
The Implications of Cache Affinity on Processor Scheduling for

Multiprogrammed, Shared Memory Multiprocessors

Raj Vaswani and John Zahor@n

Department of Computer Science and Engineering

University of Washington

Seattle, WA 98195

Abstract

In a shared memory multiprocessor with caches, exe-

cuting tasks develop “affinity” to processors by filling

their caches with data and instructions during execution.

A scheduling policy that ignores this affinity may waste

processing power by causing excessive cache refilling.

Our work focuses on quantifying the effect of proces-

sor reallocation on the performance of various parallel

applications multiprogrammed on a shared memory mul-

tiprocessor, and on evaluating how the magnitude of this

cost affects the choice of scheduling policy.

We first identify the components of application

response time, including processor reallocation costs.

Next, we measure the impact of reallocation on the cache

behavior of several parallel applications executing on a

Sequent Symmetry multiprocessor. We also measure the

performance of these applications under a number of

alternative allocation policies. These experiments lead us

to conclude that on current machines processor affinity

has only a very weak influence on the choice of schedul-

ing discipline, and that the benefits of frequent processor

reallocation (in response to the changing parallelism of

jobs) outweigh the pmtlties imposed by such reallocation.

Finally, we use this experimental data to parametrize a

simple analytic model, allowing us to evaluate the effect

of processor affinity on future machines, those containing

faster processors and larger caches.
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1. Introduction

We examine the effect of processor reallocation on

parallel programs muh.iprogrammed on UMA shared

memory parallel computers. Such machines typically

have a modest number of processors connected to main

memory by a shared bus. This architecture is in use for

machines ranging in power from single-user workstations

to supercomputers, and provides a building block for

several pro~sed architectures for large-scale shared

memory multiprocessors Kenoski et al. 90].

Recent work Pucker & Gupta 89, Gupta et al. 91,

McCann et al. 91] has shown that the best performance is

obtained by partitioning the available prmessors among

concurrently executing jobs (space sharing) rather than by

rotating the processors among them in a quantum-driven

fashion (rime sharing). At their most basic level, space

sharing policies divide the available processors among

jobs. However, even within this domain, a fundamental

degree of freedom is the frequency with which allocation

decisions are made. At one extreme, processors cart be

statically equipartitioned among jobs, with reallocations

done only when jobs enter or leave the system. At the

other extreme, processors can be reallocated unequally in

the short term in response to the instantaneous processor

demands of jobs, with care to ensure an equitable alloca-

tion when averaged over a longer time interval.

We consider whether processor utilization should be

emphasized over other considerations that arise on mul-

tiprocessor machines with caches. We assume that on

such machines, parallel jobs will be composed of several

tasks (kemel-schedtdable threads of execution). These

may either implement the application dimtly, or may be
used to run user-level threads that implement the applica-

tion ~ershad et al. 88, Birrell 89]. In either case, a

scheduling policy that ignores the tasks’ cache behavior

may result in poor utilization. Instead, it may be

beneficial to schedule tasks where they have “affinity”

(useful data remaining in the cache) [Squillante &

Lazowska 89]. Depending on the magnitude of the

affinity effect, it may even be desirable to avoid realloca-

tion entirely, returning to more static policies.
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Workx, j + wastex, j + #reailocationsx, j x reallocation–time + cache –penaltyx, j
RTx, j = (1)

average –allocationx, j

cache –penaltyx, j = %af f inityx, j X P? + %no *f f iw”tyx, j x PTA (2)

Figure 1- The Response Time Model

In the remainder of this paper we evaluate the tension

between the benefit of processor reallocation (increased

utilization) and the cost of this reallocation (poor cache

behavior). In Section 2 we characterize the components

of application response time. Section 3 describes our

experimental environment (hardware, software, and paral-

lel applications used), In Section 4 we evaluate empiri-

cally the effect of processor reallocation on the cache

behavior of these applications. Section 5 defines the set

of allocation policies that we use to explore the domain of

space sharing policies. In Section 6 we summarize the

results of experiments using these policies to schedule

various workloads of parallel applications. In Section 7

we use data gathered from these experiments to

parametrize our model, and thus to evaluate allocation

policies for future machines, Section 8 discusses related

work, and Seetion 9 summarizes our conclusions.

2. The Effect of Processor Reallocation

We now present a simple analytic model for compar-

ing the impact of vmious multiprocessor scheduling poli-

cies on job behavior. This model serves two purposes.

First, by clearly identifying the components of job

response time, it facilitates our understanding of the possi-

ble approaches to improving performance. Second, while

we use experimentation to assess the impact of affinity on

current machines, we use our model to extrapolate this

effect for future, much faster machines.

Our primary metric for evaluating multiprocessor

scheduling policies is average job response time.

Speedup, a common metric of parallel software perfor-

mance, is not particularly intuitive when evaluating

dynamic policies since a job’s allocation changes

throughout its lifetime.

Let RTX, j be the response time for a particular job j

running under policy X in a multiprogrammed environ-

ment. We characterize job response time by equation (1)

in Figure 1. In this equation, workx, j is the total number

of processor-seconds of useful work comprising job j

under discipline X, wastex, j is the total number of
processor-seeonds spent by j holding processors on which

it has no work to execute, #reallocations, j is the number

of processor reallocations j experiences, reallocation-time

is the path length cost of a context switch,

cache –penalt~, j is the cache effect of the switch (dis-

cussed below), and average –allocationx, j is the average

number of processors that the seheduting policy is able to

provide to j during its lifetime.

The magnitude of the cache –penaltyx, j term in (1)

depends on whether or not a task has an’ ‘affinity” for the

processor on which that task is activated. We say that a

task has affinity for pmeessors on which it has previously

run, and does not for others. However, in a multipro-

grammed environment, a task experiences some cache

penalty even when returning to a processor for which it

has affinity: some intervening task may have run on that

processor, ejecting some or all of the returning task’s

cache context.

Equation (2) in Figure 1, which represents the cache

penalty of processor movement, reflects this effect. In

this equation, %af f inityx, j ~d %no –af f inityx, j

represent the percentage of reallocations under discipline

X that cause job j’s tasks to resume on processom for

which those tasks do or do not have an affinity, respec-
~A represent the average cache penaltiestivel~ Pi and P]

experienced by j in each of these cases.

Note that bus contention and thread synchronization

detays are encapsulated (in an approximate way) by the

workx, j term of equation (l). Either or both of these

effects may be aggravated by particular scheduling discip-

lines — one that frequently migrates tasks, for example,

may result in higher miss rates, and thus increased bus

utilization (contention). For our purposes, it is onty

important that both forms of contention reduce effeetive

processor speed, lengthening the number of processor-

scxonds required to complete the application. Therefore,

measuring workx, j (as we do in subsequent sections) cap-

tures implicitly the differences in contention effects

induced by alternative processor alhxation policies.

Further, in dividing by average-allocation we are

assuming that the impact on response time of the realloca-

tions is evenly distributed over that number of pmeessors.

This assumption is justified by the software structure of

our applications, which employ user-level threads to

achieve fine-grained parallelism at low cost. This

encourages the use of many threads, which are supported
by a smaller, fixed number of workers (implemented as

kernel threads). In such a scheme, reatloeations need not

take place more frequently on any one processor than on

another. This assumption has agreed well with our exper-

imental observations.
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The model represented by Figure 1 suggests the fol-

lowing “degrees of freedom” available to policies in

their attempts to reduce job response time:

● Balancing #reallocations, j ad wa.rtex, j. Wasting

processors can be avoided by reallocating them from jobs

that are currently unable to use them to jobs that can.

However, this implies an increase in #reallocafionsx, j,

and so an increase in the processor reallocation cost com-

ponent of job response time, Relatively static policies

(such as in [Tucker & Gupta 89]) in effect assume that the

reallocation penalty. grows faster than the waste such

policies sacrifice utilization in order to minimize the

cache penalty due to reallocation. Conversely, dynamic

policies are willing to impose some cache penalty on

applications in order to improve utilization (reduce

waste). In what follows, we examine policies that fall at

different points in this spectrum: the two extremes (max-
imum reallocations / minimum waste and minimum real-

locations / maximum waste) as well as seveml other poli-

cies that attempt to strike a more balanced compromise.

● Decreasing cache –penaltyx, j. The cache penalty suf-

fered under a dynamic discipline can be reduced by mak-

ing decisions that maximize 7oaffini&, j. Such a

dynamic policy might perform as many reallocations as

one that ignores affinity effects, thus keeping waste down.
However, the cost of each reallocation would be reduced

The model given by equations (1) and (2) suggests

that the performance of a scheduling policy depends on a

number of factors. To explain our results quantifying

these factors, we first describe the environment in which

those results were gathered.

3. The Experimental Environment

All of our work was done on a Sequent Symmetry

Model B, a bus based, shared memory multiprocessor

[Lovett & Thakkar 88]. Our machine consists of twenty

16 MHz Intel 80386 processors, each comected to a 64-

Kbyte 2-way set associative cache with a line size of 16

bytes. The Symmetry Model B uses a copy-back,

invalidation-based coherency protocol. We estimate that

0.75 psec. is required to fetch a single cache block from

main memory in the absence of bus contention, and there-

fore that (at least) 3.072 msec. would be required to till

entirely a single cache of 4K 16-byte blocks.

We control processor allocations in all of our experi-

ments using Mines [McCann et al. 91]. Mines is a pro-

cessor allocator designed to allow the easy implementa-

tion of alternative allocation policies. Mines runs as a

user-level process, interacting with the Sequent operating

system, DYNIX, to arrange the allocation of processors

among jobs in the way dictated by the policy to be investi-

gated.

In an attempt to model realistic workloads, we chose

for our experiments a set of programs previously written

for shared memory mtdtiprocessors. These programs

represent a variety of applications with differing parallel-

ism structures. Figures 2 through 4 illustrate a number of

characteristics of the applications. Included for each is

the thread dependence gmph the nodes of the graph

repnxent user-level threads and the edges represent the

precedence relationships among them. Also shown are

the percentage of time spent by the application at each

level of physical parallelism, the total (elapsed) execution

time, and the average processor demand, all measured by

running the application in isolation on 16 processors.
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Figure 2- The MVA Application

The first application, MVA, is a dynamic program-

ming problem. Its precedence structure is representative

of many “wave front” computations, and exhibits paral-

lelism that first slowly grows and then slowly decreases.
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Figure 3- The MATRIX Application

The second application, MATRIX, is an implementa-

tion of a parallel matrix multiply algorithm. The program

uses a “blocked” algorithm designed to improve perfor-

mance by exploiting cache locality ~ox et al. 88, Lam et
rd. 91]. Each thread of the computation is assigncxi a

square block of elements of the output matrix for which it

must compute values. It does this by dividing the two

input matrices into blocks, and doing blockwise muhipli-

cation to compute partial results. ‘l%e block sizes are

chosen as large as possible under the constraint that the

currently used blocks fit in the processor’s cache. This

results in very high cache hit rams, and so good applica-

tion performance.
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Figure 4- The GRAVITY Application

The final application, GRAVITY, implements the

Barnes and Hut clustering algorithm for simulating the

gravitational interaction of a large number of stars over

time [Barnes & Hut 86]. This application repeats five

phases of execution for each time step of the simulation,

the first being sequential and the remaining four parallel.

Between each of the parallel phases is a barrier synchroni-

zation at which the parallelism decreases briefly to one.

Thread execution times for GRAVITY differ during each

phase, and within some phases, thread times depend on

synchronization delays for critical sections of code.

4. Measuring Reallocation Costs

There are two costs to reallocating a proeessoc the

kernel path length cost associated with the reallocation,

and the cache effects of that reallocation. Some simple

experiments to measure the former on our Sequent found

it LObe about 750 p.sec. This value then serves as a stan-

dard against which to compare the cache related costs.

As stated in equation (2), the average cache penalty to

Job j is divided into components: P$, the penalty incurred

when one of j’s tasks resumes on a processor for which

the task has affinity, and P~A, the penalty incurred when

the task resumes where it has no affinity. We measured

P;l and P~A for our applications as follows. We ran each

program on a single processor controlled by a special allo-

cator. This allocator rescheduled the program every Q

mscc., and at every such point, took one of three actions:

● ‘The program was immediately replaced on the proces-

sor on which it had been running. Measuring the

response time of the program under these conditions pro-

vided us with a basis for comparison, we called this

response time RTSt~iiOW, j.

● Enough memory was referenced sequentially to push

the cache, and then the program was replaced. This case

was designed to capture P,~A, the cost incurred for running

on a processor for which the program had no aftinit y.l We

] In fact, our results may somewhat overstate the non-affinity

penalty thal would be observed us practice, since an individual

~ppbca~on might spread its cache context among several caches
with the well known benefits this brings.

called the program’s response time under these conditions

RTmgT~liRg,~.

● A task from another program was run on the processor

for duration Q, and then the original program was
replaced. This ease was designed to capture P~, the cost

incurred for ruining on a processor for which the program

did have affinity. Another program was run on the pro-

cessor for duration Q to teflect a multiprogramming

environment in which the activity of other jobs would

have ejected some portion of the returning task’s context

horn the cache. We called the program’s response time

under these emditions RT~~~~~, j.

The total cache penalty due to lack of processor

affinity was given by RTm8r@ing,j – RT.UtiOw,,, while

the penalty incurred in spite of such affinity was given by

RTwlriprog, j – RTstotionary,j .

Since P~A and P? are defined as the cache penalty per

context switch (reallocation), they were given by:

p~A = ‘TW~@W,I – ‘T--V J
#switches that occurred’

pA = RTnsuftiprog, J – RTstationav, I
1 #switches that occurred

Table 1 summarizes our measurements

penalties. Each row of Table 1 represents the

of cache

workload

measured. Since P: depends heavily on the behavior of

intervening tasks, the column labels indicate the workload

run between successive dispatches of the measured work-

load. In the case of P~A, of course, there is no such work-

load. We performed these measurements for values of Q

(the frequency with which the programs were

resehedtded) of 25 resee., 100 msec., and 400 msec. The

first two durations were meant to represent the typical

length of an 1/0 operation and a typical quantum length

for time shared multiproeessors, respectively.2 The 400

msec. value represented a rough estimate of the frequency

with which a dynamic space sharing policy might perform

teallecations.

These results indicate a significant penalty for running

tasks on proeessom for which the tasks have no affinity.

(Reeall that the path length cost of the context switch is

750 wee.) Further, there is a noticeable penalty for

resuming tasks on processors for which the tasks do have

affinity, but on which another task has run. The magni-

tude of these costs appears heavily influenced by Q, for

the following reasons.

Z Since multipmceasorx have more processors than do

USS@’OCXXSOrS,it is mom tikely that an idle one can be found when

needed. This pemsita muhiprocessor systems to reduce system

overhead by using quanta that am typicalty lmrger than thuse m

onipmcessora. DYNIX, for example, uses a 100 msec. quanmm.
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MAT

MVA

GRAV

p~A p} pjNA pf p~A p;

MAT MVA GRAV MAT MVA GRAV MAT RNA GRAV

882 120 177 165 1076 171 419 374 1679 737 1166 815
914 107 166 194 1267 164 330 221 2330 627 1061 1103
364 154 301 210 1576 415 740 353 2349 1793 2080 1719

Q =25 msec. Q = 100 msec. Q = 400 msec.

Table 1- P$ and PyA (in Wee.) for All Applications

Larger values of Q mean that a task runs for a longer

period, accessing more data between each context switch

than it did at smaller values of Q. If the task is resumed

on a processor for which it has no affinity, the increased

P~A reflects the necessity of reloading this larger working

set. If the task is resumed on a prcteessor for which it

does have affinity, the intervening task on that processor

has also run for a longer period, accessing correspond-

ingly more data. This increased use of the cache causes

more of the returning task’s data to be ejected, and there-

fore P? also increases with Q.

In summary, the results of our measurements confirm

that the cache effects of a processor reallocation ean be

the dominant portion of the reallocation cost. The
improved utilization gained by frequent reallocation may

be offset by the poor cache behavior induced by this real-

location. These results provide motivation to examine

this tradeoff more carefully, and to evaluate policies that

consider cache effects when making scheduling decisions.

5. Description of Scheduling Policies

Our goal now is to consider how important cache

effects are to scheduling by evaluating a number of poli-

cies that differ in the amount of consideration they give to

these effects. We examine only space sharing policies,

since this basic characteristic has already been shown to

be necessary for good performance [Tucker & Gupta 89,

Gupta et al. 91, McCann et al. 91]. The policies we

examine differ only with respect to the “degrees of free-

dom” listed in Section 2.

5.1. Equipartition

Equipartition is a space sharing policy tha~ to the

extent possible, maintains a constant equal allocation of

processors to all jobs. To do this requires reallocations
only on job arrival and completion. In terms of our

response time model, Equipartition is an extreme in the

policy space that minimizes #reallocations at the expense

of maximizing waste. In this sense, Equipartition pro-

vides perfeet affinity scheduling, since tasks essentially

never move.

Our Equipartition policy is based on the “process

control” policy from [Tucker & Gupta 89]. Each time a
reallocation must take place, the number of processors to

allocate to each job is computed as follows. The ‘ ‘alloca-

tion number” of all jobs is initially set to zero, and then

incremented by one in turn. Any job whose allocation

number has reached its maximum parallelism (the max-

imum number of processors the job can use at any point in

its computation) drops out. This process continues until

either there are no remaining jobs or all processors have

ken allocated. The set of allocation numbers computed

in this way gives the number of processors that should be

allocated to the jobs.

5.2. Dynamic

Dynamic is a space sharing policy at the other extreme

of the policy speetrum: it minimizes waste at the cost of a
very large #reallocations. As deseribed below, Dynamic

has very poor affinity characteristics because it reallocates

frequently and without regard to affinity.

Our Dynamic policy is taken from wcCann et al. 91].

Its allocation decisions depend on the current processor

requirements of jobs. Dynamic attempts to allocate to

each job exactly the number of processors it can use at

that instant, with the additional constraint that averaged

over longer time intervals the allocation is fair. Since the

instantaneous processor demands of the jobs are known

only to themselves, eaeh job continually reflects to the

allocator (via shared memory) the number of additional

processors (possibly O) the job could use, In addition,

when a job has a processor that it cannot currently use

profitably, it notifies the allocator that the processor is

available for reallocation. Such processors are said to be

willing to yield.

Dynamic attempts to satisfy requests for additional

processors by using the least valuable processors currently

available:

D.1 Firs~ any unallocated processors are assigned.

D.2 Next, “willing to yield” processors are assigned.

D.3 Finally, an equitable allocation is enforced by

preempting processors from the job(s) with the largest

current allocation.

The Dynamic policy also includes an adaptive priority

mechanism used to eneourage jobs to give up processors

not currently needed.3 Each job is assigned a priority level

3 The details of this priority scheme asE not pertinent to the

goats of this paper snd so only an abbreviated s-ary is included

here. [MeCanss et al. 91] contains a complete description.
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that depends on its processor usage to that time. Job

priorities are set using a scheme that raises them as a

“reward” for using few processors and lowers them as a
result of using many. In this way, a job acquires credit

during periods when it uses few processors. The job may

later spend these credits to obtain temporarily more than

its fair share of processors. Such a priority mechanism

has been shown to be essential due to considerations other

than performance that arise in any realistic implementa-

tion of a processor allocation policy: fairness, interactive

response time, and resilience to countermeasures designed

to undermine the policy ~cCann et al. 91].

5.3. Dynamic with Affinity (Dyn-Afl’)

Since the Dynamic policy maximizes #real/ocatims,

its performance is potentially sensitive to the cost of each

one. An improvement might thus be obtained by making

the same reallocation decisions but reducing the cost of

each. The key to this is to maximize %afinit-y: thatis, to

introduce affinity scheduling.

Introducing affinity to Dynamic requires that the allo-

cator have access to processor and task histories [Squil-

lante & Lazowska 89]. For a processor, its history is an

ordered list of the last T tasks to have run on it. For a

task, its history is an ordered list of the last P processors

on which it has run. In the work that follows, we

remember only the last task or processor (T= P = 1).

We incorporated processor affinity into Dynamic’s

allocation decisions as follows:

A.1 Whenever a processor becomes available for reaHo-

cation, the last task to have run on it is identified using the

processor’s history. If that task (km-task) is not currently

active on some other processor but is runnable with useful

work to perform, and if the priority of the job to which

last-task belongs is as high as that of any job currently

requesting processors, then fast-task is activated on the

available processor. Otherwise, the processor is allocated

to the requesting job of highest priority.

A.2 Whenever a job requests additional processors, it

indicates to the allocator the processor that it would like to

acquire (desired-processor). Desired-processor is deter-

mined using the per-task processor history, and is defined

as the processor on which the task most critical to the

job’s progress last ran. If &sired-processor is available
for reallocation, then it is assigned to the requesting job,

Otherwise, another available processor (if any) is

assigned.

This augmented policy (Dyn-Aff) determines a

processor’s availability by applying allocation rules D.1,
D.2, and D.3 exactly as in the case of the basic Dynamic
policy.

Under rule A.2, we allocate desired-processor only if

that processor is not currently doing useful work, since

otherwise we must preempt the task running there. Such

preemption is counterproductive, since art active task

presumably has greater affinity for the processor than the

task we are attempting to schedule. This consideration

limits the possible influence of affinity on the Dynamic

discipline.

A further limitation is imposed by Dyn-Aff’s unwil-

lingness to sacrifice its priority scheme to affinity con-

siderations: both rule A.1 and A.2 make the priority

based decision in preference to the affinity one. Although

a set of non-performance considerations argues for adher-

ence to the priority scheme, this occasionally dictates that

the policy ignore a potential affinity advantage. To evalu-

ate the extent to which these non-performance considera-

tions degrade potential performance, we define a new ver-

sion of the Dyn-Aff policy, called Dyn-Aff-NoFri, that

ignores priorities. (we emphasize that Dyn-Aff-NoRi is

not suggested as a policy for implementation in real sys-

tems, but is rather an artificial policy used to determine

the maximum benefit affinity scheduling might provide.)

Dyn-Aff-NoPri behaves much like Dyn-Aff, except that

● Allocation rule D.3 is ignored. Dyn-Aff-NoPri does not

enforce fairness via preemption of processors from the

job(s) with the largest current allocation.

● Allocation rule A.1 is modified so that when a processor

is available it is always allocated to fast-rusk if fast-task is

not currently active on another processor, but is runnable

and has work to do, regardless of priority considerations.

Dyn-Aff-NoPri applies the other allocation rules

exactly as in the case of the other policies.

5.4. Dynamic with At%nity and Yield-Delay (Dyn-Aff-

Delay)

As described above, Equipartition and Dynamic

represent extremes in the policy space with respect to

waste and #reallocations. The final policy we consider is

a less aggressive version of Dynamic that falls between

these two extremes.

Under Dynamic and Dyn-Aff, a job indicates that it

holds a “willing to yield” processor as soon as that pro-

cessor becomes idle. Under the modified policy (Dyn-

Aff-Delay), we allow applications to retain such proces-

sors for short periods of time in the hope that additional

work for them to do will be generated within the job. If

this happens, the job can begin this work without incur-

ring a processor reallocation penalty.4 Dyn-Aff-Delay

thus trades slightly increased waste (while jobs are wait-

ing for more work to arrive) for a reduced #reallocations.

Dyn-Aff-Delay is in other respects identical to Dyn-Aff.

4 ‘llese same considerations arise in insplemensing locks for

mutuat exclusion, d io this ecmtext a number of researched have

proposed a “spin-thin-block” policy, the basic idea being so spio

for a shon time and then, if she lock is sdlt not free, to give up the

processor [Lo & Gtigor g7, Karlin et al. 91].
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Figure 5- Response Times under Various Dynamic DBciplines Relative to Equipartition

6. Policy Comparison on Current Technology

Machines

In this section we have two goals. The fist is to

evaluate experimentally the impact of processor affinity

on performance for current multiprocessors. Our second

goal is to obtain parameter values from these experiments

that can be used with our response time model to obtain a

similar evaluation for future machines.

The results in this section are based on experiments

with workloads containing some number (possibly zero)

of jobs of each of the three application types discussed in

Section 3. We chose the six sets of programs summarized

in Table 2, eaeh of which (based on the characteristics of

its component programs) imposes qualitatively different

demands on the scheduling policy.

#1 #2 #3 #4 #5 +/6

‘V’EDEEEEIMATRIX
GRAVITY

Table 2- #Copies of Each Program in Each Mix

Workload #1 presents a light load to the system in

terms of the total average number of pmeessors required

by all jobs. Workload #2 represents a situation where one

job (MVA) has dynamically changing parallelism but the

other (MATRIX) has massive and constant parallelism.

Workloads #3 and #4 present moderate loads, requiring

more frequent reallocations than either of the previous

two. Finally, #5 and #6 present reasonably heavy loads

involving quickly changing parallelisms.

Using these workloads, we compare the dynamic poli-

cies to Equipartition since the latter places maximum

emphasis on affinity, while the others emphasize affinity

to varying but lesser degrees, As stated earlier, our pri-

mary mernc of performance is average job response time.
Figure 5 shows the average response time for each job in

each workload mix for the three versions of the Dynamic
policy relative to the response times obtained under

Equipartition. The average values shown represent

enough replications of eaeh experiment so that the 95%

eontidenee interval is within 1% of the point emirnate of

the mean.

Based on these results, we come to the following con-

clusions for current technology machines

● Aggressive reallocatwn of processors is preferable to

more static allocatwn. As Figure 5 shows, the response

times for all jobs under the dynamic disciplines are

smaller than the Eq@artition response times. This result

is in agreement with those in [McCann et al. 91], which

contains a more complete discussion of this comparison.

● ~ty scheduling provides little benefit under current
conditwns. F@re 5 shows that the response times

obtained by the three variants of Dynamic are basically

identical. To gauge the effectiveness of the affinity ver-

sions of Dynamic in meeting their gods, we tracked the

number of times that a task was restarted on a processor

for which that task had affinity. Table 3 shows the per-

centage of such occurrences for workload #5 under the

basic Dynamic policy and its two affinity-based deriva-

tives. The dramatically higher %@inity under the two

affinity policies suggests that they frequently dispatch

tasks to processors for which those tasks have affinity.

However, beeause current cache penalties (P~ and PTA

from Section 4) are small relative to the time between

reallocations (row 3 of Table 3), response times (row 4)

do not significantly improve. Seetion 8 discusses another
factor that also contributes to this result.

Dy-k Dyn-AK Dym-AIT.Dday

WT GuV MT GUV hWT GMV

S@miIy z% 31% a3% 34% MJZ 59%

Nmlllanlimi %63 1745 2403 17s0 1611 1139

Rcalla. Mend (IIUeG) B3 322 3ci3 218 44s 340

Reqmrae three (sec.) s15 51.4 S7.o 513 a6.3 51.4

Table 3- Influence of Aftinity on Scheduling
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Figure 6- Response Times under Dyn-Aff-NoPri Relative to Equipartition

We thus conclude that in our current environment, proces-

sor affinity need not unduly affect reallocation decisions.

This result, while obvious in retrospec4 was difficult to

predict because measurement was useful in determining

the actual number of reallocations experienced by jobs

interacting in mixed workloads.

● “Yield-delay” provides little benejit under current con-

ditions. While Dyn-Aff-Delay meets its goal of reducing

#reallocations (row 2 of Table 3), this has little effect on

response time. Once again, the reason is that on the

current machine the reallocation penalty is small relative

to the time between reallocations. Reallocation cost is

thus only a small tiaction of job response time, and reduc-

ing this component even further has negligible effect.

● Fairness should not be sacrij’iced in an attempt to

improve processor affinity. Figure 6 shows the average

response time for each job in each workload mix for the

Dyn-Aff-NoPri policy relative to the response times

obtained under Equipartition. In contrast to the results for

the other dynamic policies (l%gure 5), job response times

relative to Equipartition are extremely variable. This

occurs because Dyn-Aff-NoPri sacrifices the priority

scheme, and thus fairness, for an increase in %af fi?dty;

this unpleasant behavior is why we consider Dyn-Aff-

NoPri to be an artificial policy (as stated previously).

Nonetheless, our purpose in introducing Dyn-Aff-

NoPri was to evaluate the extent to which non-

performance considemtions (fairness, etc.) degrade poten-

tial performance by forcing the policy to ignore possible

affinity advantages. We therefore calculated the average

response time experienced by each job under both the

basic affinity policy (Dyn-Affl and Dyn-Aff-NoI%i. We

made the calculation only for the homogeneous workloads

(those containing multiple instances of the same type of

job), since this statistic is meaningless for workloads con-
taining different types of jobs.

Table 4 summarizes the average job response time for

the homogeneous workloads (#1 and #4) under both
Dyn-Aff and Dyn-Aff-NoPri. As the table demonstrates,

sacrificing the priority scheme to affinity considerations

results in a negligible improvement in the case of the

MVA workload (#l), and a degradation in the case of the

GRAVITY workload (#4). Since this weak and incon-

sistent behavior is obtained at the cost of significant

unfairness (Figure 6), we conclude that (enforced) equit-

able allocation is essential in a reasonable policy, and

eliminate Dyn-Aff-NoPri from further consideration.

Dyn-AN Dyn-AIT-NoPd

=:::==EEEEI

Table 4- Average Job Response Time
(Homogeneous Workloads Only)

Our observations to this point provide a good set of

guidelines for constructing a scheduling policy for shared

memory multiprocessors. In summary, an efficient policy

will combine spau sharing with careful but aggressive

reallocation of processors. Although affinity considera-

tions do not currently appear significant, there is little cost

to including them in such a policy. Dyrt-Aff-Delay thus

q- to be the best such policy, since presumably it is
most resilient to aberrant application bhavior.

7. Policy Comparison on Future Technology

Machines

Our results so far demonstrate that on current

machines, affinity scheduling is not particularly usefut:
the dominant effect on performance is the increased pr~

cessor utilization obtained from dynamic reztlbcation,

which far outweighs the impact of these reallocations on

application cache behavior. However, it is possible that

on future machines, the cache effects of reallocations will

negate the potential utilization improvement by forcing
jobs to spend inordinate amounts of processing power
reloading cache context instead of computing. In order to

evaluate the point at which this might occur, we must

extend our model for job response time (Figure 1) to

@lect the characteristics of future machines.
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Figure 7-TheResponse Thne Model,Extended forFutureMachines

7.1. Extending the Model

In his seetion, we describe the reamer in which we

incorporate the (projected) characteristics of future

machines into our model. Section 7.2 discusses the neces-

sary assumptions in more detail. The extended model
itself is shown in Figure 7.

7.1,1. Faster processors

Increased speed is the primary characteristic of future

machines that affects our model. We make the optimistic

assumption that applications will be able to take full

advantage of the increased processing power offered by

future processors. That is, we assume that the purely

computational terms in our model will decrease linearly

with increasing processor speed. Thus, we simply divide

the work, waste and reallocation-time terms of equation

(1) by a processor-speed factor, which gives the speed of

a future processor relative to a processor of our Sequent

Symmetry. This assumption is optimistic since reeent

results indicate that due to architectural constraints,

software may be unable to exploit the full power of faster

processors [Ousterhout 90, Anderson et al. 91].

As processor speed increases, cache misses become

increasingly important since more cycles are lost if miss

resolution is necessary. Thus, one cannot build arbitrarily
faster machines without addressing the bottleneck that the

memory subsystem becomes on such machines. The fol-

lowing sections discuss proposed solutions to this

bottleneck, which give rise to other characteristics of

future machines that must be incorporated into our model.

7.1.2. Larger caches

This approach attacks the memory bottleneck by

reducing the number of capacity misses (those due to lim-

ited cache size), and thus the number of overall misses.

Previous work [Thiebaut & Stone 87, Mogul& Borg 91]

has indicated that one effeet of larger caches will be to

allow more data to be preserved across context switches

(processor reallocations). This suggests that a task retur-

ningto a processor for which the task has affinity will incur

a smaller cache penalty if the cache is large: it is more
likely that the returning task’s cache image (i.e., useful

data in the cache) has been left undisturbed by any other

task(s) to have run on that processor. We incorporate this

into our model by assuming that this effect is linear in

cache size, and simply divide the cache penalty incurred

when restarting on a processor to which a task has affinity

(P~) by a cache-size t%ctor. This factor represents the

size of a future cache relative to that of our Symmetry.

Increasing cache size may also be expected to affect

tasks (restarting on processors for which the tasks have

no affinity. At one extreme, the cache penalty of restart-

ing on such a processor might remain constant with

increasing cache siz~ at the other extreme the penalty

might increase linearly with cache size. Nang et al. 89]

observe that program hit rates grow extremely slowly as

cache size increases, suggesting that the additional

amount of cached data useful to a program is small.

However, larger caches allow applications the luxury of

loading more data into the cache, and future applications

may therefore use the cache more extensively than do

current applications. We therefore choose a function

between constant and linear, and assume that the penalty

grows as dcache –size , where cache –size is the relative

size as above.

7.1.3. Faster cache miss resolution

Multilevel caches present one strategy for reducing

the cost of cache misses by resolving misses in the tirst-

level cache with data from the second-level cache rather

than from (slower) main memory. However, this strategy

depends on increased hit rates in both the first- and

second-level caches in order to avoid accessing a still-

S1OWmain memory. It seems unlikely that these hit rates

can be increased enough to allow the effective aeeess time

of main memory to remain constant as prccessor speeds
increase, even if prefeteh techniques are employed

[Jouppi 901. ThM, iII order to fully exploit faster proces-
sors, the sped of the main memory subsystem (including

any contention for the system bus) must increase with

processor speed, although alternate strategies (such as

multilevel caching) allow that the magnitude of this

change need not precisely equal that of the processor

speed. We assume that the miss resolution speed must

increase as ~processor –speed , a ratio in general agree-

ment with [Jouppi 90]. The cache penalty in our model is

therefore scaled by this factor.
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7,2. Discussion

Much of what follows is predicated on the fact that

our response time model is expressed using seconds as the

time uni~ rather than processor cycles. For example,

cache –penal~, j is in terms of seconds fOSt Ilttk thSIl

(the more commonly used) cycles lost. For this reason,

cache –penaltfi, j is not expressed as a furtetion of pro-

cessor speed, except as described below.

The model attempts to refleet the fact that cache

misses become increasingly impmtant as processors

become faster. However, we consider a “faster” proces-

sor to be one that provides an increased “effective pro-

cessing rate” rather than one with merely a faster clock

rate. A processor with a smaller cycle time (faster clock

rate) is not usefid if too many cycles are spent waiting for

cache misses to be resolved. As described above, our

model assumes that such a processor ean be utilized effec-

tively only if 1) memory speed is increased so that cache

miss resolution is faster, and/or 2) program hit rates are

increased so that fewer memory accesses are made. To

gauge the amount by which hit rates must be increased,

we analyzed a simple model consisting of two levels of

cache memory and a single central memory. We found

that because mtdtiproeessor hit rates may already be

expected to be quite high, there was little room for

impmvemenc hit rates could not be increased enough to

obviate the need for faster miss resolution. For this rea-

son, the model assumes that (effective) memory speed

must increase as ~processor –speed , and the miss penalty

is divided by this factor.

The model also assumes that larger caches will allow

more data to survive across redloeations. This assump-

tion may be optimistic, for the following reason. As

already discussed, the relative cost of a cache miss

increases with processor speed. It therefore becomes

increasingly important that programs use algorithms that

explicitly consider the cache in order to improve perfor-

mance; “blocked” algorithms represent one example of

this [Fox et al. 88, Lam et al. 91]. This greater emphasis

may lead to an increase in the number of programs

tailored to the cache size, which would reduee the impor-

tance of affinity: even a single intervening task would

overwrite large portions of a returning task’s cache con-

tex~ reducing the benefit of returning to such a processor.

We chose the simpler (optimistic) assumption because

this effect is difficult to model without further assump-

tions about the characteristics of future programs.

In general, our model parameters are chosen to be

both few enough and simple enough to be measured

easily. We felt that manageability was imperative for the

model to be useful, but this simplicity has a cost we are
able to describe only trends, and not precise behavior

based on specific machine characteristics. Further

refinement is necessary before more detailed extrapola-

tions such as these are possible.

7.3. Results

Using the extended model to predict response times on

future machines requires values for all of its terms. We

obtained P? and PTA from the measurements made for

each of our applications (Seetion 4). We extracted the

other parameters from the results of sehedtdirtg various

workloads with each of our allocation policies (Seetion 6).

An example of this data is that shown in Table 3 (Section
6). We then evaluated the performance of eaeh policy at

various values of cache-sz”ze and processor-speed. We

were interested in the point at which the cache penalty of

reallocation overwhelmed the utilization benefi~ and

therefore again chose to evaluate the various dynamic pol-

icies with respeet to Equipartition.

Figures 8 through 13 depict the performance of each

dynamic policy rehtive to Equipartition for each applica-

tion in each worldoad.5 The X-axis of each graph is the

product of processor–speed and cache-size, since we

observed that the response time results to more than three

significant digits depend only on the product of these

terms, and expressing the results this way simplifies the

presentation.

Based on these results, we make the following obser-

vations:

. The benejits of increased processor utilization

overwhelm the performance lost to cache efects. As can

be seen from the figmes, the performance of the best

dynamic policy (Dyn-Aff-Delay) is superior or equivalent

to that of Equipartition. In graphs that show the perfor-

mance becoming equivalent, the “crossover point” is
quite far in the future. This suggests that a careful policy

ean reap the benefits of properly utilizing faster proces-

sors without negating this effect by inducing poor cache

behavior.
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Figure 8- Relative Resp. Times for Workload 1

5 In sane cases,we have omitted dre curve for Dyn-Aff-Delay.

For workloads with few reatlocatians, “‘yield delay” has a

n@igfile impact on performanm, and Dyn-Aff-Detay behaves

much like Dyn-Aff. We emit the Dya-Aff-Delay curve in such

CaSCS to avcid chtiming the presentatiar.
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● A~ty scheduling becomes more important as machine

speed increases. This point is illustrated by Figure 8,

which gives the performance of the workload containing 2
MVA jobs. The curves for Dynamic and Dyn-Aff in this

figure begin to diverge, suggesting that Dynamic’s

“oblivious” reallocation strategy degrades application

cache behavior to a point that negates any utilization

gab. Since Dyn-Aff makes reallocation decisions more

carefully, it continues to provide good prformanee. We

therefore conclude that it is advisable to include affinity

information in current scheduling policies because this

extra consideration does not currently degrade perfor-

mance, and will prove to be important in the future.
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● “Yield-delay” also becomes more important as

machine speed increases. We illustrate this point using

Figure 12, which shows the performance of the workload

consisting of 1 MATRIX and 1 GRAVITY job. This

figure shows that the difference between Dyn-Aff (the

policy of choice based on the above) and Dyn-Aff-Delay

becomes more pronounced with increasing machine

speed. As previously noted, Dyn-Aff aggressively reallo-

cates processors at every opportunity, while Dyn-Aff-

Delay reduces needless preemptions by allowing jobs to

retain unused processors for shont periods of time. This

not only eliminates the overhead of performing the reallc

cation, but also the cache effects of this reallocation that

(as we have seen) begin to assume more importance.

We therefore conclude that, as in the ease of affinity,

it is useful to incorporate a yield-delay strategy into the

allocation policy. These extra strategies cost nothing on

current machines (where they also add nothing), but

become more important as machine speed increases.

8. Related Work

Our conclusion regarding the relative unimportance of

affinity scheduling is seemingly at odds with much prev-

ious work on this topic; we now address this issue. Sec-

tion 8.1 provides some background necessary for placing

our work in the proper context. In Section 8.2, we com-

pare our results to specific work by other researchers.

Section 8.3 summarizes the comparison.

8.1. Background

Evaluating affinity scheduling involves lint quantify-
ing the ede effects of processor reallocation, and then

determining the influence of these effects on the choice of

scheduling discipline. Our measurements of the former

(Section 4) axe in close agreement with those of other

researchers. In spite of this similarity, our conclusions are

quite different.

As stated previously, we examine only space sharing
policies, while other researchers have (so far) typically

studied time sharing policies augmented with affinity con-

siderations. Time sharing policies inherently induce poor

cache behavior for several reasons. First, they typically

allocate jobs a larger amount of processors than do space

sharing policies, but for shorter periods. Uucker & Gupta

89, Gupta et al. 91, McCann et al. 91] have shown that

this is inadvisable because contention effects (cache

invalidations, synchronization delays) reduce the effec-

tiveness of the additional processors. Further, time shar-

ing policies achieve fair allocation by rotating processors

among jobs. This maximizes the adverse consequences of
multiprogramming, since jobs needlessly overwrite each

others’ cache contexw, space sharing policies reduce this

effeet by allowing jobs to retain processors as long as rhey

are useful (barring occasional forcible preemption to

enforce fairness).

Finally, time sharing policies reallocate based on an

arbitrarily chosen quantum that usually has little to do

with job behavior. A potentially larger number of context

switches are therefore involuntary (caused by quantum

expiry). For such switches, the amount of AU nece-

across reallocations may be large, since a job preempted

involuntarily will need to complete the interrupted com-

putation, using the same data. Under space sharing poli-

cies, conversely, most reallocations am initiated by the

jobs themselves (as they require either more or fewer pro-

cessors). A large percentage of reallocations thus rcmdt
from jobs voluntarily relinquishing processors as they

maeh the end of some phase of computation. Even if such

jobs eventually need the yielded processors rettuned, the

data they use at that point is likely to be different ffom

that which they were using when the processors were ori-
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ginally relinquished. Since previously cached data is use-

less in such cases, maintaining affinity relationships is less

critical.

Space sharing policies thus eliminate much of the poor

cache behavior induced by time sharing policies, and the

possible impact of affinity on the former policies is there-

fore smaller than on the latter. With this basic difference

in mind, we now discuss the work of other researchers in

more detail.

8.2. Comparison to Previous Work

Our experimental work was preceded by the modeling

work of [Squillrmte & Lazowska 89]. Using an analytic

model of cache footprint behavior, and an analytic model

of a multiprogrammed system and its workload, they con-

cluded that affinity scheduling can have a pronounced

effect on performance.

The main reason for the differences between our

respective sets of conclusions is that our empirical obser-

vations do not agree with the assumptions in [Squillante &

Lazowska 89]. They assume that a task returning to a

processor will find useful data remaining in the cache

even after many intervening tasks have run there. How-

ever, our measurements indicate that even a single inter-

vening task can eject large portions of the returning task’s

context (Section 4). This discrepancy occurs because

Squillante and Lazowska study time sharing policies, for

which the reallocation interval is small. More frequent

reallocation not only makes cache effects more important

to response time, but ensures that tasks do not run long

enough to interfere with each other significantly. Our

measurements of typical reallocation intervals in the space

sharing domain (row 3, Table 3) suggest they are large

enough so that a) cache effects are only a small fraction of

overall response time, and b) tasks are allowed to make

extensive use of the cache, resulting in significant inter-

task interference.

The assumption regarding data survival is also

optimistic due to the fundamental difference between time

sharing policies and space sharing ones, expktined above.

Under space sharing policies, a task will often voluntarily

relinquish a processor when it reaches the end of some
phase of computation. Even if the task subsequently

returns to a prccessor where some of its old data remains,

this data might not in fact be useful: the task will most

likely begin some new computation that requires new data

to be loaded. Thus, the assumptions made by Squillante

and Lazowska, while appropriate to their time sharing

domain, do not appear to hold in our space sharing

domain. Our conclusions regarding space sharing policies

therefore differ from the ones they reach regarding time
sharing ones.

In contrast to the time sharing policies of [Squillante

& Lazowska 89], the “process control” policy of [Tucker

& Gupta 89] is a space sharing policy. However,

although [Gupta et al. 91] subsequently evaluated various

multiprocessor scheduling strategies using trace-driven

simulation, affinity scheduling in the context of “process

control” was not studied.6 Such an evaluation was

unnecessary, since (as mentioned previously) “process

control” already provides perfect affinity scheduling by

avoiding reallocations except on job arrival and termina-

tion. This relatively static policy is art appropriate choice

given the workloads studied in [Tucker & Gupta 89,

Gupta et al. 91] where sufficient parallelism was available

to keep all processors busy at all times. Under these con-

ditions, dynamic reallocation in response to changing

parallelism is unnecessary, and the issue of considering

affinity during such m.allocations never arises.

On the other hand, the programs we study exhibit
parallelism that varies in both amount and frequency of

change. Our Dynamic policy therefore reallocates pro-

cessors in response to the changing needs of jobs, reduc-

ing wasted processing power. Since this necessitates

more frequent reallocations than under “process con-

trol”, affinity considerations assume more importance.

Our work thus extends that of Gupta et al. by evaluating

affinity in the space sharing domain.

[Mogul & Borg 91] also used simulation to conclude

that the cache effects of context switches significantly

degraded uniprocessor program performance. Our con-

clusions differ from theirs due primarily to the difference

between our respective environments. The uniprocessor

environment studied by Mogul and Borg necessitates a

time sharing discipline. As just explained, affinity is more

important under these conditions: the increased number

of involuntary context switches implies that restarted

tasks rWuire more data to be preserved across context

switches, and priority assignment schemes that use

affinity information might therefore provide better perfor-

mance than do standard schemes. This analysis agrees

with the results in [Mogul & Borg 91], where workloads

with mostly voluntary context switches were found to be

much less sensitive to the cache effects of the switches

than were workloads with mostly involuntary (scheduler-

driven) switches. Since our multiprocessor environment

allows us to implement space sharing policies, we find

affinity to have a much weaker influence, for the reasons

described in Section 8.1.

6 [Gupta et al. 91] does include an evaluation of a time sharing

based affinity poticy (time stied priority schedutirtg with

relinquishing locks). The quanta they used were large enough so

that mattocations werv relatively infrequent, and inter-job

interference significant. This led to conclusions much like ours:

affinity was found to have a positive but smatt effect.
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8.3. Summary

Our measurements of the cache effects of reallocation

match those of other researchers quite precisely. How-

ever, our fine-grained measurements (Section 4) were

made in what was essentially a time sharing environment

with quantum-driven reallocation taking place at arbitrary

points in a task’s computation. For the reasons explained

above, the space sharing policies we study reduce the

magnitude of the cache penalties that might be observed

in practice, as well as the impact of these penalties on job

response time. Our subsequent experiments with live

workloads contirm that cache effects make only a small

contribution to overall response time under the disciplines

we use. Thus, the fundamental difference between the

behavior of time sharing and space sharing policies causes

our conclusions to differ from those of other researchers

(who have mainly studied the former), despite similar

quantitative results.

9. Conclusions

We have addressed the influence of processor affinity

on processor scheduling in multiprogrammed, shared

memory multiprocessors. Such affinity is acquired by

executing tasks as they bring currently used data and code

into the processor-local cache. The goal of affinity

scheduling is to improve performance by, whenever pos-

sible, dispatching tasks to processors for which the tasks
have affinity.

Using an experimental testbed running on a Sequent

Symmetry, we measured a number of workloads to obtain

their basic affinity characteristics and to compare the per-

formance of several scheduling disciplines that differ in

their consideration for affinity. We then used the results

of these experiments to drive a simple analytic model with

which we studied affinity effects on future, faster

machines,

Based on these experiments and the results of our

model, we conclude that

● Even on curren( multiprocessors, the cache effects of a

processor reallocatwn can exceed the simple path length

costs. This result is in full agreement with those of other

researchers.

● Despite this, af~ity scheduling has negligible @ect on

performance for current multiprocessors. The major rea-

son for this is that current cache penalties are small in

comparison to the time between processor reallocations,

under even the most aggressive dynamic scheduling dis-

ciplines. The fact that we examine only space sharing

policies also contributes to this effec~ since such policies

cause jobs to be involuntarily preempted less frequently

than do time sharing policies. For this reason, the amount

of data required by jobs across reallocations — and thus

the influence of affinity — is potentially smaller under

such policies.

● Afinity scheduling and [‘yield delay” have a modest

effect on future, much faster machines. As processors

become faster, proportionately more processing power is

wasted if cache miss resolution is necessary. In terms of

our model, the cache –penalty due to reallocation begins

to outpace waste as processor speed increases, and reduc-

ing reallocations (even at the expense of some waste)

assumes more importance.

● Even on much faster machines, a scheduling policy

based on dy~”c reallocatwn of processors among jobs

outpe~orrns a more static, equipartitwn policy.

Since the affinity based variants of the Dynamic pol-

icy do not hurt performance on current configurations, and

are more robust with respect to increases in machine

speeds and cache sizes, it appears that they are the best

choice for implementation in machines of the style

ad&essed here.

We emphasize that these conclusions do not state that

cache effects are unimportant in this class of machine, but

rather that they have only limited influence on the kernel

processor scheduling discipline. It is clear that cache

effects cart have a significant effect on how applications

should be programmed, and that cache considerations will

become more central to application programming of these

machines as they become faster. Part of our continuing

work is an investigation of these cache effects on the

design of software layers above the kernel, e.g., the user-
Ievel thread package.
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