
Proceedings of Sixth ACM Symposium on Operatin 9 Systems Principles (November 1977) I17 -124. 

EFFECT OF PROGRAM LOCALITIES ON MEMORY MANAGEMENT STRATEGIES 

Takashi Masuda 
Institute of Information Sciences and Electronics 

University of Tsukuba 
Japan 

Programs tend to reference pages unequally and cluster references to certain pages in short time 
intervals. These properties depend on the tendency of program locality references and program 
phase transitions. The significant effects on system performances arise from the phase transi- 
tion behavior. However, the phase transition behavior of programs has been rarely taken into 
account in the analysis of memory management strategies. This paper investigates the effect of 
the phase transition behavior on the total system performance. For this purpose, an elaborate 
simulation model of the multiprogrammed memory management has been developed for a time-sharing 
environment. The working set strategy and the local LRU strategy are modeled in the simulation 
system. A simple phase transition model and the simple LRU stack model are used as a program 
paging behavior model. Both cases are analyzed where (I) locality variations exist and phase 
transitions occur, and (2) only locality variations exist and phase transitions do not occur. 
The relations between the phase transition rate and the system performance are found in the 
above memory management strategies. 
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i. INTRODUCTION 

In virtual storage systems, memory management 
strategies have a critical effect on system per- 
formance. A number of memory management strategies 
have been proposed and analyzed [3j. These can be 
grouped with respect to two basic strategies of 
partitioning storage: fixed partitioning and vari- 
able partitioning. In fixed partitioning strate- 
gies, a fixed number of page frames is allocated 
to each active task. In variable partitioning 
strategies, the number of allocated page frames 
for each active task varies during program execu- 
tion. 

Programs tend to reference pages unequally 
and cluster references to certain pages in short 
time intervals [6, 7, i0]. Therefore, they can be 
run efficiently in memory spaces considerably smal- 
ler than the program size. These properties depend 
on the tendency of program phase transitions or 
program locality references. Excessive page faults 
occur during program execution when the locality 
set of a phase is not loaded into the main memory. 
Consequently, those variable memory management 
strategies are desirable which estimate a program's 
locality set at any time of execution, and assign 
main memory pages to the program so as to load the 
locality set [3]. Coffman and Ryan [i] analyzed 
the effect of locality variations. They concluded 
that the total memory size required for the vari- 
able partitioning strategies is around 30 percent 
less than that required by the fixed partitioning 

strategies for a given performance level when the 
variation in working set sizes is relatively large. 

As stated in [4], the significant effects on 
system performances will arise from the phase 
transition behavior. Particularly, the effect on 
the variable partitioning strategies with explicit 
correlation to the locality properties of active 
programs, such as a working set strategy, will be 
significant. However, the phase transition be- 
havior of programs has been rarely taken into 
account in the analysis of the memory management 
strategies. 

This paper investigates the effect of the 
phase transition behavior on the total system 
performance. For this purpose, an elaborate 
simulation model of the multiprogrammed memory 
management has been developed for a time-sharing 
environment. A simple phase transition model and 
the simple LRU stack model is used as a program 
paging behavior model [4, 14]. As a representative 
fixed partitioning strategy, the local LRU strategy 
is employed. As a representative variable parti- 
tioning strategy, the working set strategy is 
employed. 

2. SIMULATION MODEL 

2.1 Task states and transitions 

Task states and transitions are shown in 
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fig. i. Since memory management strategies are %o 
be analyzed, only the terminals and paging devices 
are modeled as peripheral devices. There are four 
states: running, ready, pending and blocked. In 
the working set strategy, another state, "pre-load- 
ing", exists when the pre-loading policy is adopt- 
ed. In the pre-loading policy, a task which is to 
be activated stays in the pre-loading state during 
loading of the working set. The ready queue in- 
cludes those tasks which are waiting for cpu serv- 
ice and are in the paging state. The tasks in the 
pending queue are waiting for promotion %o ready 
states due %o the congestion of the multiprogram- 
ming degree. The running, ready and pre-loading 
tasks are called active tasks. Both the pending 
and blocked tasks are called inactive tasks. 

Running ~sk 

~ 1  r~ Ready ~-~~----~ Pending ~ 
aunt s icea O J s,ice over 

~rminat input end 

[ input request,i Btocked ] 

* onty in case of working-set strategy 
Fig. i. Task states and transitions 

For the local LRU strategy, tasks are activat- 
ed to keep the number of active tasks at the maxi- 
mum degree within the number of the main memory 
partitions. The activation candidate task is 
taken from the top of the pending queue. Tasks 
are inactivated when the time slice is over and 
when a terminal input request occurs. 

For the working set strategy, tasks are acti- 
vated %o keep the number of active tasks at the 
maximum degree under the condition thai the sum of 
working set sizes of active tasks does not exceed 
the main memory size. The activation policy of 
the on-demand paging strategy, in which every page 
is loaded individually into the main memory on 
demand, differs from thai of the pre-loading 
strategy, in which the working set is loaded when 
the task is activated. In the pre-loading straiegy, 
a task is activated when the number of free pages 
is greater than the working set size of the acti- 
vation candidate task. The working set size is 
evaluated as the number of referenced pages in the 
window size T of the immediate past virtual time. 
In the on-demand paging strategy, the activation 
policy is more complicated. In this case even if 

the number of free pages is greater than the work- 

ing set size of the activation candidate task, 
some active tasks may not yet have been assigned 
working sets in the main memory. The task can be 
activated when the number of main memory page 
frames minus the sum of the working set sizes of 
the active tasks is greater than the working set 
size of the activation candidate task. 

As for the task inactivation, the transition 
of a ready task to the top of the pending queue 
occurs only in the working set strategy. When all 
main memory page frames are occupied by the working 
sets of active tasks and the running task requests 

an allocation of a free page frame, the ready task 
most recently activated is inactivated. It is 
then placed at the top of the pending queue to 
supply pages to be paged out. 

Those pages which have never been changed 
during their lifetime in the main memory do not 
need %o be actually transferred %o the secondary 
memory in case of page out. The probability thai 
a page is changed in the main memory is reported 
to be about 33~ in the steady state measurements 
made at the computer center of the University of 

Tokyo [8 3. That is, 67% of paged-out candidate 
pages are not actually transferred. Since it is 
expected that the value does not vary so greatly 
in each environment, this value is used in our 
simulation model. In case of the pre-loading 
strategy, however, all paged-out candidate pages 
are actually transferred in order to load the 
whole working set from the contiguous area of the 
secondary memory at the next loading time. 

2.2 Model of user program behavior 

A program's behavior can be characterized in 

terms of its residence in localities of various 
sizes and lifetimes, and the transitions between 
these localities [4, 9, 14]. Then a program's 
behavior model consists of two parts: the model of 
the phase transition behavior and the model of the 
reference pattern within each phase. 

Madison and Batson [9] proposed the concept 
of a locality through a formal definition of what 
constitutes a phase of localized reference behav- 
ior, and gave a corresponding mechanism for the 

detection of localities in actual reference 
strings. They defined a phase as a maximal inter- 
val in which LRU stack distance does not exceed i 
and every one of the i top stack objects is ref- 
erenced at least once. They concluded that pro- 
grams do not gradually drift between localities, 
but rather that program execution can be modeled 
as a sequence of residencies in fairly long-lived 
stable phases and that the transitions between 

these phases can be fairly disruptive. 

Denning [4, 14] tried to model these phase 
transition behaviors using as few parameters as 
possible. He assumed (i) that the holding time 
distribution in a locality was state independent, 
(2) that the type of observed locality distribu- 
tion, together with its mean and standard devia- 
tion, was given, and (3) that at a phase transi- 
tion, a locality set is entered with a fixed pro- 
bability, irrespective of the previous phase. 
These choices require 2n+l parameters %o model the 
program behavior of the n locality sets. His 

conclusion is that the proposed simple phase 
transition model is capable of reproducing known 
properties of program lifetime functions. 

As a phase transition model we use essential- 
ly the same model as proposed by Denning [4]. We 
simplify the model for our simulation as follows. 

The holding time distribution in a locality 
is state independent and is assumed as a uniform 
distribution. The mean of the holding time dis- 
Jr%but%on corresponds %o the mean duration of a 
phase. The standard deviation of the distribution 
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is assumed small so as to make the simulation 
environments as stable as possible. 

The phase transition sequence of a program is 
assumed to be predetermined. When a phase transi- 
tion occurs, the next phase is determined from the 
predetermined sequence• In the preliminary experi- 
ment we used the same phase transition model as 
proposed above by Denning• However, if a phase is 
selected probabilistically independent of the pre- 
vious phase, the effect of selected phases on the 
system performance is large in each case of simula- 
tion, because of the limited simulation time. Then 
we decided to use the predetermined phase transi- 
tion sequences. 

For the program model within a phase, the sim- 
ple LRU stack model is used [12, 14 3" Five pro- 
grams were selected which operated under the 
HITAC8700/8800 virtual memory computer system [i~ , 
and the stack distance probabilities were obtained 
within the range where the page reference patterns 
are stable. The maximum stack distances of the 
programs are 24, 14~ 34, 13 and 28. The probabili- 
ties qO that pages not included in LRU stacks are 
referenced are O, 4.11xi0-5, 0, O.19xlO-5, and 
O.38xi0 -5 respectively. 

Each of these five programs is considered to 
express a program phase. These phases are called 
phase 1 7 phase 2~ ... , and phase 5 respectively 
hereafter. During program execution, when a phase 
change occurs, following page requests use the set 
of stack distance probabilities for a new program 
phase. The pages referenced by previous program 

phases are kept in the main memory as long as they 
are in the working set of window size T in the 
working set strategy, and are replaced by other 
pages in the local LRU strategy. 

The execution steps between page faults are 
calculated from the SLRU stack probabilities when a 
model program is executed in a given memory size 
[123 . When the most recently referenced j pages of 
a program exist in the main memory, the probability 
Qj that the next memory reference will cause a page 
fault is given by 

P 

Qj = Z qi + qo 
i=j+l 

where qi is the i-th element of the SLRU stack, and 
p is the maximum stack depth• The number of memory 
references r between page faults can be sampled 
from a geometric distribution with the mean i/Qj. 
Then r can be found by 

log a - 1 ~ r < log log(1-Qj) log(1-Qj) 

where ~ is randomly sampl~d from a uniform distri- 
bution [O, 1 1 . The execution steps between page 
faults can be obtained by multiplying r by a con- 
stant which is the ratio of the number of instruc- 
tion memory references to the total number of 
memory references• 

2.3 CPU time usage model 

It is important to get the usage distribution 
of cpu time which each user program uses during 
an interaction. An interaction is defined as an 
interval between the time when a user finishes an 
input line and the time when the user's program 
requires input again. The cpu time used in the 
model was measured at the computer center of the 
University of Tokyo [8]. If the mean processing 
time per instruction is assumed to be 1.0 ~sec~ 
the average cpu time used for an interaction is 
348.9 msec. The standard deviation is 693.6 msec, 
and the median is 74.9 msec. 

2.4 Other conditions and environments of simula- 
tion 

The think time distribution of the above sys- 
tem is used for the user's behavior at terminals. 
The average is 26.5 sec~ the standard deviation is 
38.6 sec, and the median is i0•0 see. 

Most analyses to date do not account for the 
time spent executing the operating system. 
However, especially in a time-sharing system, the 
time spent in the user program in an interaction is 
usually short and the paging rate tends to be high. 
The operating system execution time has a great 
effect on the total system performance. Some exe- 
cution steps in the model are described. 

It is assumed that iK or 3K steps are needed 
for page fault handling according to whether 
available pages exist or not when a page fault 
occurs• Task inactivation is assumed to be 15K 
steps on the average. Terminal input requests are 
assumed to necessitate 2OK steps, where input re- 
quest handling and character editing are assumed 
to take 5K steps. Task activation is considered 
to take 200 steps for on-demand paging policy 
where only the task state change handlimg is nec- 
essary, and 15K steps for pre-loading policy where 
the swapping-in of the working set is necessary. 
The execution steps for task activation decision 
are also considered• The time necessary to calcu- 
late the working set size of the activation candi- 
date task is assumed to be 200 steps~ and the one 
for each active task is assumed to be IO0 steps. 

Since the purpose of this work is to analyze 
the characteristics of memory management policies, 
the system resource which has an essential effect 
on the total system performance should be the main 
memory. After some trial-and-error experiments 
were performed satisfying the condition, the fol- 
lowing environment has been employed: 

(i) cpu speed ~ i~ sec/instruction. 
(2) Main memory size~ 80 page frames for user 

area. 
(3) Paging drums are used as paging devices, 

which have the following characteristics; 

• iO sectors/band, 4096 bytes/sector. 
• mean access time ~ 10.3 msec. 
• transfer rate~ 2 msec/4096 bytes. 

(4) Two paging channels are assumed. 
(5) The real time intervals of 660 seconds are 

simulated, and measurements are collected beginn- 
ing at the point where 60 seconds have passed in 
the simulation system. 
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3. SIMULATION RESULTS program 2 is active, no other user tasks are acti- 
vated. 

5.i Effect of window size 

First the basic properties of the memory man- 
agement strategies are investigated. For this pur- 
pose, it is assumed that phase transitions during 
program execution do not occur. Each program re- 
quests pages according to the set of stack distance 
probabilities for one of the model program phases. 

Window size is the most important control 
parameter in the working set strategy. When window 
size is too small, the number of page frames allo- 
cated to each active task becomes insufficient, 
causing the thrashing phenomena. When the window 
size is too large, many pages not referenced in the 
near future reside in the working set and the mul- 
tiprogramming degree decreases. 

W h e n  the window size is too large, two kinds 
of p a g e s  with the possibility of not being refer- 
enced in the near future will be included in the 
working set. One type is caused by the properties 
of locality reference or phase transition. When a 
phase transition occurs, many pages of the past 
locality sets will reside in the working set for a 
long time if the,window size is large. The other 
type is caused when a program requests new data 
pages with high probability, which become unneces- 
sary in a short time interval. 

The effect of window size on average response 
time is shown in fig. 2 when the number of users is 
80. As window size is decreased to around lOK in- 
struction steps, response time increases rapidly, 
and the thrashing phenomena occur. When the window 
size increases to approximately 106 instruction 
steps, then the response time again increases in 
spite of no phase transitions in user programs. 
This is because three model programs out of five 
request pages not contained in LRU stack at fixed 
probabilities qo, even after the number of page 
frames allocated becomes greater than the maximum 
stack depth. In the model program 2, for instance, 
the average working set size is calculated as 71 
pages, when the window size is lO 6 instruction 
steps. Consequently, when a user task of the model 
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Fig. 2. Effect of window size on responsiveness 
when no phase transitions occur 

Main memory size: 80 page frames 
LNumber of users: 80 users 

In this example, the responsiveness is satis- 
factory for window sizes between 3OK and 3OOK 
instruction steps. Any window size will be allow- 
ed in this range. It is a great advantage that 
the range of available window sizes is wide. 

3.2 Comparison of the local LRU strategy with 
the working set strategy 

The average response times for the local LRU 
and working set strategies are found as a function 
of user number in fig. 3, when no phase transi- 
tions are assumed to occur during program execu- 
tion. Simulation of the local LRU strategy was 
carried out for the partitioning numbers of the 
main memory equal to one to five. The average 
response time is optimal when the partitioning 
number is two. When the partitioning number 
equals one or two, the number of allocated page 
frames to a task is larger than the maximum stack 
depth of model programs. When the main memory is 
partitioned into three, two programs out of five 
have a maximum stack distance greater than the 
number of allocated page frames. The thrashing 
phenomena are observed when the partitioning num- 
ber is four or five. The average response time is 
extremely long and cannot be expressed in fig. 3. 
As shown in the example, the partitioning number 
is egsential to total system performances. In 
actual systems, it will be almost impossible to 
decide an iaeal partitioning number since locality 
set size differs among users and varies during a 
program execution. The defects of the fixed par- 
titioning strategy have been clarified in fig. 3. 
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The results of two variations in working set 
strategies are investigated; on-demand paging 
strategy and pre-loading strategy. The advantages 
of the pre-loading strategy are twofold. One is 
the possibility of improving the utilization rate 
of paging channels. This is because pages belong- 
ing to the working set can be transferred from 
consecutive sectors by one input request. The 
other is the possibility of decreasing the paging 
rate to reduce execution time of page fault handl- 
ing programs. The disadvantage of pre-loading is 
that some pages may not be referenced at all after 
the working set is loaded. Therefore, the pre- 
loading strategy is advantageous when the page 
reference patterns of user programs are stable or 
the phase transition rate is low. 

Figure 3 shows that the average response time 
of the pre-loading strategy is much better than 
that of the on-demand strategy, since no phase 
transitions are assumed for user programs. The 
average response time is about 5 sec for 80 users 
with the on-demand strategy, and for ii0 ~ 120 
users with the pre-loading strategy. The mean 
execution instruction steps between page faults are 
7K steps and 7OK steps respectively. 

Comparing the working set strategy with the 
local LRU strategy, the response time of the work- 
ing set strategy with the on-demand paging policy 
is almost always 20% better than that of the local 
LRU strategy with the partitioning number equal to 
two. 

3.3 Effect of phase transitions 

The effect of phase transitions in user pro- 
grams is considered. If phase transitions occur 
very frequently, any memory management strategies, 
which estimate the locality set, will be useless. 
In the actual systems, however, memory management 
strategies estimating the locality set are known 
to have positive effects on system performance, 
even if phase transitions occur. 

The phase transition model is assumed to be 
the model described in 2.2 Each user program exe- 
cutes one of the five model program phases during 
a lifetime of the phase, and then selects another 
program phase for execution. The lifetime of a 
phase is designated as the phase duration. The 
effect of the phase duration on average response 
time is shown in fig. 4, when the number of users 
is 60 and the main memory size is 80 pages in the 
working set strategy of the on-demand paging 
policy. As the rate of phase transitions in- 
creases, responsiveness deteriorates rapidly, and 
in particular, becomes more sensitive %o changes 
in window size. This is because when the rate of 
phase transitions is high, many unused pages are 
included in the working set as window size in- 
creases, and the multipTogramming degree decreases. 

Some detailed measurements representing system 
behavior are shown in fig. 5 in the above cases 
when the phase transition occurs every 105 instruc- 
tion steps and 108 instruotion steps. When a phase 
transition occurs every 105 instruction steps, the 
multiprogramming degree goes down rapidly as window 
size increases, and the paging and channel idle 
rate increases. Responsiveness deteriorates rapid- 
ly as window size increases over 105 instruction 
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Fig. 4. Effect of the phase transition rate 
on responsiveness 

Main memory size: 80 page frames 
Number of users: 60 users 

steps. In comparison, when a phase transition oc- 
curs every 108 steps, which means thai actually no 
phase transition occurs during simulation, the 
multiprogramming degree decreases gradually as 
window size increases. As explained earlier, this 
is because some model program phases request pages 
not included in their LRU stacks at fixed probabi- 
lities qo, and the working set size increases slow- 
ly. The rapid decrease in the multiprogramming 
degree for window sizes up to 30K steps shows that 
about 30K steps are necessary %o reference the 
whole working set of a program phase. 

As shown above, the range of feasible window 
sizes becomes narrower when phase transitions 
exist. Window size should be as small as possible, 
so as not to include unnecessary pages in the work- 
ing set, but large enough to include the locality 
set of a program phase. In fig. 5, the feasible 
window size range should be between 3OK and 5OK 
instruction steps. 

While phase transitions occur, working set 
size increases transiently and many pages of pre- 
vious phases are included in the working set. To 
reduce this undesirable effect, it is useful to 
control the maximum number of pages allocated to a 
task. This mechanism is also useful for preventing 
the programs with extremely large working set size 
from reducing total system performance. The effec- 
tiveness of the maximum page allocation control on 
responsiveness is seen for the phase transition oc- 
curing every 2OOK steps and 5OOK steps in fig. 6, 
when the number of pages allocated to a task is 
limited to 35 pages. The solid lines indicate 
where maximum page allocation control is not speci- 
fied, and the dotted lines where it is specified. 

121 



(a) 

z 

o~ 

J 

(b) 

IOO 

..--*CHANNEL IDLE 
50 ..... _ ............. - ....... " .......... "" 

.- ~ ~ PAGING IDLE 
~ z r ' ~  USER PROGRAM 

~ ' - ~ " . ~ . f ~  r-,.~._.'n-...~'_~" . . . . .  OPERATING SYSTEM 
.,-"~>-" ""~""" -"'~ PU RE IDLE 

o ~ ~ ~ ,o ~o~o so ,~ 
WINDOW SIZE (XIO 4 INSTRUCTIONS) 

Phase duration = 108 instruction steps 

IDa 

PAGING IDLE 
. ",~,"CHANNEL IDLE 

x~  .t - - -~ ' ' ' ' ' ~ ° ' ' °  
o ~ - × - -  -x. . . . . . . .~. . .  ~ ~ .  O P E R A T I N G  S Y S T E M  

- ~ " ' " ~ " ~  USER PROGRAM 
PURE IDLE 

o-~ ~ ~ ~ ,~ ~o3'o sb 
WINDOW SIZE (XIO 4 INSTRUCTIONS) 

Phase duration = 105 instruction steps 

_J 

W 

~E 

F- 

~E 

w <> 

x 

~ , . ~ _ ~ . ~ . ~ _ _ h % ~ , , ~ p O % ~ x  ~ PD : Phase Duration 

~PD= IO 5 

', ) 5 ; ,'0 2'0 30 5'0 ' Ioo 

WINDOW SIZE ( XIO41NSTRUCTIONS ) 

(c) Multiprogramming level for two cases 

Fig. 5. System c h a r a c t e r i s t i c  measurements of the 
working set strategy 

Main memory size: 80 page frames 
Number of users: 60 users 

The effectiveness of pre-loading policy will 
decrease when the phase transition takes place, 
since the swapping-in probability for unused pages 
becomes high. Figure 7 shows how the phase transi- 
tion effects on the effectiveness of pre-loading. 
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As a phase duration decreases, the responsiveness 
of pre-loading strategy degrades in comparison with 
the on-demand paging strategy. The dotted line 
which gives the optimal responsiveness is the 
result of adopting both a maximum page allocation 
control policy and pre-loading strategy. 
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on the responsiveness of memory 
management strategies 
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steps 

We will mention the performance of the local 
LRU strategy, when the effect of phase transitions 
is taken into account. In the local LRU strategy 
system is controlled without any correlation to the 
locality properties of programs. Then there is'no 
performance degradation due to the estimation fail- 
ure of a locality set. Paging rate will increase 
by the new page requests due to the phase transi- 
tions. Figure 8 shows the effect of phase transi- 
tions on the responsiveness. The responsiveness is 
optimal when the number of memory partitions is 
two. In this case the response time is almost the 
same as that of the working set strategy shown in 
fig. 4. However, since, in the local LRU strategy, 
there is no way to decide the optimal number of 
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memory partitions, and the system responsiveness 
is affected greatly by the number of memory parti- 
tions, it is difficult to use the strategy in 
actual systems. 

4. CONCLUSION 

This paper has analyzed the effect of the 
phase transition behavior of programs on actual 
systems. An elaborate simulation model has been 
developed for time-shared multiprogramming envir- 
onments. As a representative fixed partitioning 
strategy, the local LRU strategy is employed, and 
as a representative variable partitioning strategy, 
the working set strategy is employed. 

In the local LRU strategy, the effect of the 
number of main memory partitions is too large for 
the strategy to be used in actual systems, in both 
cases where phase transitions exist or do not 
exist. 

When the effect of phase transitions is not 
accounted for, the working set strategy seems qui- 
te effective. The feasible range of window size 
is wide and the pre-loading policy improves res- 

ponsiveness. However, as the phase transition 
rate becomes high, the responsiveness of the work- 
ing set strategy degrades rapidly. The range of 
feasible window size becomes narrower. Window 
size should be as small as possible, so as net to 
include unnecessary pages in the working set, but 

l a r g e  e n o u g h  t o  i n c l u d e  t h e  l o c a l i t y  s e t  o f  a p r o -  
gram p h a s e ,  a s  i n d i c a t e d  i n  [ 3 ] .  I n  ou r  e x a m p l e ,  
t h e  f e a s i b l e  window s i z e  r a n g e  s h o u l d  be b e t w e e n  
30K and  50K i n s t r u c t i o n  s t e p s .  The maximum number  
o f  p a g e s  a l l o c a t e d  t o  a t a s k  s h o u l d  be c o n t r o l l e d ,  
so  a s  t o  e x c l u d e  u n n e c e s s a r y  p a g e s  o f  p a s t  p h a s e s  
f r om t h e  w o r k i n g  s e t .  

This paper does not measure the phase transi- 
tion rate of actual programs. Few actual measure- 
ments [9] have been reported regarding the extent 
of the phase transition rates of locality set var- 
iations. More actual system measurements must be 
collected. 

Finally some comments are given for the simu- 
lation programs used. The simulation programs are 
implemented by FORTRAN. Program size is about 4K 
statements for the working set strategy, and 3.3K 
statements for the local LRU strategy. The simu- 
lation speed is about one third of real time, 
using the HITAC 8700 Ill], i.e., the simulation of 
i0 minutes requires about 200 sec cpu time in the 
HITAC 8700. 
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