
Proceedings of Sixth ACM Symposium on Operatin 9 Systems Principles (November 1977) I17 -124.

EFFECT OF PROGRAM LOCALITIES ON MEMORY MANAGEMENT STRATEGIES

Takashi Masuda
Institute of Information Sciences and Electronics

University of Tsukuba
Japan

Programs tend to reference pages unequally and cluster references to certain pages in short time
intervals. These properties depend on the tendency of program locality references and program
phase transitions. The significant effects on system performances arise from the phase transi-
tion behavior. However, the phase transition behavior of programs has been rarely taken into
account in the analysis of memory management strategies. This paper investigates the effect of
the phase transition behavior on the total system performance. For this purpose, an elaborate
simulation model of the multiprogrammed memory management has been developed for a time-sharing
environment. The working set strategy and the local LRU strategy are modeled in the simulation
system. A simple phase transition model and the simple LRU stack model are used as a program
paging behavior model. Both cases are analyzed where (I) locality variations exist and phase
transitions occur, and (2) only locality variations exist and phase transitions do not occur.
The relations between the phase transition rate and the system performance are found in the
above memory management strategies.

Key Words and Phrases: program locality, program behavior, multiprogramming, memory management,
performance evaluation, computer system simulation

CR Categories: 4.3

i. INTRODUCTION

In virtual storage systems, memory management
strategies have a critical effect on system per-
formance. A number of memory management strategies
have been proposed and analyzed [3j. These can be
grouped with respect to two basic strategies of
partitioning storage: fixed partitioning and vari-
able partitioning. In fixed partitioning strate-
gies, a fixed number of page frames is allocated
to each active task. In variable partitioning
strategies, the number of allocated page frames
for each active task varies during program execu-
tion.

Programs tend to reference pages unequally
and cluster references to certain pages in short
time intervals [6, 7, i0]. Therefore, they can be
run efficiently in memory spaces considerably smal-
ler than the program size. These properties depend
on the tendency of program phase transitions or
program locality references. Excessive page faults
occur during program execution when the locality
set of a phase is not loaded into the main memory.
Consequently, those variable memory management
strategies are desirable which estimate a program's
locality set at any time of execution, and assign
main memory pages to the program so as to load the
locality set [3]. Coffman and Ryan [i] analyzed
the effect of locality variations. They concluded
that the total memory size required for the vari-
able partitioning strategies is around 30 percent
less than that required by the fixed partitioning

strategies for a given performance level when the
variation in working set sizes is relatively large.

As stated in [4], the significant effects on
system performances will arise from the phase
transition behavior. Particularly, the effect on
the variable partitioning strategies with explicit
correlation to the locality properties of active
programs, such as a working set strategy, will be
significant. However, the phase transition be-
havior of programs has been rarely taken into
account in the analysis of the memory management
strategies.

This paper investigates the effect of the
phase transition behavior on the total system
performance. For this purpose, an elaborate
simulation model of the multiprogrammed memory
management has been developed for a time-sharing
environment. A simple phase transition model and
the simple LRU stack model is used as a program
paging behavior model [4, 14]. As a representative
fixed partitioning strategy, the local LRU strategy
is employed. As a representative variable parti-
tioning strategy, the working set strategy is
employed.

2. SIMULATION MODEL

2.1 Task states and transitions

Task states and transitions are shown in

117

fig. i. Since memory management strategies are %o
be analyzed, only the terminals and paging devices
are modeled as peripheral devices. There are four
states: running, ready, pending and blocked. In
the working set strategy, another state, "pre-load-
ing", exists when the pre-loading policy is adopt-
ed. In the pre-loading policy, a task which is to
be activated stays in the pre-loading state during
loading of the working set. The ready queue in-
cludes those tasks which are waiting for cpu serv-
ice and are in the paging state. The tasks in the
pending queue are waiting for promotion %o ready
states due %o the congestion of the multiprogram-
ming degree. The running, ready and pre-loading
tasks are called active tasks. Both the pending
and blocked tasks are called inactive tasks.

Running ~sk

~ 1 r~ Ready ~-~~----~ Pending ~
aunt s icea O J s,ice over

~rminat input end

[input request,i Btocked]

* onty in case of working-set strategy
Fig. i. Task states and transitions

For the local LRU strategy, tasks are activat-
ed to keep the number of active tasks at the maxi-
mum degree within the number of the main memory
partitions. The activation candidate task is
taken from the top of the pending queue. Tasks
are inactivated when the time slice is over and
when a terminal input request occurs.

For the working set strategy, tasks are acti-
vated %o keep the number of active tasks at the
maximum degree under the condition thai the sum of
working set sizes of active tasks does not exceed
the main memory size. The activation policy of
the on-demand paging strategy, in which every page
is loaded individually into the main memory on
demand, differs from thai of the pre-loading
strategy, in which the working set is loaded when
the task is activated. In the pre-loading straiegy,
a task is activated when the number of free pages
is greater than the working set size of the acti-
vation candidate task. The working set size is
evaluated as the number of referenced pages in the
window size T of the immediate past virtual time.
In the on-demand paging strategy, the activation
policy is more complicated. In this case even if

the number of free pages is greater than the work-

ing set size of the activation candidate task,
some active tasks may not yet have been assigned
working sets in the main memory. The task can be
activated when the number of main memory page
frames minus the sum of the working set sizes of
the active tasks is greater than the working set
size of the activation candidate task.

As for the task inactivation, the transition
of a ready task to the top of the pending queue
occurs only in the working set strategy. When all
main memory page frames are occupied by the working
sets of active tasks and the running task requests

an allocation of a free page frame, the ready task
most recently activated is inactivated. It is
then placed at the top of the pending queue to
supply pages to be paged out.

Those pages which have never been changed
during their lifetime in the main memory do not
need %o be actually transferred %o the secondary
memory in case of page out. The probability thai
a page is changed in the main memory is reported
to be about 33~ in the steady state measurements
made at the computer center of the University of

Tokyo [8 3. That is, 67% of paged-out candidate
pages are not actually transferred. Since it is
expected that the value does not vary so greatly
in each environment, this value is used in our
simulation model. In case of the pre-loading
strategy, however, all paged-out candidate pages
are actually transferred in order to load the
whole working set from the contiguous area of the
secondary memory at the next loading time.

2.2 Model of user program behavior

A program's behavior can be characterized in

terms of its residence in localities of various
sizes and lifetimes, and the transitions between
these localities [4, 9, 14]. Then a program's
behavior model consists of two parts: the model of
the phase transition behavior and the model of the
reference pattern within each phase.

Madison and Batson [9] proposed the concept
of a locality through a formal definition of what
constitutes a phase of localized reference behav-
ior, and gave a corresponding mechanism for the

detection of localities in actual reference
strings. They defined a phase as a maximal inter-
val in which LRU stack distance does not exceed i
and every one of the i top stack objects is ref-
erenced at least once. They concluded that pro-
grams do not gradually drift between localities,
but rather that program execution can be modeled
as a sequence of residencies in fairly long-lived
stable phases and that the transitions between

these phases can be fairly disruptive.

Denning [4, 14] tried to model these phase
transition behaviors using as few parameters as
possible. He assumed (i) that the holding time
distribution in a locality was state independent,
(2) that the type of observed locality distribu-
tion, together with its mean and standard devia-
tion, was given, and (3) that at a phase transi-
tion, a locality set is entered with a fixed pro-
bability, irrespective of the previous phase.
These choices require 2n+l parameters %o model the
program behavior of the n locality sets. His

conclusion is that the proposed simple phase
transition model is capable of reproducing known
properties of program lifetime functions.

As a phase transition model we use essential-
ly the same model as proposed by Denning [4]. We
simplify the model for our simulation as follows.

The holding time distribution in a locality
is state independent and is assumed as a uniform
distribution. The mean of the holding time dis-
Jr%but%on corresponds %o the mean duration of a
phase. The standard deviation of the distribution

118

is assumed small so as to make the simulation
environments as stable as possible.

The phase transition sequence of a program is
assumed to be predetermined. When a phase transi-
tion occurs, the next phase is determined from the
predetermined sequence• In the preliminary experi-
ment we used the same phase transition model as
proposed above by Denning• However, if a phase is
selected probabilistically independent of the pre-
vious phase, the effect of selected phases on the
system performance is large in each case of simula-
tion, because of the limited simulation time. Then
we decided to use the predetermined phase transi-
tion sequences.

For the program model within a phase, the sim-
ple LRU stack model is used [12, 14 3" Five pro-
grams were selected which operated under the
HITAC8700/8800 virtual memory computer system [i~ ,
and the stack distance probabilities were obtained
within the range where the page reference patterns
are stable. The maximum stack distances of the
programs are 24, 14~ 34, 13 and 28. The probabili-
ties qO that pages not included in LRU stacks are
referenced are O, 4.11xi0-5, 0, O.19xlO-5, and
O.38xi0 -5 respectively.

Each of these five programs is considered to
express a program phase. These phases are called
phase 1 7 phase 2~ ... , and phase 5 respectively
hereafter. During program execution, when a phase
change occurs, following page requests use the set
of stack distance probabilities for a new program
phase. The pages referenced by previous program

phases are kept in the main memory as long as they
are in the working set of window size T in the
working set strategy, and are replaced by other
pages in the local LRU strategy.

The execution steps between page faults are
calculated from the SLRU stack probabilities when a
model program is executed in a given memory size
[123 . When the most recently referenced j pages of
a program exist in the main memory, the probability
Qj that the next memory reference will cause a page
fault is given by

P

Qj = Z qi + qo
i=j+l

where qi is the i-th element of the SLRU stack, and
p is the maximum stack depth• The number of memory
references r between page faults can be sampled
from a geometric distribution with the mean i/Qj.
Then r can be found by

log a - 1 ~ r < log log(1-Qj) log(1-Qj)

where ~ is randomly sampl~d from a uniform distri-
bution [O, 1 1 . The execution steps between page
faults can be obtained by multiplying r by a con-
stant which is the ratio of the number of instruc-
tion memory references to the total number of
memory references•

2.3 CPU time usage model

It is important to get the usage distribution
of cpu time which each user program uses during
an interaction. An interaction is defined as an
interval between the time when a user finishes an
input line and the time when the user's program
requires input again. The cpu time used in the
model was measured at the computer center of the
University of Tokyo [8]. If the mean processing
time per instruction is assumed to be 1.0 ~sec~
the average cpu time used for an interaction is
348.9 msec. The standard deviation is 693.6 msec,
and the median is 74.9 msec.

2.4 Other conditions and environments of simula-
tion

The think time distribution of the above sys-
tem is used for the user's behavior at terminals.
The average is 26.5 sec~ the standard deviation is
38.6 sec, and the median is i0•0 see.

Most analyses to date do not account for the
time spent executing the operating system.
However, especially in a time-sharing system, the
time spent in the user program in an interaction is
usually short and the paging rate tends to be high.
The operating system execution time has a great
effect on the total system performance. Some exe-
cution steps in the model are described.

It is assumed that iK or 3K steps are needed
for page fault handling according to whether
available pages exist or not when a page fault
occurs• Task inactivation is assumed to be 15K
steps on the average. Terminal input requests are
assumed to necessitate 2OK steps, where input re-
quest handling and character editing are assumed
to take 5K steps. Task activation is considered
to take 200 steps for on-demand paging policy
where only the task state change handlimg is nec-
essary, and 15K steps for pre-loading policy where
the swapping-in of the working set is necessary.
The execution steps for task activation decision
are also considered• The time necessary to calcu-
late the working set size of the activation candi-
date task is assumed to be 200 steps~ and the one
for each active task is assumed to be IO0 steps.

Since the purpose of this work is to analyze
the characteristics of memory management policies,
the system resource which has an essential effect
on the total system performance should be the main
memory. After some trial-and-error experiments
were performed satisfying the condition, the fol-
lowing environment has been employed:

(i) cpu speed ~ i~ sec/instruction.
(2) Main memory size~ 80 page frames for user

area.
(3) Paging drums are used as paging devices,

which have the following characteristics;

• iO sectors/band, 4096 bytes/sector.
• mean access time ~ 10.3 msec.
• transfer rate~ 2 msec/4096 bytes.

(4) Two paging channels are assumed.
(5) The real time intervals of 660 seconds are

simulated, and measurements are collected beginn-
ing at the point where 60 seconds have passed in
the simulation system.

119

3. SIMULATION RESULTS program 2 is active, no other user tasks are acti-
vated.

5.i Effect of window size

First the basic properties of the memory man-
agement strategies are investigated. For this pur-
pose, it is assumed that phase transitions during
program execution do not occur. Each program re-
quests pages according to the set of stack distance
probabilities for one of the model program phases.

Window size is the most important control
parameter in the working set strategy. When window
size is too small, the number of page frames allo-
cated to each active task becomes insufficient,
causing the thrashing phenomena. When the window
size is too large, many pages not referenced in the
near future reside in the working set and the mul-
tiprogramming degree decreases.

W h e n the window size is too large, two kinds
of p a g e s with the possibility of not being refer-
enced in the near future will be included in the
working set. One type is caused by the properties
of locality reference or phase transition. When a
phase transition occurs, many pages of the past
locality sets will reside in the working set for a
long time if the,window size is large. The other
type is caused when a program requests new data
pages with high probability, which become unneces-
sary in a short time interval.

The effect of window size on average response
time is shown in fig. 2 when the number of users is
80. As window size is decreased to around lOK in-
struction steps, response time increases rapidly,
and the thrashing phenomena occur. When the window
size increases to approximately 106 instruction
steps, then the response time again increases in
spite of no phase transitions in user programs.
This is because three model programs out of five
request pages not contained in LRU stack at fixed
probabilities qo, even after the number of page
frames allocated becomes greater than the maximum
stack depth. In the model program 2, for instance,
the average working set size is calculated as 71
pages, when the window size is lO 6 instruction
steps. Consequently, when a user task of the model

2O

o 18

m 1 6

m 14

w I 0

z 8 °

m 6
w
a~ 4

2

0 .I I ~ I I 2 ~ 5 II0 I 0 10 510 I I00

WINDOW SIZE (XIO 41NSTRUCTIONS)

Fig. 2. Effect of window size on responsiveness
when no phase transitions occur

Main memory size: 80 page frames
LNumber of users: 80 users

In this example, the responsiveness is satis-
factory for window sizes between 3OK and 3OOK
instruction steps. Any window size will be allow-
ed in this range. It is a great advantage that
the range of available window sizes is wide.

3.2 Comparison of the local LRU strategy with
the working set strategy

The average response times for the local LRU
and working set strategies are found as a function
of user number in fig. 3, when no phase transi-
tions are assumed to occur during program execu-
tion. Simulation of the local LRU strategy was
carried out for the partitioning numbers of the
main memory equal to one to five. The average
response time is optimal when the partitioning
number is two. When the partitioning number
equals one or two, the number of allocated page
frames to a task is larger than the maximum stack
depth of model programs. When the main memory is
partitioned into three, two programs out of five
have a maximum stack distance greater than the
number of allocated page frames. The thrashing
phenomena are observed when the partitioning num-
ber is four or five. The average response time is
extremely long and cannot be expressed in fig. 3.
As shown in the example, the partitioning number
is egsential to total system performances. In
actual systems, it will be almost impossible to
decide an iaeal partitioning number since locality
set size differs among users and varies during a
program execution. The defects of the fixed par-
titioning strategy have been clarified in fig. 3.

uJ
03

bJ

F-

uJ
03
Z
0
a_
o9
w

Fig. 3.

20 WS (window size = I00 Ksleps)
~--× pre-loading ~ /

1 8 o~o on- demand 1 / /

. no. of parfilions = I ..I / /

,o 3# / !
/ /

12 , / / /

]0 / / r / /

,,,~ I Iz~

O L ~ , , , , , , , ,

50 40 50 60 70 80 90 I00 I10 120

NUMBER OF USERS

Comparison of m e m o r y management
strategies when no phase transi-
tions occur

Main memory size: 80 page frames

120

The results of two variations in working set
strategies are investigated; on-demand paging
strategy and pre-loading strategy. The advantages
of the pre-loading strategy are twofold. One is
the possibility of improving the utilization rate
of paging channels. This is because pages belong-
ing to the working set can be transferred from
consecutive sectors by one input request. The
other is the possibility of decreasing the paging
rate to reduce execution time of page fault handl-
ing programs. The disadvantage of pre-loading is
that some pages may not be referenced at all after
the working set is loaded. Therefore, the pre-
loading strategy is advantageous when the page
reference patterns of user programs are stable or
the phase transition rate is low.

Figure 3 shows that the average response time
of the pre-loading strategy is much better than
that of the on-demand strategy, since no phase
transitions are assumed for user programs. The
average response time is about 5 sec for 80 users
with the on-demand strategy, and for ii0 ~ 120
users with the pre-loading strategy. The mean
execution instruction steps between page faults are
7K steps and 7OK steps respectively.

Comparing the working set strategy with the
local LRU strategy, the response time of the work-
ing set strategy with the on-demand paging policy
is almost always 20% better than that of the local
LRU strategy with the partitioning number equal to
two.

3.3 Effect of phase transitions

The effect of phase transitions in user pro-
grams is considered. If phase transitions occur
very frequently, any memory management strategies,
which estimate the locality set, will be useless.
In the actual systems, however, memory management
strategies estimating the locality set are known
to have positive effects on system performance,
even if phase transitions occur.

The phase transition model is assumed to be
the model described in 2.2 Each user program exe-
cutes one of the five model program phases during
a lifetime of the phase, and then selects another
program phase for execution. The lifetime of a
phase is designated as the phase duration. The
effect of the phase duration on average response
time is shown in fig. 4, when the number of users
is 60 and the main memory size is 80 pages in the
working set strategy of the on-demand paging
policy. As the rate of phase transitions in-
creases, responsiveness deteriorates rapidly, and
in particular, becomes more sensitive %o changes
in window size. This is because when the rate of
phase transitions is high, many unused pages are
included in the working set as window size in-
creases, and the multipTogramming degree decreases.

Some detailed measurements representing system
behavior are shown in fig. 5 in the above cases
when the phase transition occurs every 105 instruc-
tion steps and 108 instruotion steps. When a phase
transition occurs every 105 instruction steps, the
multiprogramming degree goes down rapidly as window
size increases, and the paging and channel idle
rate increases. Responsiveness deteriorates rapid-
ly as window size increases over 105 instruction

o i.l.J co

w
I-
uu
o9
z
o
o_
09
uJ
nf

50

25

20

15

I0

/ D : Phase Duration

~,.,~..~,__.~_×~ PD = 5x I0 ~.,.-.- " × / ×

, 2 ' ' , , ' ,

I 3 I 0 20 50 0 I00
WINDOW SIZE (XIO 4INSTRUCTIONS)

Fig. 4. Effect of the phase transition rate
on responsiveness

Main memory size: 80 page frames
Number of users: 60 users

steps. In comparison, when a phase transition oc-
curs every 108 steps, which means thai actually no
phase transition occurs during simulation, the
multiprogramming degree decreases gradually as
window size increases. As explained earlier, this
is because some model program phases request pages
not included in their LRU stacks at fixed probabi-
lities qo, and the working set size increases slow-
ly. The rapid decrease in the multiprogramming
degree for window sizes up to 30K steps shows that
about 30K steps are necessary %o reference the
whole working set of a program phase.

As shown above, the range of feasible window
sizes becomes narrower when phase transitions
exist. Window size should be as small as possible,
so as not to include unnecessary pages in the work-
ing set, but large enough to include the locality
set of a program phase. In fig. 5, the feasible
window size range should be between 3OK and 5OK
instruction steps.

While phase transitions occur, working set
size increases transiently and many pages of pre-
vious phases are included in the working set. To
reduce this undesirable effect, it is useful to
control the maximum number of pages allocated to a
task. This mechanism is also useful for preventing
the programs with extremely large working set size
from reducing total system performance. The effec-
tiveness of the maximum page allocation control on
responsiveness is seen for the phase transition oc-
curing every 2OOK steps and 5OOK steps in fig. 6,
when the number of pages allocated to a task is
limited to 35 pages. The solid lines indicate
where maximum page allocation control is not speci-
fied, and the dotted lines where it is specified.

121

(a)

z

o~

J

(b)

IOO

..--*CHANNEL IDLE
50 _ - " ""

.- ~ ~ PAGING IDLE
~ z r ' ~ USER PROGRAM

~ ' - ~ " . ~ . f ~ r-,.~._.'n-...~'_~" OPERATING SYSTEM
.,-"~>-" ""~""" -"'~ PU RE IDLE

o ~ ~ ~ ,o ~o~o so ,~
WINDOW SIZE (XIO 4 INSTRUCTIONS)

Phase duration = 108 instruction steps

IDa

PAGING IDLE
. ",~,"CHANNEL IDLE

x~ .t - - -~ ' ' ' ' ' ~ ° ' ' °
o ~ - × - - -x.~. . . ~ ~ . O P E R A T I N G S Y S T E M

- ~ " ' " ~ " ~ USER PROGRAM
PURE IDLE

o-~ ~ ~ ~ ,~ ~o3'o sb
WINDOW SIZE (XIO 4 INSTRUCTIONS)

Phase duration = 105 instruction steps

_J

W

~E

F-

~E

w <>

x

~ , . ~ _ ~ . ~ . ~ _ _ h % ~ , , ~ p O % ~ x ~ PD : Phase Duration

~PD= IO 5

',) 5 ; ,'0 2'0 30 5'0 ' Ioo

WINDOW SIZE (XIO41NSTRUCTIONS)

(c) Multiprogramming level for two cases

Fig. 5. System c h a r a c t e r i s t i c measurements of the
working set strategy

Main memory size: 80 page frames
Number of users: 60 users

The effectiveness of pre-loading policy will
decrease when the phase transition takes place,
since the swapping-in probability for unused pages
becomes high. Figure 7 shows how the phase transi-
tion effects on the effectiveness of pre-loading.

uJ
(/3

uJ

u.J
co
Z
o o_ o3 uJ {K

20

15

I0

5

{ - - Normol page nallocation strategy
- - - Max. page ca t ol strategy ~] PD : Phase "\ / 1 °oro''oo

"~ ~ PO - 2 x 105

. PO=

I

I

Fig. 6.

5x lO 5

I i , I ; 3 '0 0 I 2 3 5 I0 20 5 I00

WINDOW SIZE (XlO 4 INSTRUCTIONS)

Effect of maximum page control policy
on responsiveness

Main memory size: 80 page frames
{Number of users: 60 users

As a phase duration decreases, the responsiveness
of pre-loading strategy degrades in comparison with
the on-demand paging strategy. The dotted line
which gives the optimal responsiveness is the
result of adopting both a maximum page allocation
control policy and pre-loading strategy.

uJ
o3

uJ

t-
uJ
o3
z
0
o_
o9
uJ

20

I 0

\

"',,,,,,, ~ k / / / P r e - l o a d i n g and Max.page control

" ' " , , /k~. . / Pre - loading

",, V ~ /
"\., ~... " ~ / O n - demand paging

. - . . ~ ~ , . . . ~ . : . = ~ - -

I
o i

Fig. 7.

I I I r I

PHASE DURATION (XIO s INSTRUCTIONS)

Effect of the phase transition rate
on the responsiveness of memory
management strategies

Main memory size: 80 page frames
{ Number of users: 60 users
Window size: 50K instruction

steps

We will mention the performance of the local
LRU strategy, when the effect of phase transitions
is taken into account. In the local LRU strategy
system is controlled without any correlation to the
locality properties of programs. Then there is'no
performance degradation due to the estimation fail-
ure of a locality set. Paging rate will increase
by the new page requests due to the phase transi-
tions. Figure 8 shows the effect of phase transi-
tions on the responsiveness. The responsiveness is
optimal when the number of memory partitions is
two. In this case the response time is almost the
same as that of the working set strategy shown in
fig. 4. However, since, in the local LRU strategy,
there is no way to decide the optimal number of

1 2 2

40

L)
w

hJ

m

z
o

30

Fig. 8.

20'

PD: Phase Duration

I 0 : ,3 . .~ ~

I 2 3 4

NUMBER OF PARTITIONS
Effect of the phase transition rate
on responsiveness in the local LRU
strategy

Main memory size: 80 page frames
{Number of users: 60 users

memory partitions, and the system responsiveness
is affected greatly by the number of memory parti-
tions, it is difficult to use the strategy in
actual systems.

4. CONCLUSION

This paper has analyzed the effect of the
phase transition behavior of programs on actual
systems. An elaborate simulation model has been
developed for time-shared multiprogramming envir-
onments. As a representative fixed partitioning
strategy, the local LRU strategy is employed, and
as a representative variable partitioning strategy,
the working set strategy is employed.

In the local LRU strategy, the effect of the
number of main memory partitions is too large for
the strategy to be used in actual systems, in both
cases where phase transitions exist or do not
exist.

When the effect of phase transitions is not
accounted for, the working set strategy seems qui-
te effective. The feasible range of window size
is wide and the pre-loading policy improves res-

ponsiveness. However, as the phase transition
rate becomes high, the responsiveness of the work-
ing set strategy degrades rapidly. The range of
feasible window size becomes narrower. Window
size should be as small as possible, so as net to
include unnecessary pages in the working set, but

l a r g e e n o u g h t o i n c l u d e t h e l o c a l i t y s e t o f a p r o -
gram p h a s e , a s i n d i c a t e d i n [3] . I n ou r e x a m p l e ,
t h e f e a s i b l e window s i z e r a n g e s h o u l d be b e t w e e n
30K and 50K i n s t r u c t i o n s t e p s . The maximum number
o f p a g e s a l l o c a t e d t o a t a s k s h o u l d be c o n t r o l l e d ,
so a s t o e x c l u d e u n n e c e s s a r y p a g e s o f p a s t p h a s e s
f r om t h e w o r k i n g s e t .

This paper does not measure the phase transi-
tion rate of actual programs. Few actual measure-
ments [9] have been reported regarding the extent
of the phase transition rates of locality set var-
iations. More actual system measurements must be
collected.

Finally some comments are given for the simu-
lation programs used. The simulation programs are
implemented by FORTRAN. Program size is about 4K
statements for the working set strategy, and 3.3K
statements for the local LRU strategy. The simu-
lation speed is about one third of real time,
using the HITAC 8700 Ill], i.e., the simulation of
i0 minutes requires about 200 sec cpu time in the
HITAC 8700.

ACKNOWLEDGEMENTS

The author gratefully acknowledges many sti-
mulating discussions with Professor M. Hosaka and
Professor S. 0suga of the University of Tokyo dur-
ing the course of this research. The author is
also indebted to Mr. I. 0hnishi and Dr. K. Noguchi
of the Software Works of Hitachi for their coope-
ration in designing simulation environments.

REFERENCES

[i] E. G. Coffman and T. J. Ryan: A Study of
Storage Partitioning using Mathematical Model
of Locality, Comm. ACM, Vol. 15, No. 3, pp.
185-190 (1972).

[2] P. J. Denning: The Working Set Model for Pro-
gram Behavior, Comm. ACM, Vol. ll, No. 5,
pp . 323 -333 (1 9 6 8) .

[3] P. J. Denning and G. S. Graham: Multiprogram-
med Memory Management, Proc. of the IEEE,
Vol. 63, No. 6, pp. 924-939 (1975).

[4] P. J. Denning and K. C. Kahn: A Study of
Program Locality and Lifetime Functions,
Proc. of SIGOPS Conf. SOSP-5, pp. 207-216
(1975).

[5] P. J. Denning, K. C. Kahn, J. Leroudier,
D. Potter and R. Suri: Optimal Muliiprogram-
ming, Acta Informatica, Vol. 7, No. 2,
pp. 197-216 (1976).

[6] D. Ferrari: Improving Locality by Critical
Working Sets, Comm. ACM, Vol. 17, No. Ii,
pp. 614-620 (1974).

[7] D. J. Hatfield and J. Gerald: Program Rest-
ructuring for Virtual Memory, IBM Systems
Journal~ Vol. I0, No. 3, pp. 168-192 (1971).

[8] H. Ishida and M. Nomoto: Graphic Monitoring
of a Large Scale Computer System, Information
Processing Society of Japan, Document of
System Performance Evaluation Meeting, March
(1975).

[9] A. W. Madison and A. P. Batson: Characteris-
tics of Program Localities, Comm. ACM, Vol.
19, No. 5, pp. 285-294 (1976).

~0] T. Masuda, H. Shiota, K. Noguchi and T. 0hki:
Optimization of Program Organization by

123

Cluster Analysis, Proc. of IFIP Congress 74,
pp. 261-265 (1974).

Ill] K. Noguchi, I. Ohnishi and H. Morita: Design
Considerations for a Heterogeneous Tightly-
Coupled Multiprocessor System, Proc. of NCC,
Vol. 44, pp. 561-565 (1975).

[12] H. 0pderbeck and W. W. Chu: Performance of the
Page Fault Frequency Algorithm in a Multipro-
grammed Environment, Proc. of IFIP Congress
74, pp. 235-241 (1974).

[13] J. H. Saltzer: On the Modeling of Paging
Algorithms, Comm. ACM, Vol. 19, No. 5,
pp. 307-308 (1976).

[14] J. R. Spirn and P. J. Denning: Experiments
with Program Locality, Proc. of FJCC, Vol.
41, pp. 611-621 (1972).

124

