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Summary 

SIM/61 is a large (3500 lines of Sim- 
script code), highly detailed simulation 
model of a virtual memory, time-shared, de- 
mand paging operating system. SIM/61 pro- 
vides the capability for parameterized model- 
ing of both hardware and software. The 
current model contains algorithms for inter- 
rupt analysis, task scheduling, I/O schedul- 
ing and demand paging. 

This paper reports the results of 
studies made using SIM/61. The studies fall 
into two main categories: (i) load and con- 
figuration studies and (2) alternate algo- 
rithm studies. The approach taken for the 
former was to establish a fixed load, and 
measure its performance on various hardware 
configurations. The results are particular- 
ly interesting with respect to the paging 
capability of various paging device config- 
urations, and various sizes of main memory. 

The alternate algorithm study was con- 
cerned with task scheduling. In particular, 
it was shown that a minor change to the 
original task scheduling algorithm provided 
a great deal of flexibility in enabling sys- 
tem resource utilization to be biased toward 
either batch or interactive processing, and 
in varying degrees. 

Introduction 

This paper reports the results of simu- 
lation experiments which were carried out 
using SIM/61, a highly detailed simulation 
model of a virtual memory, time-shared, de- 
mand paging operating system. A brief de- 
scription of SIM/61 is provided, while the 
reader is referred to (i) for a more de- 
tailed discussion of the model. The operat- 
ing system simulated is also briefly dis- 
cussed. 

SIM/61: The Operating System 

The operating system modeled is a vir- 
tual memory, demand paging system, which 
concurrently supports batch and interactive 
processing. Definitions and algorithms 
relevant to this paper are described below. 
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Task Scheduler 

A task is simply any job in the system, 
e.g. a batch job spooled in from the card 
reader or an interactive user at a TTY. The 
three basic task types are interactive, 
batch and communications. It is the respon- 
sibility of the task scheduler to control 
the flow of tasks through the system. 

The task scheduler maintains several 
queues, for tasks in various states, with 
the queues relevant to this discussion being 
depicted in Figure i. Note that there are 
two distinct ready queues, one for batch 
tasks and one for interactive tasks. Various 
queue transitions are depicted by the arrows, 
with a transition into the ready queues im- 
plying that a batch task is placed in the 
batch ready queue, while an interactive task 
is put in the interactive ready queue. Com- 
munications tasks are basically treated like 
interactive tasks, with the former having 
higher priority, i.e. communications tasks 
are linked ahead of interactive tasks on the 
interactive ready queue. 

Crucial to the task scheduler is the 
"activate decision", performed by a routine 
known as task activator. Task activator 
is guided in its decision making by the 
Working Set Principle 2, i.e. a task will be 
activated only if its working set size es- 
timator is less than or equal to the amount 
of unscheduled core. Thus, the essential 
ingredient of a task which has been acti- 
vated is that core has been committed to it 
(although it will utilize its scheduled core 
via demand paging). When a task is acti- 
vated, it is said to be an active task, and 
it must reside on some active queue; similar- 
ly, we have inactive tasks on inactive 
queues. Note that only the active tasks are 
allowed to compete for resources (CPU, peri- 
pheral I/O, and paging). The set of active 
tasks is what is commonly known as the multi- 
programming mix, with the degree of multi- 
programming being the number of active tasks. 
The system allows a completely variable de- 
gree of multiprogramming, where at any point 
in time the degree is basically determined 
by core size and task sizes. 

Pages 

Pages are fixed size, viz. 4096 eight- 
bit bytes. The system distinguishes be- 
tween two types of pages. A task page is a 
private, non-shareable page, residing in the 
task's virtual memory. An exec page is a 
public, potentially shareable page, resid- 
ing in the executive's virtual memory 
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(there is a special kind of exec page known 
as a shared page). Note that an exec page 
is not associated with the task which 
suffered the page fault for it. Thus, when 
referring to the pages of a task, we mean 
its task pages. 

SIM/61: The Model 

SIM/61 is a large, highly detailed sim- 
ulation model, written in Simscript 1.5. It 
provides the capability for parameterized 
modeling of both hardware and software, with 
particular flexibility in the area of simu- 
lating various devices and hardware config- 
urations. 

SIM/61 contains the basic operating 
system algorithms for interrupt analysis, 
task scheduling, I/O scheduling, and paging. 
The paging routines have been particularly 
generalized to allow any number of paging 
devices, many types of devices, and varying 
paging-device/channel configurations. 

A load is presented to SIM/61 by de- 
scribing any number of classes of tasks, 
each class containing a specified number of 
tasks. In a given class, the set of tasks 
is described by specifying a list of task 
characteristics, as follows: 

(i) task type: type of task, e.g. 
batch, interactive, communica- 
tions. 

(2) workin@ set size: number of task 
pages in the working set. 

(3) compute time: for interactive 
tasks, the amount of time re- 
quired to service each interac- 
tion; for batch tasks, a base 
time for the other parameters. 

(4) think time: total time at the ter- 
minal between interactions, in- 
cluding type-in and type-out 
time (irrelevant for batch 
tasks). 

(5) IJO interval: interval at which to 
initiate a disc I/O. 

(6) exec SVC interval: interval at 
which to issue a supervisor call 
(SVC), requesting a function of 
the pageable executive, with 
attendant probability of a page 
fault for an exec page. 

(7) shared page reference interval: in- 
terval at which to reference a 
shared page, with attendant 
probability of a page fault. 

(8) virtual memory size: total size 
(number of pages) of the task's 
virtual memory, i.e. the amount 
of backing store it requires. 

These parameters serve to define a task, 
with task paging behavior assumed to obe[ 
empirical data gathered by Fine, at. al.5, 
as shown in Figure 2 (often called Fine's 
curve). 

Working 
Set Size 

Cumulative 
# of new 
page ref- 
erences 

Task Paging Behavior 

f 
I 

Time Compute 
Figure 2 Time 

All parameters, except (I) and (8), are 
drawn from a normal distribution (with speci- 
fied mean and standard deviation) for each 
interaction. 

SIM/61 simulates the steady state situ- 
ation, i.e. the number of tasks remains con- 
stant for a given run. This is tantamount 
to saying that LOGONs and LOGOFFs are not 
simulated. 

Experiments 

Having provided sufficient background, 
we now proceed to the various simulation ex- 
periments. 

Backin@ Store Study 

The purpose of this study is to show 
how system performance, in a paging bound 
environment, is affected by various main 
memory sizes and paging rate capacities. 
The approach taken was to establish a fixed, 
paging bound load, and run it on several 
different hardware configurations, altering 
main memory size and paging device config- 
uration. The hardware elements remaining 
unchanged were an RCA 7 processor (fixed 
point add time of 2.25 us) and two RCA 8590 
disc storage units (see Table 2) on a single 
selector channel, dedicated to user (not 
paging) I/O. 

The details of the simulated load are 
shown in Table i. The load is a heavy inter- 
active one, with 64 interactive tasks of 
varying types (BASIC users, file edit users, 
compute bound executions, I/O bound execu- 
tions, paging bound executions). Also, there 
are two communications tasks and two batch 
tasks. We wish to emphasize that the load 
chosen places extremely heavy paging demands 
on the system, unrealistic for typical user 
environments. This has been done to provide 
the paging bound environment fundamental to 
the study. 

Two main memory sizes were simulated, 
viz. 128 pages (i/2MB) and 256 pages (iMB), 
along with four paging device configurations: 

(i) Two RCA 8580 disc storage units, 
each on a separate selector 
channel. 

(2) One RCA 8567 drum on a selector 
channel. The 8567 contains a 
single page per track, with ap- 
proximately a 3-4 ms "window" be- 
tween the end of recorded data 
and the beginning of the track. 
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(3) 

(4) 

(Since the 8567 was the initial 
paging device simulated, the pag- 
ing algorithm was designed for it, 
using the window time to set up 
and fire the next paging operation, 
in an attempt to avoid "missed" 
drum revolutions.) 
Two 8567 drums, each on a separate 
selector channel. 
A hypothetical large auxiliary 
memory (LAM) (bulk core) on a se- 
lector channel. 

All paging devices are dedicated to 
paging traffic. The hardware characteris- 
tics of the various paging devices are shown 
in Table 2. 

The eight different configurations were 
simulated with the standard algorithms. 
Thus, the basic paging routine, with the 
"window algorithm" designed for the 8567 
drum, was also used with the RCA 8580 and the 
LAM. Obviously, if a paging routine were 
being designed specifically for the RCA 8580 
or LAM, one would not employ a window algo- 
rithm, since there is no window. However, 
we are not particularly concerned with the 
actual devices involved, but rather with the 
continuum of paging transfer capability. 
That is to say, in the graphs presented be- 
low, the actual data points can lose their 
identity, where we intend one to say "given 
paging rate x, performance level y can be 
achieved". 

The measured performance results are 
listed in Table 3 (the data represents nine 
minutes of simulated time, as the run was 
for ten minutes, with one minute allowed for 
"settle down"). Also, three graphs are pre- 
sented in Figures 3-5, treating paging rate 
as the critical variable, with various per- 
formance measures plotted against the pag- 
ing rate. The reader is cautioned against 
drawing the conclusion that as the paging 
rate increases (as a load factor) perform- 
ance improves. This, of course, is not the 
case (that the heavier the load, the better 
the performance). The issue is that we are 
paging bound, and as we are given the capa- 
bility for increased paging (via superior 
paging device configurations), we can de- 
crease the "paging boundedness", thus im- 
proving performance. (Note that a single, 
fixed load was simulated, implying no vari- 
ability in the load factor.) 

In each graph, two curves were drawn: 
one for the i/2MB core size configuration 
and one for the iMB case. Figure 3 plots 
the average response time for interactive 
tasks. Figure 4 plots the number of termi- 
nal interactions processed (i.e. the number 
of responses given) for the interactive 
tasks. Figure 5 plots "user" (non-overhead) 
processor utilization. 

The reason why the extra core did not 
significantly improve performance is easily 
understood. In the iMB case, there is 2.6 
times the schedulable (i.e. non-resident) 
core as in the i/2MB case (208 pages versus 
80 pages). Indeed, considering the one-drum 
run, the measured queue statistics indicate 

that task activator was able to activate 2.6 
times as many tasks (the average number of 
active tasks was 8.4 versus 3.2). However, 
since both runs were paging bound, the larger 
number of active tasks in the iMB case caused 
a larger average delay to occur when satis- 
fying a page fault. Again, this is borne out 
by the queue statistics. For the two runs, 
the ratio of the average lengths of the pag- 
ing queue and the ratio of the average times 
on the paging queue (i.e. the amount required 
to satisfy a page fault) were both 2.9 (aver- 
age length: 7.8 versus 2.7; average time: 
225 ms versus 77 ms). Thus, although the 
larger amount of core allowed a higher degree 
of multiprogramming, this was largely offset 
by longer waits on the paging queue. 

It should be pointed out that both the 
i/2MB and IMB configurations ran with the 
same algorithms. That is to say, no special 
effort was made to take advantage of the 
extra core. Algorithms specifically tailored 
to handle larger core configurations would 
probably have resulted in better performance 
(for example, rather than simply activating 
more tasks, the extra core could have been 
utilized by always keeping a batch task ac- 
tive). However, tailoring software to the 
hardware configuration was not the purpose 
of this study, although it could be said 
that a result of the study is that software 
tailoring must be done to utilize effective- 
ly larger main memory configurations. 

It is interesting to note that the data 
from this simulation study is consistent 
with Denning's theoretical studies (see 
section in (4) entitled "Relations Among 
Processor, Memory, Traverse Time"). In par- 
ticular, Denning shows in (4) that the rela- 
tionship between throughput and traverse 
time (time required to satisfy a page fault, 
i.e. time spent on the paging queue) is 
linear (assuming main memory size is held 
constant). In our study, we observe the 
predicted linear relationship in Figure 4, 
as the number of interactions processed is 
a good measure of throughput (of course, the 
linear relationship holds only while the 
system is paging bound; in the LAM runs, the 
system is I/O bound rather than paging 
bound). Although the curve presented plots 
paging rate, the linear relationship also 
holds for traverse time. For example, in 
the iMB two-drum run and iMB one-drum run, 
the average times on the paging queue (i.e. 
traverse times) were ii0 ms and 225 ms, 
while the number of interactions processed 
were, respectively, 2051 and 1003. 

There is another interesting performance 
result. In all but three of the configura- 
tions, the system was so busy attempting to 
process interactive tasks, that the batch 
tasks never ran. The only configurations 
which allowed batch to run were the LAM, iMB 
case, where batch tasks received 10.0% of 
the CPU; LAM, I/2MB, 1.1% of the CPU; and 
2 drums, iMB, 1.6%. The fact that batch 
tasks did so much better in the LAM, iMB 
run is the reason for the sharp rise in the 
iMB curve of Figure 5. 

These results point out the need for a 
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balanced hardware configuration. Increasing 
the amount of a seemingly critical resource 
may only marginally affect performance, as 
some other resource may now become the bot- 
tleneck (in this case, increasing core has 
caused paging to become a more severe bottle- 
neck). This is also illustrated by the fact 
that the largest improvement from i/2MB to 
iMB was observed in the LAM run (note Figure 
5). Clearly, LAM provides the most balance 
for iMB of core. 

Task Activator "N to l" Algorithm 

The task activator first simulated was 
designed with the aim of providing good re- 
sponse time for interactive tasks. With this 
in mind, the following simple guideline was 
developed: never activate a batch task if 
there is an interactive task awaiting activa- 
tion (i.e. the batch ready queue is examined 
only if the interactive ready queue is empty~ 
Initially, it was felt that this policy would 
not keep batch tasks from getting adequate 
service. However, it has turned out that 
with this algorithm a relatively heavy inter- 
active load can completely lock out batch 
tasks. 

A simple change to the task activator 
can solve this problem. Namely, define a 
parameter N, with the meaning that after ev- 
ery N activations of interactive tasks, acti- 
vate 1 batch task (hence, the so-called N to 
1 algorithm). Note that an activation for 
which there was no competition (i.e. either 
the interactive or batch ready queue was emp- 
ty) is not counted against N (or against the 
i). This is called a free activation. 

The N to 1 algorithm was simulated with 
a load of 20 interactive tasks and 1 batch 
task. Of the 20 interactives, 6 were BASIC 
users with a 15 second think time; 6 BASIC 
with a i0 second think time; 6 paging bound 
tasks; and 2 compute bound. Again, a heavier 
than typical load was simulated, so that a 
backlog on the interactive ready queue was 
guaranteed, showing the full effect of N to i. 

The hardware environment consisted of an 
RCA 3 processor (fixed point add time of 
8.88 us), 64 pages of main memory (i/4MB), 
an RCA 8567 drum, dedicated to paging, and 
two RCA 8590 discs on a single channel, dedi- 
cated to user I/O. 

For various runs, with different values 
of N, Table 4 lists the value of N which was 
input compared with the value of N measured. 
This result indicates that the N to 1 algo- 
rithm was, indeed, working as specified. 
The difference between the input N and mea- 
sured N is due to free activations (see the 
third column of Table 4). Note that only 
interactive tasks received free activations. 
This is because there is only one batch task 
in the system, and when it is waited for a 
time-slice runout, it is delayed by the sys- 
tem before entering the ready queue (see 
Figure i). During this delay, interactive 
tasks can get free activations, since the 
batch ready queue is now empty. On the oth- 
er hand, however, the interactive load is so 
heavy that there are always tasks on the 

interactive ready queue (even in the ~ to 1 
case), preventing the batch task from receiv- 
ing free activations. 

The essential results of the N to 1 study 
are shown in Table 5 and Figures 6, 7 and 8 
(again, ten minute runs, with nine minutes of 
data). Note that N to 1 with N=~ is equiva- 
lent to the original algorithm. The results 
are quite pleasing in that the desired capa- 
bility of biasing system performance toward 
batch or interactive processing was achieved. 
For example, in the 5 to 1 run, while degrad- 
ing response time by 1/3 (12.2 to 16.3), 
batch performance was improved from no ser- 
vice at all to an elapsed running time of a- 
bout 7 times its stand-alone time. The table 
and graphs are self-explanatory. It is inter- 
esting to note that the relationship of batch 
elapsed running time to N is linear(Figure 8). 

Conclusions 

We have presented the results of two sim- 
ulation studies using SIM/61, a detailed sim- 
ulation model of a virtual memory, time-shar- 
ing operating system. The first study has 
yielded some interesting data showing the re- 
lationship of paging transfer capability to 
performance in a paging bound environment. 
Also shown is the effect of two different 
main memory sizes on performance. Generally, 
the results indicate that, without changing 
the software, increased paging transfer capa- 
bility has a more significant effect on per- 
formance than increased core. 

The second study has shown that a minor 
change to the original task scheduling algo- 
rithm permits system performance to be biased 
toward interactive or batch processing, in 
varying degrees. 
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