
SIMULATION STUDIES OF A VIRTUAL MEMORY,
TIME-SHARED, DEMAND PAGING OPERATING SYSTEM

J. Winograd, S. J. Morganstein*, R. Herman**
RCA Corporation, Computer Systems Division

Cinnaminson, New Jersey

Summary

SIM/61 is a large (3500 lines of Sim-
script code), highly detailed simulation
model of a virtual memory, time-shared, de-
mand paging operating system. SIM/61 pro-
vides the capability for parameterized model-
ing of both hardware and software. The
current model contains algorithms for inter-
rupt analysis, task scheduling, I/O schedul-
ing and demand paging.

This paper reports the results of
studies made using SIM/61. The studies fall
into two main categories: (i) load and con-
figuration studies and (2) alternate algo-
rithm studies. The approach taken for the
former was to establish a fixed load, and
measure its performance on various hardware
configurations. The results are particular-
ly interesting with respect to the paging
capability of various paging device config-
urations, and various sizes of main memory.

The alternate algorithm study was con-
cerned with task scheduling. In particular,
it was shown that a minor change to the
original task scheduling algorithm provided
a great deal of flexibility in enabling sys-
tem resource utilization to be biased toward
either batch or interactive processing, and
in varying degrees.

Introduction

This paper reports the results of simu-
lation experiments which were carried out
using SIM/61, a highly detailed simulation
model of a virtual memory, time-shared, de-
mand paging operating system. A brief de-
scription of SIM/61 is provided, while the
reader is referred to (i) for a more de-
tailed discussion of the model. The operat-
ing system simulated is also briefly dis-
cussed.

SIM/61: The Operating System

The operating system modeled is a vir-
tual memory, demand paging system, which
concurrently supports batch and interactive
processing. Definitions and algorithms
relevant to this paper are described below.

*Present affiliation: International Tele-
phone and Telegraph Company
Paris, France

**Present affiliation: Control Data Corpor-
ation
Toronto, Ontario

Task Scheduler

A task is simply any job in the system,
e.g. a batch job spooled in from the card
reader or an interactive user at a TTY. The
three basic task types are interactive,
batch and communications. It is the respon-
sibility of the task scheduler to control
the flow of tasks through the system.

The task scheduler maintains several
queues, for tasks in various states, with
the queues relevant to this discussion being
depicted in Figure i. Note that there are
two distinct ready queues, one for batch
tasks and one for interactive tasks. Various
queue transitions are depicted by the arrows,
with a transition into the ready queues im-
plying that a batch task is placed in the
batch ready queue, while an interactive task
is put in the interactive ready queue. Com-
munications tasks are basically treated like
interactive tasks, with the former having
higher priority, i.e. communications tasks
are linked ahead of interactive tasks on the
interactive ready queue.

Crucial to the task scheduler is the
"activate decision", performed by a routine
known as task activator. Task activator
is guided in its decision making by the
Working Set Principle 2, i.e. a task will be
activated only if its working set size es-
timator is less than or equal to the amount
of unscheduled core. Thus, the essential
ingredient of a task which has been acti-
vated is that core has been committed to it
(although it will utilize its scheduled core
via demand paging). When a task is acti-
vated, it is said to be an active task, and
it must reside on some active queue; similar-
ly, we have inactive tasks on inactive
queues. Note that only the active tasks are
allowed to compete for resources (CPU, peri-
pheral I/O, and paging). The set of active
tasks is what is commonly known as the multi-
programming mix, with the degree of multi-
programming being the number of active tasks.
The system allows a completely variable de-
gree of multiprogramming, where at any point
in time the degree is basically determined
by core size and task sizes.

Pages

Pages are fixed size, viz. 4096 eight-
bit bytes. The system distinguishes be-
tween two types of pages. A task page is a
private, non-shareable page, residing in the
task's virtual memory. An exec page is a
public, potentially shareable page, resid-
ing in the executive's virtual memory

149

(there is a special kind of exec page known
as a shared page). Note that an exec page
is not associated with the task which
suffered the page fault for it. Thus, when
referring to the pages of a task, we mean
its task pages.

SIM/61: The Model

SIM/61 is a large, highly detailed sim-
ulation model, written in Simscript 1.5. It
provides the capability for parameterized
modeling of both hardware and software, with
particular flexibility in the area of simu-
lating various devices and hardware config-
urations.

SIM/61 contains the basic operating
system algorithms for interrupt analysis,
task scheduling, I/O scheduling, and paging.
The paging routines have been particularly
generalized to allow any number of paging
devices, many types of devices, and varying
paging-device/channel configurations.

A load is presented to SIM/61 by de-
scribing any number of classes of tasks,
each class containing a specified number of
tasks. In a given class, the set of tasks
is described by specifying a list of task
characteristics, as follows:

(i) task type: type of task, e.g.
batch, interactive, communica-
tions.

(2) workin@ set size: number of task
pages in the working set.

(3) compute time: for interactive
tasks, the amount of time re-
quired to service each interac-
tion; for batch tasks, a base
time for the other parameters.

(4) think time: total time at the ter-
minal between interactions, in-
cluding type-in and type-out
time (irrelevant for batch
tasks).

(5) IJO interval: interval at which to
initiate a disc I/O.

(6) exec SVC interval: interval at
which to issue a supervisor call
(SVC), requesting a function of
the pageable executive, with
attendant probability of a page
fault for an exec page.

(7) shared page reference interval: in-
terval at which to reference a
shared page, with attendant
probability of a page fault.

(8) virtual memory size: total size
(number of pages) of the task's
virtual memory, i.e. the amount
of backing store it requires.

These parameters serve to define a task,
with task paging behavior assumed to obe[
empirical data gathered by Fine, at. al.5,
as shown in Figure 2 (often called Fine's
curve).

Working
Set Size

Cumulative
of new
page ref-
erences

Task Paging Behavior

f
I

Time Compute
Figure 2 Time

All parameters, except (I) and (8), are
drawn from a normal distribution (with speci-
fied mean and standard deviation) for each
interaction.

SIM/61 simulates the steady state situ-
ation, i.e. the number of tasks remains con-
stant for a given run. This is tantamount
to saying that LOGONs and LOGOFFs are not
simulated.

Experiments

Having provided sufficient background,
we now proceed to the various simulation ex-
periments.

Backin@ Store Study

The purpose of this study is to show
how system performance, in a paging bound
environment, is affected by various main
memory sizes and paging rate capacities.
The approach taken was to establish a fixed,
paging bound load, and run it on several
different hardware configurations, altering
main memory size and paging device config-
uration. The hardware elements remaining
unchanged were an RCA 7 processor (fixed
point add time of 2.25 us) and two RCA 8590
disc storage units (see Table 2) on a single
selector channel, dedicated to user (not
paging) I/O.

The details of the simulated load are
shown in Table i. The load is a heavy inter-
active one, with 64 interactive tasks of
varying types (BASIC users, file edit users,
compute bound executions, I/O bound execu-
tions, paging bound executions). Also, there
are two communications tasks and two batch
tasks. We wish to emphasize that the load
chosen places extremely heavy paging demands
on the system, unrealistic for typical user
environments. This has been done to provide
the paging bound environment fundamental to
the study.

Two main memory sizes were simulated,
viz. 128 pages (i/2MB) and 256 pages (iMB),
along with four paging device configurations:

(i) Two RCA 8580 disc storage units,
each on a separate selector
channel.

(2) One RCA 8567 drum on a selector
channel. The 8567 contains a
single page per track, with ap-
proximately a 3-4 ms "window" be-
tween the end of recorded data
and the beginning of the track.

iSO

(3)

(4)

(Since the 8567 was the initial
paging device simulated, the pag-
ing algorithm was designed for it,
using the window time to set up
and fire the next paging operation,
in an attempt to avoid "missed"
drum revolutions.)
Two 8567 drums, each on a separate
selector channel.
A hypothetical large auxiliary
memory (LAM) (bulk core) on a se-
lector channel.

All paging devices are dedicated to
paging traffic. The hardware characteris-
tics of the various paging devices are shown
in Table 2.

The eight different configurations were
simulated with the standard algorithms.
Thus, the basic paging routine, with the
"window algorithm" designed for the 8567
drum, was also used with the RCA 8580 and the
LAM. Obviously, if a paging routine were
being designed specifically for the RCA 8580
or LAM, one would not employ a window algo-
rithm, since there is no window. However,
we are not particularly concerned with the
actual devices involved, but rather with the
continuum of paging transfer capability.
That is to say, in the graphs presented be-
low, the actual data points can lose their
identity, where we intend one to say "given
paging rate x, performance level y can be
achieved".

The measured performance results are
listed in Table 3 (the data represents nine
minutes of simulated time, as the run was
for ten minutes, with one minute allowed for
"settle down"). Also, three graphs are pre-
sented in Figures 3-5, treating paging rate
as the critical variable, with various per-
formance measures plotted against the pag-
ing rate. The reader is cautioned against
drawing the conclusion that as the paging
rate increases (as a load factor) perform-
ance improves. This, of course, is not the
case (that the heavier the load, the better
the performance). The issue is that we are
paging bound, and as we are given the capa-
bility for increased paging (via superior
paging device configurations), we can de-
crease the "paging boundedness", thus im-
proving performance. (Note that a single,
fixed load was simulated, implying no vari-
ability in the load factor.)

In each graph, two curves were drawn:
one for the i/2MB core size configuration
and one for the iMB case. Figure 3 plots
the average response time for interactive
tasks. Figure 4 plots the number of termi-
nal interactions processed (i.e. the number
of responses given) for the interactive
tasks. Figure 5 plots "user" (non-overhead)
processor utilization.

The reason why the extra core did not
significantly improve performance is easily
understood. In the iMB case, there is 2.6
times the schedulable (i.e. non-resident)
core as in the i/2MB case (208 pages versus
80 pages). Indeed, considering the one-drum
run, the measured queue statistics indicate

that task activator was able to activate 2.6
times as many tasks (the average number of
active tasks was 8.4 versus 3.2). However,
since both runs were paging bound, the larger
number of active tasks in the iMB case caused
a larger average delay to occur when satis-
fying a page fault. Again, this is borne out
by the queue statistics. For the two runs,
the ratio of the average lengths of the pag-
ing queue and the ratio of the average times
on the paging queue (i.e. the amount required
to satisfy a page fault) were both 2.9 (aver-
age length: 7.8 versus 2.7; average time:
225 ms versus 77 ms). Thus, although the
larger amount of core allowed a higher degree
of multiprogramming, this was largely offset
by longer waits on the paging queue.

It should be pointed out that both the
i/2MB and IMB configurations ran with the
same algorithms. That is to say, no special
effort was made to take advantage of the
extra core. Algorithms specifically tailored
to handle larger core configurations would
probably have resulted in better performance
(for example, rather than simply activating
more tasks, the extra core could have been
utilized by always keeping a batch task ac-
tive). However, tailoring software to the
hardware configuration was not the purpose
of this study, although it could be said
that a result of the study is that software
tailoring must be done to utilize effective-
ly larger main memory configurations.

It is interesting to note that the data
from this simulation study is consistent
with Denning's theoretical studies (see
section in (4) entitled "Relations Among
Processor, Memory, Traverse Time"). In par-
ticular, Denning shows in (4) that the rela-
tionship between throughput and traverse
time (time required to satisfy a page fault,
i.e. time spent on the paging queue) is
linear (assuming main memory size is held
constant). In our study, we observe the
predicted linear relationship in Figure 4,
as the number of interactions processed is
a good measure of throughput (of course, the
linear relationship holds only while the
system is paging bound; in the LAM runs, the
system is I/O bound rather than paging
bound). Although the curve presented plots
paging rate, the linear relationship also
holds for traverse time. For example, in
the iMB two-drum run and iMB one-drum run,
the average times on the paging queue (i.e.
traverse times) were ii0 ms and 225 ms,
while the number of interactions processed
were, respectively, 2051 and 1003.

There is another interesting performance
result. In all but three of the configura-
tions, the system was so busy attempting to
process interactive tasks, that the batch
tasks never ran. The only configurations
which allowed batch to run were the LAM, iMB
case, where batch tasks received 10.0% of
the CPU; LAM, I/2MB, 1.1% of the CPU; and
2 drums, iMB, 1.6%. The fact that batch
tasks did so much better in the LAM, iMB
run is the reason for the sharp rise in the
iMB curve of Figure 5.

These results point out the need for a

151

balanced hardware configuration. Increasing
the amount of a seemingly critical resource
may only marginally affect performance, as
some other resource may now become the bot-
tleneck (in this case, increasing core has
caused paging to become a more severe bottle-
neck). This is also illustrated by the fact
that the largest improvement from i/2MB to
iMB was observed in the LAM run (note Figure
5). Clearly, LAM provides the most balance
for iMB of core.

Task Activator "N to l" Algorithm

The task activator first simulated was
designed with the aim of providing good re-
sponse time for interactive tasks. With this
in mind, the following simple guideline was
developed: never activate a batch task if
there is an interactive task awaiting activa-
tion (i.e. the batch ready queue is examined
only if the interactive ready queue is empty~
Initially, it was felt that this policy would
not keep batch tasks from getting adequate
service. However, it has turned out that
with this algorithm a relatively heavy inter-
active load can completely lock out batch
tasks.

A simple change to the task activator
can solve this problem. Namely, define a
parameter N, with the meaning that after ev-
ery N activations of interactive tasks, acti-
vate 1 batch task (hence, the so-called N to
1 algorithm). Note that an activation for
which there was no competition (i.e. either
the interactive or batch ready queue was emp-
ty) is not counted against N (or against the
i). This is called a free activation.

The N to 1 algorithm was simulated with
a load of 20 interactive tasks and 1 batch
task. Of the 20 interactives, 6 were BASIC
users with a 15 second think time; 6 BASIC
with a i0 second think time; 6 paging bound
tasks; and 2 compute bound. Again, a heavier
than typical load was simulated, so that a
backlog on the interactive ready queue was
guaranteed, showing the full effect of N to i.

The hardware environment consisted of an
RCA 3 processor (fixed point add time of
8.88 us), 64 pages of main memory (i/4MB),
an RCA 8567 drum, dedicated to paging, and
two RCA 8590 discs on a single channel, dedi-
cated to user I/O.

For various runs, with different values
of N, Table 4 lists the value of N which was
input compared with the value of N measured.
This result indicates that the N to 1 algo-
rithm was, indeed, working as specified.
The difference between the input N and mea-
sured N is due to free activations (see the
third column of Table 4). Note that only
interactive tasks received free activations.
This is because there is only one batch task
in the system, and when it is waited for a
time-slice runout, it is delayed by the sys-
tem before entering the ready queue (see
Figure i). During this delay, interactive
tasks can get free activations, since the
batch ready queue is now empty. On the oth-
er hand, however, the interactive load is so
heavy that there are always tasks on the

interactive ready queue (even in the ~ to 1
case), preventing the batch task from receiv-
ing free activations.

The essential results of the N to 1 study
are shown in Table 5 and Figures 6, 7 and 8
(again, ten minute runs, with nine minutes of
data). Note that N to 1 with N=~ is equiva-
lent to the original algorithm. The results
are quite pleasing in that the desired capa-
bility of biasing system performance toward
batch or interactive processing was achieved.
For example, in the 5 to 1 run, while degrad-
ing response time by 1/3 (12.2 to 16.3),
batch performance was improved from no ser-
vice at all to an elapsed running time of a-
bout 7 times its stand-alone time. The table
and graphs are self-explanatory. It is inter-
esting to note that the relationship of batch
elapsed running time to N is linear(Figure 8).

Conclusions

We have presented the results of two sim-
ulation studies using SIM/61, a detailed sim-
ulation model of a virtual memory, time-shar-
ing operating system. The first study has
yielded some interesting data showing the re-
lationship of paging transfer capability to
performance in a paging bound environment.
Also shown is the effect of two different
main memory sizes on performance. Generally,
the results indicate that, without changing
the software, increased paging transfer capa-
bility has a more significant effect on per-
formance than increased core.

The second study has shown that a minor
change to the original task scheduling algo-
rithm permits system performance to be biased
toward interactive or batch processing, in
varying degrees.

Acknowledgements

The authors would like to acknowledge the
continuing support of G. Oppenheimer of RCA,
who supplied the original impetus and direc-
tion for the backing store study. Deep ap-
preciation goes to M. Fogel who has spent
many long hours with us analyzing simulation
output. Mr. Fogel has that rare capability
of deriving tremendous insight from raw data.
Thanks go to E. Gloates of RCA, who is cur-
rently directing the SIM/61 effort.

References

(i) Morganstein, S. J., Winograd, J., and
Herman, R., SIM/61: A Simulation
Measurement Tool for a Time-Shared,
Demand Paging Operating System. Proc.
ACM Sigops Workshop on System Perfor-
mance Evaluation (April 1971), 142-172.

(2) Denning, P.J., The Working Set Model for
Program Behavior. Comm. ACM ii, 5
(May 1968), 323-333.

(3) Fine, L.H., Jackson, C.W., and McIsaac,
P.V., Dynamic Program Behavior Under
Paging. Proc. 21st Nat. Conf. ACM,
ACM Pub. P-66, 1966, 223-228.

(4) Denning, P.J., Thrashing: Its Causes
and Prevention. Proc. AFIPS 1968
Fall Joint Computer Conf., Vol. 33,
Part i, 915-922.

152

~w

Z z
O - -

u.i ~.-

w m
> <

-I~ 77
0 ~

9u

g ~ .g

g.

Pq

Q

(33S) 3~1£ 3SNOdS3H 39V~3AV

0 <~

E w
w ~ > <
O E

i O

z z
O - -

. - - 0 0

,o__~
o~

u~
w

g e t

e~

(%) r id3 H 3 s n

ii i
-IN .;

0 <]

z_Z
O ~
p <

Ocm
~>
mum
. j u)
4<

~ w
I11:>

~5

g ° ° ° g g g g g g g g g g ° ° g g g g g g g g g °°
O 0 0

SNOIJ.3VEI3.LNI 30 ~3@tNfIN

9~

g~

g~
g~

153

0

g

~ W ~g
z ~

0 ~ o o

I 8

7

0

O~

CO

h-

t~

o o
0 0 0 0 0 0 0 v 0

SNOII3V~31NI ~0 ~381~N

r ~

u.

~ o~

~ o ~ ~ o

~ o o
=

c

~E

0

< ~ ~

2
(D3S) 3 N I I 3 S N 0 d S 3 ~ 39VN3AV

8

, o

z ~

9
i m

o

Z

>

0

w

u

O W ~
~ Z

~ U O ~

< ~ 8

DOWO

e ~ o o o o o o o
3 M I I 03SdVq3 H3~8

7
L

o
0~

txl

o

Q,

u.

154

~q

_ ~ ~ . ~

z

~ . r ,

o~ ~ ~

~ ~ ~ °~

u

= z

~ ; ~ ~

.~

q .

e .

il ; ~ , ,

o ~
z

<-
>z

155

