 3-tuple (protocol, local endpoint, remote end-

point) must be specified before the session is estab-

lished. In the case of a connectionless protocol such

as UDP, only the protocol and local endpoint are

needed to establish the session, as the remote end-

point is supplied with each outgoing and incoming

packet.2 For the socket call, the library performs a

1If two address spaces were to comanage directly a network

connection, then the y could each corrupt one another’s pro-
tocol stat e. violating the separation and protection semantics

normally associated with address space boundaries.

2The BSD UDP (and our) implementation also permits

“connection-oriented’ sessions where the remote endpoint is

implicit to the session.

proxy-socket call to the operating system which re-

turns a new file descriptor. Both the library and the

operating system associate the new descriptor with a

data structure that represents an unconnected session

for the specific protocol.

The bind system call specifies the local endpoint of

a network session and is applied to a socket descrip-

tor. The library maps the call into a proxy-bind

call, causing the operating system to associate the

socket with the specified address. Once the protocol

and local endpoint have been specified for a UDP ses-

sion with a proxy .bind call, the session may be used

for sending and receiving packets. Consequently, the

operating system returns the (null) network session

state along with a local endpoint and a packet filter

port. The library binds its local socket to the end-

point returned by the operating system and awaits

incoming packets on the packet filter port. For TCP,

only the local endpoint is returned when a proxy

socket is bound because the remote endpoint is not

yet known.

Establishing connections

Connection establishment is managed entirely by the

operating system. There are four reasons for this.

First, as with UDP, the creation of a new endpoint

requires that the operating system construct and in-

stall a new packet filter to receive data on that end-

point, so there is necessarily at least one interaction

between the operating system and the application.

Second, it is necessary to interact with a local 1P

port manager to ensure that the endpoint is uniquely

named; the operating system is a convenient place to

implement this manager. Third, the operating sys-

tem must track all connected sessions so that they are

cleanly terminated in the event that the address space

holding the local endpoint itself terminates. Finally,

unlike send and receive, connection establishment is

not a performance-critical operation. The additional

IPC overhead required to contact the operating sys-

tem server is negligible compared to the latency of a

multi-phase network handshake.

Sessions in connection-oriented protocols such as

TCP maybe opened acttvely or passzvely. In a passive

open, the local protocol waits for connection requests

on a local endpoint. In an active open, the local pro-

tocol contacts a remote protocol and requests that a

connection be established on a specified pair of end-

points. Using the socket interface, connections are

passively opened with the listen and accept sys-

tem calls, and actively opened with the connect call.

On the passive side, the protocol library maps the

listen system call into a proxy-listen call to the

247

Proxy exports Server exports I Action

socket proxy-socket I Create a network session that is managed by the operating

system.

bind proxy-bind Set local address of session. UDP sessions migrate to the

application.

connect proxy-connect set remote address of session. UDP and Tcp sessions

migrate to the application.

listen proxy listen Open session passively. The operating system awaits new

connections.

accept proxy-accept Migrate passively opened session from the operating sys-

tem to the application when connection is established.

all send and recezve uartants N/A Transfer data to or from the network. The operating system

is not involved.

fork proxy ~eturn Return session to operating system server. All sessions

I I should be returned to the operating system before fork is I

called.

select proxy _status Notify operating system of change in proxy session state.

‘rable 1: The proxy exports the standard socket interface, which it implements throug-h a combination of

indirect calls onto the operating system, and dmect calls onto the network. The operat;ng system manages

session estabhshment and teardown, while the operating system handles session data transfer.

operating system. The operating system is primed

for incoming connection requests addressed to the

passively opened connection. When cent acted by a

remote peer, it negotiates the establishment of the

connection.

Once the connection is established, the operating

system places it on a queue of passively opened sock-

ets until the local listener performs an accept opera-

tion. The library implements the accept system call

with a proxy–accept call to the operating system,

which returns a new file descriptor to represent the

passively opened connection. The call also returns

a local endpoint, a remote endpoint, the connection

state variables, and a packet filter port. The proto-

col library records the existence of the new connec-

tion, sets the initial connection state to that returned

by the operating system, and begins reading packets

from the new packet filter.

On the active side, the library transforms connect

calls into proxy-connect calls to the operating sys-

tem. A proxy-connect causes the operating system

to initiate connection establishment, and to then re-

turn the local and remote endpoints of the session,

the protocol session state, and a packet filter port.

As with a passive open, the library then waits for

packets to arrive on the packet filter port. If the

socket is unbound (i.e. has no local endpoint) at the

time of the connect call, the socket is also given a

local endpoint.

Sending and receiving data

The BSD socket interface has ten different ways

to move data through a session (recv, recvfrom,

recvmsg, read, readv, and send, sendto, sendmsg,

write, and writev). For sockets, these calls are im-

plemented entirely within the application’s protocol

library. Once a network session has been established,

data can be sent and received over the network with-

out operating system intervention.

Outgoing unreliable data (UDP) is sent immedi-

ately and then discarded. Data is sent on a reliable

connection (TCP) by placing it on the socket send

queue and calling the protocol’s network output rou-

tine which may or may not send a segment immedi-

ately, depending on the current state of the connec-

tion. Reliable protocols keep the data on the send

queue until it has been acknowledged by the remote

endpoint.

The receive operations block until data is available

on the socket receive queue, and then copy the data

out to a user buffer specified in the receive call. The

socket interface, which has the receiver specify the

destination address of an incoming message, incurs

an unnecessary copy at this point. A better integra-

tion between the application and the protocol stack,

described in Section 4.2, avoids this copy.

248

Terminating session stat e 3.3 Caching protocol metastate

Some protocols have sophisticated tear-down require-

ments. For example, properly closing a TCP connec-

tion requires a four-way handshake (a two-way hand-

shake in each direction) followed by a waiting period

to ensure that any segments delayed in the network

have time to die [Postel 81]. For a clean shutdown,

which occurs when the application explicitly requests

a close on session, we migrate the session state back to

the operating system and follow the shutdown proto-

col there. For an unexpected shutdown, for example,

when a process terminates in error, the connection

can be left hanging in an undefined state. The op-

erating system, though, can detect the death of pro-

cesses that are managing network connections, abort

outstanding connections by sending reset messages to

remote peers, and delay the reopening of any aborted

connections.

Cooperative interfaces

Some operations on network sessions interact only

with the operating system’s scheduling and process

management interfaces, but do not move data. For

example, the select call is used by applications to

check the status of a set of file descriptors. Because

these descriptors may not all be managed by the ap-

plication (some may be actual files, for example) it

is not possible to implement select entirely within

the application. Similarly, because some of the de-

scriptors may be managed by the application, the call

cannot be implemented entirely within the operating

system; the operating system has no direct way of

knowing when these sessions change status.

We bridge this “information gap” through a coop-

erative interface that is jointly implemented by the

application and the operating system. The library
implements its side of select by examining the ar-

gument file descriptor sets to determine which of the

sockets managed by the application are ready. For

each of these sockets, the library records that the

socket is being select’ed upon, and notifies the op-

erating system of the socket status. The library then

calls through to the operating system’s select sys-

tem call. When the application discovers data on one

of the selected sockets, it signals the operating system

of a status change (proxy .status), forcing any rele-
vant outstanding selects to return. In cases where

all descriptors are managed by the application, the

operating system is not involved.

A good deal of a protocol implementation is respon-

sible for managing state that is independent of any

particular session. We maintain this state in the op-

erating system server to preserve its long-livedness,

and to protect it from damage by applications. For

example, route table entries and ARP mappings rep-

resent long-term state that is used by all sessions,

but owned by none. When sending data, applica-

tion protocol code must read this state when con-

structing outgoing packets. In the same way that the

operating system caches these entries from network

queries, applications cache them to avoid communi-

cation with the operating system on the packet send

path. The operating system maintains callbacks into

aPPhcatlOns for these cached entries and invalidates

them as they expire or are updated.

3.4 Security considerations

The kernel’s packet filter ensures that an application

can only receive packets that are destined for it. We,

however, do not prevent applications from sending

arbitrary data packets over the network. We expect

that a packet limiting mechanism, if desired, could be

implemented by checking each outgoing packet us-

ing a service similar to the packet filter [Thekkath

et al. 93]. Because network security is already quite

fragile in the presence of physically vulnerable con-

nections [C,arfinkel & Spafford 91], though, the basic

problem of intermachine security is better addressed

through the use of authentication mechanisms and

encryption [Voydock & Kent 83].

Application-level protocols can be used with

session-level encryption software, provided that ses-

sion keys are confined to the application’s address

space. A small amount of additional operating sys-

tem support is required to ensure that session keys are

cleared before a process’ image is stored to disk (for

example, as a result of a core dump). Host-to-host,

or metasession, encryption, will require an additional

level of packet addressing indirection on top of, and

encryption below, the network send and receive inter-

face. Specifically, a process would send packets to a

logical secure host, rather than an 1P (or lower-level)

address. The kernel’s network interface would be re-

sponsible for encrypting the packet, and routing it to

the corresponding physical host, Presently, we have

no experience with a secure implementation of our

protocols, though, so cannot comment on their use.

249

4 Performance programs are measured on a private network while

the machines are m single-user mode.

In this section we discuss the performance of our

application-level protocol architecture, which we have

implemented on top of the Mach 3.0 microkernel. We
4.1 Throughput and latency

first describe a number of microbenchmarks that re- We have implemented several different versions of the

veal the throughput and latency of our implemen- user/kernel network interface. In our baseline ver-

tation in the context of several different user/kernel sion, the packet filter uses Mach IPC to deliver each

network interfaces. We then demonstrate the bene-

fit of a flexible user-level implementation by changing
incoming packet to the protocol in a separate mes-

sage. The second version uses a modified packet filter

the socket interface to eliminate data copies between that permits applications to receive multiple packets

the application and the protocol stack. Finally, we with a single wakeup from the kernel. The third ver-

present a detailed latency breakdown for TCP and

UDP processing.

sion uses a modified packet filter that eliminates a

copy on the critical receive path by integrating the

packet filter with the underlying device driver.

Platforms Table 2 shows throughput and round trip latency

for TCP, and round trip latency for UDP under dif-
We have run our experiments across 10 Mb/s Eth- f erent protocol configurations and software network
ernet using DECstation 5000/200 workstations and interfaces. Latencies for both protocols are shown
Gateway personal computers. The DECstation uses for a range of packet sizes, ~Ve did not measure

a 25Mhz R3000 MIPS processor [Kane 88] with a throughput for UDP, as it depends more on the win-
Lance Ethernet interface. The Gateway uses a 33 d owing and acknowledgement strategies than on the
Mhz i-M6 processor [Intel 90] with a 3Com 3C503 datagram transport machinery. For each system, we

Ethernet interface. ran the throughput benchmarks with the best possi-
On the DECst ations, we compare the Performance ble receive buffer size for each implementation. We

of our protocol library with DEC’s Ultrix 4.2A, the determined the best size by runningthe throughput

Mach 2.5 integrated kernel, and UX CMU’S single- b enchmarks with increasing buffer size until further
server UNIX operating system. On the i486-based increases did not improve throughput. For the server
machines, we compare the performance of our proto- and library-based protocols, the receive buffers are
CO1library with the Mach 2.5 kernel, the 386BSD ker- kept in virtual memory and can be reallocated on

nel [Jolitz 92], the BNR2SS UNIX single-server [Dean demand for busy sessions.

92], and CMtT’s UX.3. In the comparison systems, For the first library-based configuration (Library-
protocols are implemented in the server for the single- Ipc), the network interface uses Mach’s packet filter

server based systems (UX and BNR2SS), and in

the kernel otherwise (Mach 2.5, Ultrix 4.2A, and
and IPC mechanisms to dispatch incoming network

386 BSD). Our protocol library, the 386BSD kernel,
packets to the appropriate address space. Packet

trains are not coalesced into contiguous messages, re-
and BNR2SS all rely on protocol code derived from

the Berkeley Networking Release Tape II (BNR2).
quiring that the protocol library collect and process

Mach 2.5, Ultrix 4.2A, and UX use the 4.3BSD proto-
an IPC message for every incoming packet. Because

CO1 implementation. Both implementations, though,
each IPC crosses the user/kernel boundary and is on

the critical path of the receiver, we achieve only about
are comparable and of high-quality as each is capable 85% of the in-kernel throughput.

of nearly saturating a 10 Mb/see Ethernet between a We have implemented an alternate packet filter
pair of DECstation 5000/200s [Thekkath et al. 93].

We have compiled and run a large collection of
mechanism (Ltbrary-SHM) that transfers data in

memory shared between the kernel and the applica-
network-intensive applications against our protocol tion. On receiving a packet, the packet filter transfers
library, including telnet, ftp, and the XII libraries d ta a into the shared buffer, and uses a lightweight
and clients [Gettys et al. 90]. For this discussion,

though, we focus on two microbenchmark programs:
condition variable to signal a protocol library that

new data has arrived. The use of shared memory in
tt cp, a memory-to-memory throughput benchmark

for TCP that transfers 16 MB of data from one host
this case does not reduce the number of packet copies,

to another, and protolat, a program that measures
as an incoming packet is first copied from the Ether-

net driver to an internal kernel buffer before it is run
protocol round trip latency for UDP and TCP. The through the packet filter. Consequently, the change

3BNR2SS and 386BSD are not available for the DECsta-
has little effect on single-packet latencies. The change

tion. Crltrix 4.2A is not available for the Gateway. is more effective for throughput, since the scheduling

250

TCP UDP

Throughput Latency (ins) Latency (ins)

Receive

Buffer

Size

(KB/see) (KB)

DECstation 5000/200

Mach 2.5 In-Kernel

Ultrix 4.2A In-Kernel

Mach 3.o+UX Server

Mach 3.O+UX Library-IPC

Mach 3.o+UX Library-SHM

Mach 3.o+UX Librarv-SHM-IPF

1070 24

996 16

740 24

910 24

1076 120
1088 120

Gateway 486

Mach 2.5 In-Kernel

386BSD In-Kernel

Mach 3.o+UX Server

Mach 3.0+~NR2SS Server

Mach 3.O+UX Library-IPC

457 8

320 8

415 16
382 12

469 24

Mach 3.O+UX Library-SHM 503 24

Message size (bytes) Message size (bytes)

1 100 512 1024 1460 1 100 512 1024 1472

1.40 1.73 3.05 4.56 6.04 1.45 1.74 3.05 4.56 5.88

1.52 1.89 3.50 4.78 6.13 1.52 1.81 3.29 4.69 6.05

3.64 4.20 5.90 7.82 9.73 3.61 4.04 5.89 7.99 9.84

1.69 2.09 3.43 5.09 6.63 1.40 1.77 3.08 4.71 6.14

1.82 2.29 3.66 5.32 6.73 1.34 1.68 2.95 4.59 5.95

1.72 2.11 3.44 5.09 6.56 1.23 1.57 2.83 4.41 5.79

2.08 2.69 5.45 8.78 12.05 1.83 2.44 5.19 8.51 11.41

2.71 3.64 6.24 NA ~A 2.63 3.49 6.04 9.54 12.50

4.09 4.88 7.76 11.30 14.29 3.96 4.67 7.86 11.65 15.00

3.88 4.70 8.00 NA NA 4.64 5.37 8.95 13.23 16.84

2.49 3.10 5.84 9.25 14.09 2.12 2.68 5.41 8.74 11.66

2.38 3.07 5.79 9.15 12.58 2.0’2 2.59 5.30 8.64 11.62

Table 2: This table shows TCP throughput and latency, and UDP latency for various system configurations

and message sizes. Throughput for UDP is not given as this is tied to windowing and acknowledgement

strategies as much as to latency. The entries labeled NA are because 386BSD and BNR2SS have a bug that

prevents them from sending large T(7P packets. The performance of the library-based implementations is

comparable to the native in-kernel implementations. Although the i486 processor is comparable in perfor-

mance to the R3000, the Gateway’s low-performance Ethernet card (transfers are done 8 bits at a time)

severely limits its throughput. Both the library and the server-based implementations on the Gateway have

lower latency than the in-kernel version because of inefficiencies in the way that the 386BSD kernel handles

network interrupts and scheduling. The library-based implementations labeled 1P(2, SHM, and SHMIPF

reff ect runs using successively modified versions of the kern el’s net work packet filter interface.

overhead of packet delivery is amortized over mul-

tiple packets. The shared memory interface delivers

1076 KB/sec on the DECstation configuration, which

is an 18% improvement in throughput relative to the

IPC-based implementation, and slightly better than

the in-kernel implementation.

We can eliminate the extra copy into the kernel

buffer by more closely integrating the device driver

and the packet filter (Library-SHM-IPF). A packet

filter program for Internet protocols typically only ex-

amines the packet header to determine the receiving

endpoint. We can defer copying the rest of the packet

until the final destination has been determined. By

deferring, the packet filter can copy a packet’s data

directly from the device interface into the receiver’s

address space. The shared memory interface com-

bined with the integrated packet filter delivers 1088

KB/sec on the DECstations, which is about 2% bet-

ter than the in-kernel protocol. This modification

has a more dramatic effect on latency since the num-

ber of data copies on the critical path is the same

for the kernel-based and library-based protocol imple-

mentations. The integrated packet filter is device and

machine-dependent, and we have not implemented it

on the Gateway.

4.2 Changing the socket interface

A simple, but effective application-specific optimiza-

tion can improve throughput and latency. As men-

tioned in Section 3.2, when an application program

sends and receives data using the socket interface, it

specifies a buffer from which outgoing or into which

incoming data should be placed (copied). By chang-

ing the send and receive interface to allow the pro-

tocol and the application to share buffers, this copy

can be eliminated.

Table 3 compares the TCP and UDP round trip

latencies for a kernel-based implementation of the

conventional socket interface with the library-based

implementation using the modified interface. The

modified interface outperforms the kernel-based im-

plementation for large packets where copying costs

251

DECstation 5000/200
Mach 2.5 In-Kernel

Ultrix 4.2A In-Kernel
Mach 3.o+UX Library-NEWAPI-IPC
Mach 3.o+UX Library-NEWAPI-SHM

Mach 3.o+UX Library-NEWAPI-SHM-IPF

TCP UDP

Throughput Latency (ins) Latency (ins)

Receive

Buffer

Size Message size (bytes) Message size (bytes)

(KB/see) (KB) 1 100 512 1024 1460 1 100 512 1024 1472

1070
996

959

1083

1099

24 1.40 1.73 3.05 4.56 6.04 1.45 1.74 3.05 4.56 5.88

16 1.52 1.89 3.50 4.78 6.13 1.52 1.81 3.29 4.69 6.05

24 1.67 2.02 3.35 4.96 6.45 1.42 1.75 3,05 4.69 6.09

120 1.70 2.07 3.33 4.94 6.38 1.34 1.66 2.93 4.54 5.95

120 1.63 1.98 3.24 4.80 6.26 1.25 1.57 2.83 4.38 5.76

Table 3: This table shows the effect that a modified socket interface has on throughput and latency. The

library uses a new application programming interface (NEWAPI) that eliminates a redundant copy between

the protocol stack and the application.

become significant. For TCP throughput, the change

is less effective since bandwidth is generally controlled

by the speed with which the receiver can process and

acknowledge segments. The copies eliminated by the

interface change occur after the segment has been

processed by TCP, and are not on the critical path for

throughput. lJser-user throughput increases by 5%

from 910 KB/sec to 959 KB/sec with the IPC-based

packet filter interface. When used with the more ef-

ficient integrated packet filter, user-user throughput

increases from 1088 KB/sec to 1099 KB/sec.

4.3 Latency breakdown

On the DECstation 5000/200s, we have determined

the time spent in the various protocol layers using a

high-resolution timer. Table 4 compares the average

time spent in each layer of the TCP and UDP proto-

col stacks for our library (SHM-lPF), the Mach 2.5

kernel, and CMU’S UNIX server. Each column cor-

responds to a single trial of 50000 round trips run in

single-user mode on a private network. Since TCP

sends extra acknowledgement segments in addition

to the data segments, the numbers for TCP only ap-

proximate the critical path latency.

Send path

The first four lines define the send path. The first

line, Entry /copy in, is the time required to enter the

socket layer code and convert the send buffer into a

linked list of mbuf data structures (the internal unit

of memory allocation for the protocols). Entry is a

procedure call for the library-based protocol, a trap

for the kernel-based protocol, and a trap followed by

an RPC for the server-based protocol. For the li-

brary with TCP, and the kernel for either TCP or

UDP, the send buffer must be copied into an mbuf.

For the library-based UDP implementation, the user

data can be referenced instead of copied. For the

server with both protocols, copyin requires sending

an IPC message to the operating system server which

then executes the socket layer code that constructs

the mbuf chain. This component is large because the

data is copied four times as part of an RPC: from

the user buffer to the IPC message, from the IPC

message into the kernel, from the kernel into an IPC

message buffer in the protocol server’s address space,

and again from the IPC message buffer to the mbuf

chain.

The remaining three components on the send path

are for the actual protocol stack. The top layer con-

structs the protocol header and checksum (header

and data). The 1P layer constructs the 1P header

and determines the route to the destination The

Ethernet layer maps the destination 1P address to

an Ethernet address, constructs the Ethernet header,

and transmits the packet over the network.

The UDP and Ethernet layers have different laten-

cies in each implementation. The ether.output com-

ponent is larger in the library-based and server-based

implementations because the protocol code traps into

the kernel and copies the packet from user space into

a wired kernel buffer before copying it to device mem-

ory. In contrast, the in-kernel version copies outgoing

data directly from the mbuf chain (which is already

wired) to the device.

The t cp-output and udp.output components are

faster in the library than in the server. This discrep-

ancy is due to the different synchronization primitives

252

‘1’cPLayer I
Library

1 1460

Send Path
entry/copyin 19 203

tcp,udp-output 82 328

ip.output 26 26
ether-output *98 *274

Send Path Total 225 831

Receive Path
device intr/read 42 43

netisr/packet filter 82 95
kernel copyout *123 *534

mbuf/queue 22 21
ipintr 3’7 35

tcp,udp-input 214 445

wakeup user thread 92 95
copyout/exit 46 261

Receive Path Total 658 1529

Network Transit Time 51 1214

Total 934 3574

Kernel Server
1 14601 1 1460

I

4
*5O *153 *254 *579
65 307 224 447
24 20 31 25
75 105 *166 *331

214 585 675 1382

77 469
79 73
00
00

30 37
76 ~70

54 54

101 496
53 52

*113 *148
79 58

127 95

249 365
194 213

Library
1 1472

67
18 239
17 18

*105 *280
146 544

39 40
58 70

*107 *517
qo 20

35 33
103 318
73 80
21 63

456 1141

51 1214
653 2899

UDP
Kernel

1 1472

*65 *104
70 273
2Z 25

74 163

231 565

74 481
83 84
00
00

30 54
67 279
70 69

*Z7 *75
351 1042

51 1214

633 2821

Server

1 1472

*293 *628
229 398
24 27

*188 *367
734 1420

99 497
76 61

*124 *207
68 64

121 91

61 273
262 274

*208 *619
1019 2086

51 1214

1804 4720

Table4: For a library-based (SHM-IPF), kernel-based (Mach 2.5), and server-based (UX)protocolimple-

mentation on the DECstation 5000[200, this table shows the average TCP and UDP latencies on Ethernet

by component for the sender and receiver. The minimum (1 byte) and maximum (1460 bytes for TCP,

1472 bytes for UDP) unfragmented message sizes were used. Times are in microseconds. Entries marked

with asterisks denote protection boundary crossings. Times reported in this table are from an instrumented

version of the protocols, and reflect a small percentage error relative to an uninstrumented version.

used in each implementation. The server’s synchro-

nization mechanisms are basedon scheduling priority

levels and locks. The priority levels, which are arti-

facts of the code’s kernel origins, are retained in the

server because protocol processing must be synchro-

nized with other services, such as process manage-

ment and filing, that also rely on priority levels. The

priority level machinery simulates hardware interrupt

priorities using locks and condition variables, result-

ing inexpensive priority manipulation, and high con-

tention for specific priority levels among independent

services. In contrast, our protocol library does not

synchronize with other operating system services, and

internally synchronizes using less expensive locks. 4

Receive path

The next eight lines describe the receive path. The

device intr/read component is the time to field

an interrupt from the network device. For the ker-

nel and the server, the entire packet is also copied
out of the device into a wired kernel buffer. The

4The server’s synchronization mechanisms have been re-

placed with lighter-weight versions in later releases of

CMU’S UNIX server.

netisr/packet filter component reflects the time

to demultiplex the packet to the appropriate proto-

col stack. The kernel copyout component measures

the time required todeliver the packet to the destina-

tion protocol stack. This component does not apply

to Mach 2.5andis shown as zero. Forthelibrary, the

packet is copied from the network device into the pro-

tocolstack’s address space. For the server, the copy

is from kernel memory, which has lower read latency

than network device memory [DEC 90].

The remaining components execute in user space

for both the server-based and library-based imple-

mentations. The mbuf/queue component measures

the time required to package the incoming packet as

an mbuf chain and to queue the chain on the proto-

col stack’s input queue. For Mach 2.5, this work oc-

curs as part of the netisr/packet filter process-

ing. Although both are implemented at user-level,

the overhead for mbuf/queue manipulation is higher

than in the library. Again, as with udp-output and

t cp.output, this is because the server uses a heavy-
weight synchronization mechanism.

The 1P layer (ipint r) dequeues incoming 1P pack-

ets, processes the 1P header, and passes each packet

253

up to TCP or UDP. These layers then checksum the

protocol header and data, queue the data on the des-

tination socket, and awaken any thread waiting for

data to arrive on the socket.

The wakeup user thread component is the time

required to pass control from the network protocol

thread to an application thread awaiting data. Again,

synchronization overheads account for the difference

in times between the server and library.

Finally, the copyout/exit component reflects the

time required to copy data from the mbuf chain into

the destination buffer specified by the caller, and

leave the protocol. TCP’S receive queue manage-

ment, and its support for urgent data [Postel 81] make

this component larger than for UDP. For the server-

based implementation, this component involves send-

ing an IPC reply message to the application and in-

cludes the same number of redundant copies as the

entry/copytn component.

5 Related work

Although there has been substantial work in the area

of improving protocol performance, and in moving

pieces of protocol processing into user space, we are

aware of no previous work that has attempted fully

to integrate application-level processing with other

operating system services. An experimental protocol

library built on top of Mach 3.0 at the University of

Washington [Thekkath et al. 93] implements a sub-

set of the socket interface for TCP, and provides for

protected transmission between hosts that are on the

same physical Ethernet. As their system is intended

to address the needs of application-specific protocols,

they are not faithful to the operating system inter-

face.

The x-Kernel is an object-or; ented protocol imple-
mentation environment that facilitates the construc-

tion of new protocols, The x-Kernel currently runs as

a dedicated protocol server and provides an RPC stub

library that implements the socket interface. Our sys-

tem is complementary to the z-Kernel’s, as ours fa-

cilitates the integration of protocols into a complete
operating system environment. Tschudin [Tschudin

91] advocates a protocol server into which protocol

implementations can be dynamically loaded and un-

loaded. We are not aware of an implementation of

these ideas. Clark and Tennenhouse [Clark & Ten-

nenhouse 90] assert that protocol layering is a de-

sirable design but undesirable implementation tech-

nique. They advocate two new techniques to im-

prove performance: application-level framing, where

higher-level protocols determine the granularity of

lower-level protocol processing, and integrated layer

processing, where the processing for all protocol lay-

ers is performed in one pass over the data. Our proto-

col decomposition strategy facilitates the application

of these techniques,

6 Conclusions

It is possible to achieve both good performance and

high flexibility in the networking domain. Careful

protocol decomposition places the responsibility for

defining network abstractions with the operating sys-

tem, and of implementing the performance-critical

components of those abstractions with the applica-

tion. Our work can be interpreted as part of a “RISC

movement” in operating systems [Wilkes 92] where

programming interfaces are decoupled from the op-

erating system implementation. This movement will

make it possible to experiment with newer and better

programming implementations and interfaces while

at the same time retaining support for existing ones.

Acknowledgments

David Eckhardt, David Keppel, Gregor Kicza-

les, John Lamping, Ed Lazowska, Sue Lee, Keith

Marzullo, Dylan McNamee, Gail Murphy, Larry Pe-

terson, and Chandu Thekkath provided valuable feed-

back on earlier drafts of this paper. Jose Brus-

toloni helped us implement shared buffers correctly

in the context of volatile protocol sessions. Wayne

Sawdon and Matt Zekauskas were early users of the

system and suffered through our mistakes with us.

Masanobu Yuhara assisted with the integration of the

packet filter. Mary Thompson and Alessandro Forin

helped with the integration of our libraries into Mach

3.0.

References

[Accetta et al. 86] Accetta, M. J., Baron, R. V., Bolosky,
W,, Golub, D. B., Rashid, R. F., Tevanian, Jr., A.,
and Young, M. W. Mach: A New Kernel Founda-
tion for Unix Development. In Proceedings of the

1986 Summer USENIX Conference, pages 93-113,
July 1986.

[Clark & Tennenhouse 90] Clark, D. D. and Tennen-
house, D. L. Architectural Considerations for a New
Generation of Protocols. In Proceedings of the SIG-

COMM ’90 Syrrzpostunz, pagefi 200--208, September
1990.

[Clark et al. 91] Clark, D., Chapin, L., Cerf, V., Braden,
R., and Hobby, R. Towards the Future Internet Ar-

254

chitecture. Request for Comments 1287, December
1991.

[Clark et al. 92] Clark, D. D., Shenker, S., and Zhang,

L. Supporting Real-Time Applications in an Inte-
grated Services Packet Network: Architecture and
Mechanism. In SIG COMM ‘9? Conference Proceed-

ings, pages 14–26, August 1992.

[Dean 92] Dean, R. W. ALicense-Free BSD4.4 Single
Server. In Open Softwa= Foundation Symposium
’92, Cambridge, MA, February 1992.

[DEC 90] DEC Workstation System Engineering. DEC-

statzon 5000/200 A“N02 System Module Functional
Speczficatzon (Rernszon 1.3), August 1990.

[Felten 92] Felten, E. The Case for Application-Specific
Communication Protocols. In Proceedings of Intel
Supercomputer Systems Divtston Technology Focus
Conference, pages 1’7–181, 1992.

[Forin et al. 91] Forin, A., Golub, D. B., and Bershad,
B. N. An 1/0 System for Mach 3.o. In Proceechngs
of the Second Usemx Mach Workshop, pages 163–
176, November 1991.

[Garfinkel & Spafford 91] Garfinkel, S. and Spafford, G.
Practzcal Unzx Security. O’Reilly and Associates,
Inc., Sebastopol, CA, 1991.

[Gettys et al. 90] Gettys, J., Karlton, P., and McGregor,
S. The X Window System, version 11. Software

— Prachce and Experience, 20(S2):35-67, October
1990.

[Golub et al. 90] Golub, D., Dean, R., Forin, A., and
Rashid, R. Unix as an Application Program. In
Proceedings of the 1990 Summer USENIX Confer-
ence, pages 87–95, June 1990.

[Hutchinson & Peterson 91] Hutchinson, N. C. and Pe-
terson, L. L. The z-kernel: An Architecture for
Implementing Network Protocols. IEEE Transac-
tions on Software Engineerwsg, 17(1):64-76, Jan-
uary 1991.

[Intel 90] Intel. 386 Programmer’s Reference Manual. In-
tel, Mt. Prospect, IL, 1990.

[Jacobson 88] Jacobson, V. Congestion Avoidance and
Control. In Proceedings of the SIGCOMM ’88 Sym-
posium on Communications Architectures and Pro-
tocols, pages 314-329. ACM, August 1988.

[Jacobson et al. 92] Jacobson, V., Braden, R., and Ber-
man, D. TCP Extensions for High-Performance.
Request for Comments 1323, May 1992.

[Jolitz 92] Jolitz, W. F. Porting UNIX to the 386. Dr.
Dobbs’ Journal, January 1991 through July 1992.

[Kane 88] Kane, G. MIPS RISC Architecture. Prentice-
Hall, Englewood Cliffs, NJ, 1988.

[Leffler et al. 89] Leffler, S. J., McKusick, M., Karels,
M., and Quarterman, J. The Design and Imple-

mentation of the ~ ..3BSD UNIX Operating System.

Addison-Wesley, 1989.

[Maeda & Bershad 92] Maeda, C. and Bershad, B. N.
Networking Performance for Microkernels. In Pro-
ceedings of the Third Workshop on Workstation Op-

erating Systems, pages 154–159, April 1992.

[McCanne & Jacobson 93] McCanne, S. and Jacobson,
V. The BSD Packet Filter: A New Architecture
for User-level Packet Capture. In Proceedings of the

1993 Wznter USENIX Conference, pages 259-269,

January 1993.

[Mogul et al. 87] Mogul, J. C., Rashid, R. F., and Ac-
cetta, M. J. The Packet Filter: An Efficient Mech-
anism for User-level Network Code. In Proceedings

of the Ilth Symposzum on Operattng Systems Prin-

ciples, pages 39–51. ACM, November 1987.

[Postel 81] Postel, J. Transmission Control Protocol. Re-
quest for Comments 793, USC Information Sciences
Institute, September 1981.

[Rashid & Robertson 81] Rashid, R. F. and Robertson,
G. G. Accent: A Communication Oriented Network
Operating System Kernel. In Proceedings of the 8th

ACM Symposium on Operating Systems Prtnciplesj

pages 64-75, December 1981.

[Stevens 90] Stevens, R. Untx Network Programming.
Prentice-Hall, 1990.

[Thekkath et al. 93] Thekkath, C. A., Nguyen, T. D.,
Moy, E., and Lazowska, E. D. Implementing Net-
work Protocols at User Level. In Proceedings of

SIGCOMM ’93, September 1993.

[Tschudin 91] Tschudin, C. Flexible Protocol Stacks.
In Proceedings of the SIGCOMM ’91 Symposium,
pages 197–204, September 1991.

[Voydock & Kent 83] Voydock, V. L. and Kent, S. T.
Security Mechanisms in High-Level Network Pro-
tocols. ACM Computing Surveys, 15(2):135-171,

June 1983.

[Wilkes 92] Wilkes, M. The Case for a New Approach to
Operating Systems for Personal Workstations. In
Proceedings of the Third Workshop on Workstation

Operatzng Systems, pages 164-167, April 1992.

[Yuhara et al. 94] Yuhara, M., Bershad, B. N., Maeda,
C., and Moss, J. E. B. Efficient Packet Demul-
tiplexing for Multiple Endpoints and Large Mes-
sages. In Proceedings of the 1994 Winter USENIX

Conference, January 1994.

255

