
ON THE STRUCTURE
AND CONTROL OF COMMANDS

(One man's data are
another man's command)

C.J. Stephenson,*
Stanford University

ABSTRACT

An interactive command language, with its underlying data, defines a command
environment. In general a command environment supports a number of commands
which once issued perform non-interactively, and which when finished leave
the old command environment in control. It also supports some special
commands which move to other command environments, after which commands are
interpreted according to a different set of rules.

The usefulness of a command environment can be extended by programming it,
i.e. by dynamically constructing and conditionally executing sequences of
its commands; but, unlike a programming language, a command language does
not usually contain any general-purpose variables or means for conditional
execution. These facilities can however be provided by a command control
language, which makes it possible to construct sequences or commands to be
issued to the currently active command environment from a program.

A command control language is described, and the usefulness, limitations and
repercussions of command language programming are discussed.

i. INTRODUCTION

Advances in computer languages during the past 15
years have not generally been reflected in command
and control languages. Those in common use are
for the most part primitive and awkward. Perhaps
this situation exists because the command and
control language interpreters are usually an
integral part of shared computer systems; so that
stability has been required, development has been
difficult, and people who have had an interest in
changing or extending them have seldom been able
to do so. The advent of single-user systems
running in virtual machines has, however,
presented the opportunity freely to modify all
parts of the system, and thereby to experiment in
this area.

This paper presents a modular command
language structure, and a control language for
commands. The control language resembles the EXEC
language of the IBM Conversational Monitor System
(CMS), but is not equivalent to it. Finally we
consider the repercussions of command language
programming on the design of the system.

* Present address: IBM, Thomas J. Watson Research
Center, Yorktown Heights, N.Y.

2. COMMAND LANGUAGE STRUCTURE

In this section we describe a modular command
language structure, together with a hypothetical
operating system environment in so far as it is
visible at the command language level. The
description that follows sets the stage for the
rest of the paper, and also serves to draw
attention to certain aspects of interactive
systems which seem often to be left not clearly
explained.

In what follows, we assume the existence of a
file system which is external and static. By this
we mean that it is accessible from all processes,
and the data in it have a life which is terminated
only by explicit erasure.

2.1 Interaction

We consider an operating system which is
designed to be interactive. Input from the user
is obtained from a typewriter-like keyboard;
output may be printed on a typewriter-like device,
or presented on a video display. The user's
primary input-output device (whatever its exact
form) is called the console.

22

2.2 Commands~ Command Languages~ and
Command Environments

At any stage during the course of a user's
transactions, his input is examined and acted upon
by the program receiving it. This program is said
to support the active command environment. The
user may move around between command environments
by giving special commands which set up a new
command environment, or revert to a previous one.

For example, the initial exchanges with a
system are usually concerned with 'logging in'.
To start with the user talks to the LOGIN routine,
which may support only a single command (say
LOGIN). When that command has been correctly
given, the user enters a new command environment
(say SYSTEM) which supports a series of commands
(but not LOGIN).

A command environment is defined by a command
language, together with underlying data. The
command language is executed and defined by a
command language interpreter, of which there is at
least one associated with every interactive
program. The nature of the underlying data
depends upon the semantics of the command
language. For example, the LOGIN command language
may define the command 'LOGIN user-name', and the
underlying data (the list of users) define the
possible values of 'user-name'. These two
together define the command environment. For
another example, consider an interactive editor,
in which the command language defines the
operations that can be performed, and the
underlying data comprise the text of the file
being edited.

Note that, according to these definitions, it
is only interactive programs which support command
environments. This will be a convenient
restriction for our purposes (but see Section
5.4). An interactive program is defined to be one
which obtains its own input from the console.
Thus a program which is invoked as a result of
issuing a command from the console is not
necessarily itself an interactive program: it is
so only if it obtains additional console input,
beyond that given to it in the command.

Commands are given in the form of a
logical line, which will often correspond to a
physical line (i.e. an entry terminated by
carriage return). Depending on the command
environment, a line may go under the name command,
request, statement, etc. Here we shall for the
most part use the terms command and command line,
which have the desired connotation of immediacy.
As a general rule, the first word of a command is
the name of the program or routine to be executed
(or an abbreviation or synonym for it); and the
remainder of the command line comprises its
parameter list. (According to these conventions,
a more appropriate name for the LOGIN command
mentioned above would be SYSTEM, since this is the
command environment which is entered as a result
of issuing the command.) Here, and in what
follows, a word is any string of contiguous
non-blank characters. Words are separated from
each other by at least one blank.

A command language interpreter, in its
simplest form, merely reads command lines,
delimits the first word, identifies the
corresponding program or routine, and passes
control to it, along with access to the remainder
of the command line. A command, once its name has
been identified, is executed unconditionally. By
this is meant that control is unconditionally
passed to the program or routine that implements
the command. It is of course permissible for the
program or routine to decide, on the basis of its
parameter list, or from other data, that it should
in fact do nothing, i.e. that it should simply
return control to the command environment from
which it was invoked.

A parameter list may contain literal data,
may refer to objects or collections of data by
name, or may elaborate on the function to be
performed. An example of literal data are the
words 'HELLO THERE' in the command:

MESSAGE OPERATOR HELLO THERE .

An example of an 'object' referred to by name is
the word 'OPERATOR'; and an example of a
collection of data referred to by name is the word
'PROG' in the compile command:

ALGOL PROG .

Finally, the word 'ALGOL' is an example of
function elaboration in the following command for
background compilation:

BATCH ALGOL PROG .

Except in the case of literal data, a parameter
list is treated strictly as a sequence of words,
i.e. multiple blanks are equivalent to a single
blank.

Suppose (following the example above) that
the primary command environment is called SYSTEM.
Its command language is the SYSTEM command
language, and its underlying data include the
user's file directories. From this command
environment, programs which reside on file can be
invoked by typing their name as the first word of
a command. Most of these programs probably do not
involve any further interaction, i.e. they perform
some action on the data (such as erasing a file
from the directory) and return control to the
SYSTEM command environment. In this case SYSTEM
remains the active command environment. Some
however may themselves be interactive, and support
their own command environments: examples are
editors, debugging programs and query systems.
The invocation of one of these will cause the
SYSTEM command environment temporarily to become
'dormant', and activate a new command environment
defined by the program now in control. A
'dormant' command environment has the potential
for being 'reawakened' later, when one of the
subsequent environments is terminated.

At any time, the user has the ability to
communicate directly only with the active command
environment; however, this command environment
will usually support at least one special command
which terminates it; and will often support some
other special commands which explicitly activate

23

Dial
computer

Iogin cjs I,

ENVIRONMENT ii

I (disconnect

SYSTEM COMMAND ENVIRONMENT
I
I

3 rasef i lew e d t f d e x

j i
I I
I I

I
(erase file y) I I ... return I

,f i T , I

EDIT COMMAND ENVIRONMENT I ii
B

i
I

~elete 2 system erase file y system J
I

Figu re 1. Example of interactive session, showing movement between command environments.

i , I i
I I I I
I i I I
Ilinput I I edit file z I

INPUT

... (null line)

EDIT
C O M M A N D
ENVIRONMENT

. quit

i
I
I
I I return

i
I
I
I
!quit

other command environments, or which pass a single
command to another command environment. The rules
for moving between command environments define the
possible hierarchies of command environments.

2.3 Examples

Consider the following scenario, illustrated
in Figure i.

(a) The user is talking to SYSTEM, and types
'ERASE FILE W'. This command invokes a
non-interactive program called 'ERASE' which
erases FILE W and returns control to the SYSTEM
command environment.

(b) The user is talking to SYSTEM, and types 'EDIT
FILE X'. This command invokes an interactive
program which sets up its own command environment,
called 'EDIT'. This becomes the active command
environment until the user gives one of the
special edit commands which is concerned with a
further change of command environment. SYSTEM,
meanwhile, becomes dormant.

(c) The user is talking to EDIT, and types
'DELETE 2' This is in the same class as (a)
above. The command invokes a non-interactive edit
routine called 'DELETE' which deletes two lines
from the file and returns control to the EDIT
command environment.

(d) The user is talking to EDIT, and types
'SYSTEM ERASE FILE Y'. There is (let us suppose)
a special edit command 'SYSTEM' which, when issued
with a parameter list, passes its parameter list
as a command to the dormant SYSTEM command

environment. Thus the command 'ERASE FILE Y' is
issued via SYSTEM, which then returns control to
EDIT. EDIT remains the active command
environment, since there is no interaction with
the SYSTEM command environment.

(e) The user is talking to EDIT, and types
'SYSTEM' alone. This (we shall suppose)
reactivates the dormant SYSTEM command
environment, making EDIT dormant. Further
commands are received and acted upon by SYSTEM (or
its descendants). The command 'ERASE FILE Y' (for
example) could now be issued without the prefix
'SYSTEM'. More usefully, system commands could be
given to modify the file directory access, so that
the editor could then get at additional files.
Finally, the user types 'RETURN': this is a
special system command which makes SYSTEM dormant
again and reactivates the command environment from
which it was invoked (in this case EDIT).

(f) The user is talking to EDIT, and types
'INPUT'. This causes the editor to enter a new
mode in which it receives an indefinite number of
lines for insertion into the file, until a null
line is entered which causes return to EDIT.
INPUT mode can be thought of as a degenerate
command environment in which all non-null lines
are deemed to be preceded by the word 'INSERT',
and in which a null line means 'return' The
INPUT command is (then) in the same class as (b)
above, i.e. it activates a new command environment
and causes the previous one to become dormant.

(g) The user is talking to EDIT, and types 'EDIT
FILE Z'. This is a special edit command which
invokes the editor recursively, activating a new

24

instance of the EDIT command environment, with (in
this example) a different file to be edited.
Subsequent commands will be received and acted
upon by the new instance of the EDIT command
environment (or its descendants) until the
previous instance is reactivated.

(h) The user is talking to EDIT, and types
'QUIT'. This is a special edit command which
terminates the active instance of the EDIT command
environment and reactivates the command
environment from which it was set up (e.g. EDIT or
SYSTEM).

Note that the non-interactive programs ERASE
and DELETE could have been written to be
interactive: typing 'ERASE' alone could for
example enter a command environment which reads a
list of file names to be erased. Similarly, the
interactive programs EDIT and INPUT could have
been written to be non-interactive: typing 'EDIT
FILE X DELETE 2 QUIT' could for example accomplish
a small editing operation without involving any
further interaction. Whether a particular program
should set up a command environment is ultimately
a matter of convenience and taste.

2.4 Additional Notes on Command Environments

i. By convention, the identity of the active
command environment can in most cases be
ascertained by entering a null line, to which the
command environment responds by displaying its
name.

2. In command environments generally, command
lines are treated literally, in the sense that
there is no replacement of any part of the command
line by substitution or expansion.

3. In the cases illus~_=ted above, the command
environments behave analogously to subroutines,
i.e. they can be activated ('be called'), in some
cases they can activate others ('call'), and they
can be terminated ('return'). They do not,
however, necessarily behave in this way, as can be
seen from the following example:

P0: BEGIN;
CALL PI; /* ACTIVATE E1 */
CALL P2; /* ACTIVATE E2 */

END.

The program P0 consists simply of an invocation of
an interactive program Pi which supports a command
environment El, followed by an invocation of a
second interactive program P2 which supports a
command environment E2. If P0 is invoked, from
(say) command environment E, then E1 is activated,
E becoming dormant. When E1 is terminated,
however, activation is not returned to E, but is
passed to E2.

4. In the above discussion, command environments
have been classified as active, dormant or (by
implication) not activated. It turns out that the
difference between dormant and not activated is
difficult to define with precision except in terms
of the implementation: in some situations it may
be impossible to distinguish functionally between
reactivation of a dormant command environment and

activation of a new one. This distinction is not
however crucial: the essential difference is
between active and not active.

5. Syntactically, an interactive 'session' can
be expressed as follows.

<session> ::= <conversation>
I <session> <conversation>

<conversation> ::= <talk> <special command>

<talk> ::= <null>
I <talk> <command>

A 'conversation' is a sequence of commands issued
to a single command environment. A 'special
command' causes a transfer to a different command
environment, and thereby suspends or terminates
one conversation and starts another.

6. The syntax rules for commands, which have
been described above in terms of words and lines,
together with the absence of substitution or
expansion in the command line, have been given in
order to establish a definite picture of what is
going on. The main ideas of this paper could be
adapted to situations in which these rules did not
apply.

7. We may note, in passing, that the modular
command structure described here, giving clear
separation of command environments, has several
advantages over alternatives in which the
separation is less rigorous.

(a) An indefinite number of interactive
programs can be added to the system without
restricting the commands they may use. There
is no danger of their command names clashing
and interfering with others in the system,
since the commands of a program are
recognized only when that program is the one
which receives them.

(b) Good diagnostic messages can be given in
the event of an invalid command being issued,
since there is no ambiguity over the command
environment to which the command was issued.

(c) A new user, armed with the description
of an interactive program (such as an editor)
can be confident that he has a complete
description of his environment, provided only
that he does not explicitly move outside it.

2.5 Input Buffer

There is in the system an input buffer in
which an arbitrary number of logical lines, or
command lines, can be deposited. It is under
program control. All console input is obtained by
way of a system routine which reads an actual line
from the console only if the buffer is empty;
otherwise it returns (and removes) a line from the
buffer. We shall consider the case in which the
buffer acts as a push-down stack, i.e. the last
line entered is the first to be removed.

The input buffer can play a useful part in
communications between command environments, for

25

it can be used for the deposit of lines or

messages from one command environment, to be read
at a later time when another command environment
is in control.

By these means it is possible to initialize
one command environment by stacking lines from
another, or to modify the rules for transferring
between command environments. Consider, as a
trivial example, the program P0 given above.
Suppose that the program P2 stacked a line reading
'PO' during its termination, just prior to its
returning control to P0. This line would read by
E, in lieu of the next command from the console,
and (we may assume) would cause the reinvocation
of P0, and hence the reactivation of El, and then
E2, and so on.

2.6 Return Codes

Every command, in every command environment,
finishes with a return code. This is for
simplicity an integer, is passed back to the
command environment from which the command was
issued, and conveys success (if appropriate) or
the type of failure. The command environment may
choose whether or not to display the return code.
The following are hypothetical return codes for
two system commands which have already been used
as illustrations.

ERASE 0 - file successfully erased
1 - syntax error in parameter list
2 - file does not exist
3 - file cannot be erased
4 - I/O error when erasing file

EDIT 0
i

21-40
41-60

- end of normal edit conversation
- syntax error in parameter list
- input error while reading file
- output error while writing file

3. EXECUTION CONTROL

The commands of a command language, being
immediate and unconditional, are analogous to the
instruction set of a computer, less those
instructions which make use of the condition code
(or which affect the flow of control in any way).
Typing the commands one by one is analogous to
single-cycle operation of the machine, each
instruction being stored and then executed.
Commands which move between command environments
are analogous to loading new microcode.

Note that a command language is not a
programming language; for it lacks the notion of
evaluation (except for the return code); in
general it lacks variables; and it lacks the
ability to execute sequences of actions
conditionally on the result of some particular
evaluation.

A command environment can be extended by
introducing execution control at the level of
the command lansuage, i.e. by introducing the
ability to issue commands from a program which can
receive and build parameter lists, issue commands
to the active command environment, examine return
codes, and control its own execution. This

enables several or many commands to be co~>ined
into a single 'macro' command which can be
executed by typing the name of the program as the
first word of a command. This corresponds to full
programming of a machine, with address
modification, and setting and testing of a
condition code; but instead of machine prosrammin$
we have command programming.

By these means, it is possible to add
programming to any command environment, and
thereby to write 'macro' system commands, 'macro'
edit commands, 'macro' queries, and so on. This
is the kind of programming which is likely to be
useful to people using editors, query and
reservation systems, and other interactive
programs, who are not primarily programmers.
Having learned the syntax and function of the
command languages in which they converse, they
could in many cases benefit from being able to
combine commands, either in trivial sequences, to
save repeated typing, or in more complicated
programs, with parameters, to provide essentially
new functions.

The following terminology will be used. A
command which is implemented without recourse to a
program of commands will be called a primitive or
primitive command of the command environment. All
the examples in Section 2.3 above are assumed to
be primitive commands. A program of commands will
be called a command language program.

nvoc on I mE**6r m
of command J

environment envir°nmentJ r |command

Program I supporting
command ,d
environment I TM

Inv°ca2£i°n TReturn5iwith
of command /return code)
language I | f rom command

/language program ~
l Program

Command
language
program

I"

3.
Command
language
program
issues
command

4.
Return (with
return code)
to command
language
program

Figure 2. Relationship between program supporting command
environment and a command language program for
the same environment.

Figure 2 shows the relationship between the
program supporting a command environment
(including the primitives of the environment) and
a command language program for the same command
environment. The numbers show the order in which
the paths are taken for a single invocation of the
command language program, which is assumed to
issue only a single command to the environment.

£ONTfNUED ZO BAG~ ~27
26 " •

.£Ol',llll~ul;U I~K~M PAGE 2_6_

These questions now arise.

(A) What language or languages should be used for
writing command language programs?

(B) What should be the rules and style for
invoking a command language program?

(C) To what extent is it feasible or desirable to
provide common facilities for writing and
executing command langauge programs for different
command environments?

(D) What are the repercussions of command
language programming on the design of command
environments?

3.1 Languase Considerations

Following Wilkes (1968), let us regard a
programming language as composed of an 'inner'
language, which defines actions, and an 'outer'
language, which provides a control structure. An
example par excellence of such a language is
APLGOL, by Kelley (1973), in which for instance
the IF statement can be written:

IF <APL-expresslon>
BEGIN

<APL-statement>

END
ELSE

THEN

In this case the inner language is APL, and the
outer language is a subset of ALGOL.

Now we can regard a command language, in the
sense developed in Section 2 of this paper, as an
inner language, defining actions, and embed its
commands within an outer control language. This
will give us one of the essentials for writing
programs of commands. It is not however
sufficient, since our inner language (the command
language) does not contain any variables,
expressions or values (except for the return
codes). These are needed for two purposes: (a) to
yield truth values to the outer language, such as
in the IF clause; and (b) to construct or modify
command lines. This leads us to propose an
additional inner language, to manipulate variables
and evaluate expressions, which 'coresides' with
the command language and is controlled by the same
outer language. Henceforth we shall refer to
these three language components as control
language, manipulation language and command
language. The first two, taken together, comprise
a command programming language or command
control language. Note that the control and
manipulation languages often need not be cognizant
of the detailed syntax or function of a command
llne: to the control language a command is an
unspecified action; to the manipulation language
it is data.

3.2 Design Choices

Within this framework, there are still
several overall design choices to be made.

(i) We could choose to use an existing
general-purpose programming language for the
functions of control and manipulation, and provide
an 'escape' from the language for the issue of

LISTSORT: PROC (PARM,CODE);
DECLARE PARM CHAR (*) VARYING, CODE BINARY FIXED;
DECLARE ESCAPE ENTRY EXTERNAL (CHAR(*)VARYING,BINARY FIXED);
DECLARE RETCODE BINARY FIXED;

CALL ESCAPE ('LIST ' II PARM II ' (FILE)',RETCODE);
IF RETCODE ~= 0 THEN /* IF THESE FILES DO NOT EXIST, THEN... */

DO; /* ...EXIT PRONTO WITH RETURN CODE OF i. */
CODE = i;
RETURN;

END;
CALL ESCAPE ('SORT FILE LIST',RETCODE);
CALL ESCAPE ('PRINT FILE LIST',RETCODE);
CODE = 0;

END;

(a) PL/I version

LIST &l &2 (FILE)
* IF THESE FILES DO NOT EXIST, EXIT PRONTO WITH RETURN CODE OF i...
&IF &RETCODE ~= 0 &EXIT i
SORT FILE LIST
PRINT FILE LIST

(b) CMS EXEC version.

Figure 3. Simple command language program, written in two languages.

127

commands. (A simple escape mechanism is a
reserved procedure name which accepts a command
line as a character-string parameter.)
Alternatively we could design a special-purpose
language (or pair of languages), in which the
data-types and functions which are heavily used
for command language programming are made more
accessible, at the expense of those which are
rarely used. Figure 3 shows a small command
language program written in two languages, (a) in
PL/I, representing the general-purpose languages,
and (b) in CMS EXEC, a special-purpose command
programming language of the IBM Conversation
Monitor System. The program issues three
hypothetical primitive system commands, to list a
subset of the user's file names with the 'file'
option, to sort the list, and finally to print it.
The subset of the file names to be listed is
specified in the parameter list of the command
language program. The difference in lengths
between the two versions of the program seems to
be sufficient to warrant giving serious
consideration to the use of a special-purpose
language. The difference in length would have
been even greater if the program included proper
checking for a valid parameter list.

(2) We could choose a language which is
suitable for interpretive execution, is suitable
for compilation, or is suitable for either. There
are clear advantages to the last possibility. We
may note, however, that efficiency in control and
manipulation may not be important, since often the
greater part of the total time will be spent in
executing the commands.

(3) We must decide how to distinguish
syntactically between the different parts of the
language. One possibility (which is inevitable if
we use an existing general-purpose language) is to
embed commands within a statement of the control
or manipulation language. The disadvantage of
this is that it is then impossible to write a
small command language program simply as a list of
commands. An alternative is to allow the commands
to appear 'unclad', in exactly the same form as if
they had been typed in interactively, and to
distinguish the other parts of the language by
some syntactic features which do not occur (or are
assumed not to occur) in the commands.

4. A COMMAND CONTROL LANGUAGE

In this section we describe the essentials of a
command control language, derived from CMS EXEC.
It is not necessarily an 'ideal' language in any
sense; it does however have a number of unusual
and interesting features, and is easy to use.

The original version of CMS EXEC was
developed at the IBM Cambridge Scientific Center
around 1967. (See VM/370: Command Language
User's Guide for a description of the present
version.) For a review of some other command
control languages in common use, see Barron
(1972). See also Grant (1970), who describes a
system, based on SNOBOL, which can issue commands,
and then inspect their results by redirecting
their console output to a pseudo-console from
which they can be read into variables of the
command language program.

4.1 Design Decisions

The three 'design choices' of Section 3.2
above are made as follows.

(i) The language is special-purpose, for
controlling commands. It has a convenient
notation for handling parameters (which are passed
by value), manipulating restricted classes of
character strings (based on the 'word'), and
issuing commands. It will handle only limited
types of data and expressions, and is powerless in
non-integer arithmetic.

(2) The language contains many inherently
interpretive features. A statement is analyzed
anew each time it is executed, and it is possible
for the same statement to be of a different type
on different occasions. This has the
disadvantages (a) that compilation would be
difficult and at best partial, and (b) that
automatic program analysis would be difficult and
strongly data-dependent.

(3) Commands can be written in a command
language program exactly as if they had been typed
in. They are terminated by the end of the line.
There is no prologue or epilogue: the name of a
command language program is determined by the name
of the file containing it (the 'EXEC' file).
Therefore a trivial command language program need
consist only of a list of commands. This has
obvious advantages for small programs and for new
users; however, it requires that statements which
are not commands be distinguishable syntactically
from those that are.

4.2 Main Features of the Language

In this section an attempt is made to convey
the flavour of the language. This is followed by
the BNF description in Section 4.3, and tying up
of the loose ends in Section 4.4.

I. The smallest syntactic unit is a word, where,
as before, a word is defined to be a string of
contiguous non-blank characters. Thus a word
plays the part of what is usually called a 'token'
in a lexical analyzer. This is true for both the
control and the manipulation components of the
language.

2. Literal strings are written without quotation
marks. If quotation marks are given, they become
part of the string. This is to some extent a
concomitant of the decision to allow commands to
appear 'unclad', and in this respect the language
follows more nearly the conventions of English
than of most programming languages.

3. It now becomes necessary to use
unconventional notation to distinguish words which
are not literals. This is done by using an
arbitrary special character, here chosen to be
'&', as the first character of all variable names.
Wherever this character appears, in any word of
any statement, it, with the following string of
arbitrary characters to the end of the word, is
taken as the name of a variable, and is replaced

128

by its value. (An exception is made for a
variable which is the target of an assignment, in
which case its name is retained.) This is done
before the statement is executed, and irrespective
of whether the statement is part of the control,
manipulation or command language. There is here a
resemblance to some assembly-language
preprocessors; however, we shall see later that
the notation is extended to allow indirection, and
hence the construction of arrays.

4. Variables are not declared: they become known
simply by their use. All variables have a value
which is a word, in general of arbitrary length
and contents. In some contexts a word is required
to represent an integral numeric quantity. Most
variables have an initial value of the null string
(or null word). The following are however

automatically set or updated. They are not
reserved, since any automatic updating ceases if
they are explicitly set in the program.

&l, &2, &3, ..,
&NUMARGS
&LINENUM
&RETCODE

(arguments received by program)
(number of arguments received)
(current line number of program)
(return code from last command)

5. The statements of the outer and manipulation
languages are (except for the assignment
statement) distinguished by keywords, which (like
variables) start with a special character. It
turns out that the same special character can be
used for the keywords as is used for variables,
without introducing any reserved variables or
reserved keywords (see Section 4.4).

6. The control language contains the following statement types:

&IF ... [&ELSE ...]
&DO ... [&WHILE ...] (iterative or non-iterative)

The '&DO' statement has the form:

(label) vat ffi expr [BY expr] [TO expr] I] [&WHILE condition]
If 'label' is given, it must be attached to the last statement of the group or loop. A label may be any
word which starts with a hyphen and appears as the first word of a line. '&DO' groups (or loops) may be
nested.

7. The manipulation language contains the following statement types:

variable = ... (assignment)
&READ ... (input from donsole: see Section 4.4, Note 5)
&PRINT ... (output to console)
&STACK ... (enter Snto console input buffer)
&ARGS ... (reset arguments &l, &2, ..., and reset &NUMARGS

to number of arguments thus set)

In assignments only, it is possible to use the arithmetic operators

+ - , / .

Evaluation is from left to right. Nested expressions are not supported, and parentheses are not treated
as special characters. Also in assignments, it is possible to use the following built-in functions, which
must appear after any arithmetic operators:

&SUBSTR OF ...
&INDEX OF ...
&LENGTH OF ...
&DATATYPE OF ...
&CONCAT OF ...
&LITERAL OF ...
&EQUIVALENT OF ...

(2 or 3 arguments, as in PL/I)
(2 arguments, as in PL/I)
(i argument, as in PL/I)
(i argument; returns NUM or CHAR)
(builds one word from several or many)
(i argument; inhibits scan for variables)
(i argument; establishes equivalence)

(For a description of the PL/I built-in functions, see the PI/I Language Specifications given in the
References. For '&LITERAL' and '&EQUIVALENT', see Section 4.4, Note 6.)

8. In comparisons, following &IF or &WHILE, the following may be used:

. 9= > ~> < ~< >= <= &AND &OR .

9. Any line which starts with an asterisk is treated as a comment.

i0. Any executable statement which, after substitution for any variables, does not start with an ampersand
is taken as a command, and is issued to the active command environment.

129

ii. This section concludes with three examples of command language programs.

(a) The first program, called REPEAT, issues a command which is given in its parameter llst a given
number of times, or until a non-zero return code is obtained from it. It is not dependent upon the
primitives or data of any particular command environment.

&IF &NUMARGS = 0
&GOTO -TELL

* IF INVOKED WITHOUT ANY ARGUMENTS, TELL HIM HOW TO USE IT.
* OTHERWISE, CHECK THAT FIRST ARGUMENT IS NUMERIC, AND >= 0...

&X = &DATATYPE &l
&IF &X ~= NUM &OR &X < 0

&GOTO -BADPARM

* MAKE SURE HE HASN'T GIVEN TOO MANY ARGUMENTS...

&IF &NUMARGS > 16
&GOTO -PARMBUST

* ALL SET TO EXECUTE THE FOLLOWING LOOP '&l' TIMES...

&DO -END &l

&2 &3 &4 &5 &6 &7 &8 &9 &10 &ll &12 &13 &14 &15 &16
&IF &RETCODE ~= 0

&EXIT &RETCODE
-END

&EXIT 0

-PARMBUST &PRINT 'REPEAT' PARAMETER LIST TOO LONG
&EXIT 102

-BADPARM &PRINT INVALID 'REPEAT' PARAMETER LIST
&EXIT i01

-TELL &PRINT CORRECT FORM IS: REPEAT N COMMAND PARM PARM ...
&PRINT STOPS IMMEDIATELY IF RETURN CODE ~= 0
&EXIT i00

(b) The following is a command language program for a hypothetical editor which (we suppose) does not
support a primitive command for moving lines around in the file, but which can 'stack' them in the console
input buffer. The command format for the program is:

MOVE m UP/DOWN n

where m and n are integers.

* CHECKING FOR VALIDITY OF PARAMETER LIST...
* ...SHOULD GO IN HERE.
DOWN &l
UP i
&STACK
* CURRENT LINE IS NOW SET TO THE LAST LINE TO BE MOVED,
* AND WE HAVE STACKED A NULL LINE. THE FOLLOWING LOOP
* RIPPLES UP THE LINES TO BE MOVED, STACKING AND DELETING
* EACH ONE IN TURN.
&DO 3 &l

STACK i
DELETE 1
UP i

* NEXT ISSUE 'UP N' or 'DOWN N', AS GIVEN IN PARAMETER LIST...
&2 &3
* FINALLY ENTER INPUT MODE AND READ IN STACKED LINES.
* THE NULL LINE WILL EVENTUALLY THROW THE EDITOR BACK INTO EDIT MODE...
INPUT
* EXIT (WITH RETURN CODE = 0) BY DROPPING OFF END OF FILE...

130

(c) The last example is not strictly a command language program, since it does not have any net effect

on any command environment. It is simply an example of string manipulation. Its effect, when executed, is

to type a line of the form:

11:30 AM - 15 OCT 1973.

The program is as follows.

* STACK THE DATE AND TIME, BY ISSUING 'STACKDT', WHICH
* IS A PRIMITIVE COMMAND...

STACKDT

* GIVE UP IF SOMETHING WENT WRONG...

&IF &KETCODE 9= 0
&EXIT &RETCODE

* READ MM/DD/YY HH:MM:SS, EXTRACT DAY, AND STRIP POSSIBLE

LEADING ZERO...

&READ VARS &DATE &TIME

&DAY = &SUBSTR OF &DATE 4 2

&DAY = &DAY + 0

* EXTRACT NUMBER OF MONTH, AND USE IT AS AN INDEX TO OBTAIN

* NAME OF MONTH...

&J = &SUBSTR OF &DATE 1 2
&ARGS JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

&MONTH = &&J

* THE REST OF THE PROGRAM IS SELF-EXPLANATORY...

&YEAR = &SUBSTR OF &DATE 7
&HOUR = &SUBSTR OF &TIME 1 2

&HOUR = &HOUR + 0
&MINUTE = &SUBSTR OF &TIME 4 2

&IF &HOUR < 12
&M = AM

&ELSE

&M = PM

&IF &HOUR = 0 &AND &MINUTE = 0
&M = MIDNIGHT

&IF &HOUR = 12 &AND &MINUTE = 0

&M = NOON

&IF &HOUR = 0

&HOUR = 12

&IF &HOUR > 12
&HOUR = &HOUR - 12

&TIME = &CONCAT OF &HOUR : &MINUTE
&PRINT &TIME &M - &DAY &MONTH 19&YEAR

4.3 BNF Description

The following is a BNF description of the combined control and manipulation language.

<program> ::=

<llne> ::=

<statement> ::=

<line>
<program> <llne>

<statement> <end of line>

<comment>
<label> <executable stmt>
<executable stmt>

131

<comment> ::= * <anything>

<executable stmt> ::= <null>
I <if stmt>
<unconditional stmt>

<if stmt> ::= &IF <condition> <unconditional stmt>
&IF <condition> <unconditional stmt>

&ELSE <unconditional stmt>

<unconditional stmt> ::= <assignment>
<keyword stmt>
<command>

<assignment> ::= <variable> = <right-hand side>

<rlght-hand side> ::= <null>
<word>
<expression>

<expression> ::= <number>
I <built-in fn ref>
I <number> <operator> <expression>

<built-ln fn ref> ::= <built-in function> OF <argument list>

<operator> ::= + I - I * I /

<condition> ::= <word> <comparator> <word>
I <condition> &OR <condition>
I <condition> &AND <condition>

<6omparator> ::= = I "= I > I "> I < I"< I >= I <=

A 'keyword statement' is any statement which starts with a keyboard, other than the '&IF' statement. (The
statements comprising an '&DO-group' are of course treated in the syntax as a single statement.) A 'number'
is a positive integer, with or without sign, or a negative integer. The meanings of 'command', 'variable',
'word', 'built-ln function' and 'keyword' are described in Section 4.2. '&AND' has higher precedence than
'&OR'.

4.4 LansuaBe Descrlptlon~ continued

In this section we conclude the language
description.

i. A statement is terminated by the end of llne,
except that the '&IF' clause and the '&ELSE'
keyword may be followed by a statement on the next
llne.

2. In Section 4.2 it was stated that variable
names which appear in a statement are replaced by
their values before the statement is executed.
The algorithm can be described as follows.

(i) Each word is scanned for ampersands,
starting with the rlghtmost character of the
word and proceeding to the left.

(2) If an ampersand is found, then it, with
the rest of the word to the right, is taken
as a variable name, and replaced by its
value.

(3) Scanning then resumes at the next
character to the left, and the procedure is
repeated from (2) above, until the word is
exhausted. An exception is made if the word
is the target of an assignment or an input
statement: in this case scanning for

ampersands effectively stops on the second
character of the word. (This is the same
rule that is applied in conventional
hlgh-level languages; e.g. the old value of
X is disregarded in the ALGOL assignment
X:=Y .)

(4) If in the process of substitution for
variables a word is reduced to the null
string (or null word), then it is deleted
from the statement, and the next word is
deemed inmnediately to follow the previous
one.

Note that any characters which are substituted for
variables are not scanned for ampersands. (They
will however be included in the next name if
another ampersand is found to the left.) This
prevents indefinite looping during substitution.

This algorithm makes it possible to get the
effects of subscripted variables. A simple
illustration appears in example (c) above, where
the name of the month is extracted from an array
containing JAN, FEB, ..., DEC.

3. The keywords of the language are represented
by variables of the same name which are
initialized to their own names. They can in fact
be reset, and the function which they provide then

132

becomes 'lost' (unless another variable is set to
the value of the keyword). This has the
advantages that users need not be aware of all the
keywords, and new keywords can be added to the
language without invalidating old programs.

4. The assignment statement (as seems often to
be the case) presents a problem in the language.
Does the statement

&PRINT = X

mean 'print "= X"', or 'assign "X" to "&PRINT"'?
The problem could be resolved by introducing a
keyword for assignments, e.g.

&SET &PRINT = X .

There is, however, a reluctance to do this for
reasons of human engineering. An alternative is
to reserve the '=' sign in the sense required by
the following rule.

If the first word of a statement starts with
an ampersand and the second word is a literal
equal sign, then (and only then) the
statement is taken to be an assignment.

Then to print '= X', one could write:

&EQ = =
&PRINT &EQ X

5. The '&READ' statement can take any of the
following forms.

&READ n

Read n lines from the console and
execute them individually as if they had
been in the program. Reading ceases if
an '&DO' statement or a statement which
transfers control is encountered. The
number of reads outstanding can be
incremented or decremented by entering
another '&READ n' statement.

&READ ARGS

Read a llne and reset the arguments &l,
&2, ..., to the words in it, without
scanning it for variables; and reset
&NUMARGS to the number of arguments thus
set.

&READ VARS [varl [var2 ...]]

Read a llne and set the variables
'varl', 'var2', ... , to the words in
it, without scanning it for variables.

6. '&LITERAL' and '&EQUIVALENT' are a pair of
built-ln functions which inhibit scanning for
variables, or delay the scan. '&LITERAL' enables
ampersands to be included in the value of a
variable; for example

&NAMEX = &LITERAL OF &X

gives the variable &NAMEX the value '&X'. For
'&EQUIVALENT', consider the statement

&RC = &EQUIVALENT OF &RETCODE .

Henceforth, whenever &RC appears other than as the
target of an assignment (or &READ VARS) it will be
replaced by the current value of &RETCODE.

7. A leading plus sign, and leading zeros, can
be removed from an integral numeric quantity by
performing any arithmetic operation on it. This
is illustrated in example (c) above.

8. Comparisons are numeric if both comparands
are integral; otherwise they are treated as
character strings, and the comparison is done
according to their internal representation. To
force a character-strlng comparison between two
words which may also be valid numbers, an
arbitrary non-numeric character can be put at the
front of each word, e.g.

&IF /&l = /02 ...

9. When an error is found, a message is printed
describing it and its location, and an implicit
'&EXIT error-code' statement is executed, where
'error-code' has a defined value for each of the
possible error conditions.

4.5 Limitations and Possible Extensions

i. All variables are local to the command
language program: there are no global variables.
This forces data to be transferred between
programs in parameter lists, via the input buffer,
or through the file system. This can be
inconvenient, but is almost essential in a
situation where a command language program is
(almost in principle) unaware of what other
programs may be 'dormant' in the execution stack.

2. There are no internal procedures, and there
are no user-deflned functions. To add them would
unfortunately involve significant extra
complexities in the language. On the other hand,
it would be easy to define an internal subroutine
call without parameters: it can in fact be done
already, thus:

&RETURN = &LINENUM + 2
&GOTO -SUB

-SUB

i;;TO & TURN

3. The manipulation language, as it stands, is
convenient only for manipulating lines which are
comprised of words. There is, for example, no
ability to embed multiple blanks in a line, or to
print or stack a complete line exactly as it
appears in the program. This is an area for
possible extensions. (A partial solution is given
by the '&BEGPRINT' and '&BEGSTACK' statements of
CMS EXEC.)

4. The language as it stands is incapable of
issuing a cotmnand which starts with an '&', This
could be made possible by introducing an
'&COMMAND' statement of the form:

&COMMAND statement

133

which issues 'statement' as a command,
irrespective of its syntax.

5. There are two kinds of 'ON' statement which
would be useful, one to deal with errors,
overriding the default action of Section 4.4, Note
9, and the other to specify special action after
return from a specific command. Possible keyword
statements are:

&ON ERROR statement
&AFTER command-name statement

where 'statement' may not be an '&DO' statement,
but may transfer control. (If it does not
transfer control, return will be made, after its
execution, to the llne following the point of
interruption.) In particular, 'statement' may
contain an '&IF' clause:

&AFTER LIST &IF &RETCODE 4= 0 &EXIT &RETCODE .

To go along with these statements, there could be
the special variables:

&ERRORCODE
&ERRORLINE

&COMLINE

(contains error code)
(contains line number of

statement in error)
(contains line number of

command)

and possibly the additional keyword statements:

&STACKERROR
&STACKCOM

(stack the statement in error)
(stack the command).

5. DISCUSSION

In Section 4 we have given a possible answer to
question (A) of Section 3, viz. 'What language or
languages should be used for writing command
language programs?' We now address the remaining
questions in the context of that answer.

5.1 Invoking a Command Language Program

One of our premises concerning the system was
that programs could reside on file and be invoked
by typing their name as the first word of a
command issued to the SYSTEM command environment.
Our examples of Section 2 were assumed to be of
primitive commands. However, none of our premises
or proposals concerning the command language
depend upon the language of implementation of a
program, and it is therefore possible to bring
over all of our statements on primitives and apply
them equally to command language programs. In
particular, a command language program can be
invoked in exactly the same way as a primitive,
and can invoke another command language program
(or itself recurslvely) in exactly the same way as
it can invoke a primitive.

It now becomes necessary to define what will
happen if a command name is matched by both a
primitive and a command language program. One
possibility is to exclude this possibility, i.e.
to prevent the creation of two programs with the
same name. Perhaps a more useful solution is to

define a search rule, such as to look for a
command language program first, and look for a
primitive only if the first search fails. To
override this, when required, there could be a
primitive called (say) PRIMITIVE which executes
its parameter list as a primitive command.

5.2 Generality of Command Language
Programming Facilities

It would seem that, provided that the
necessary links and mechanisms exist, the command
language programming facilities described
here could be used with all the command
environments in a system. The facilities do not
depend upon the syntax or the function of the
commands being controlled, provided only that a
command is a llne consisting of a character siring
which is 'issued' to an identifiable command
language interpreter. The facilities which have
been described here will, however, probably be
convenient only for command languages which are
more or less word-oriented.

If the same command language programming
facilities are to be used for the control of more
than one command environment, then there is a
naming problem, which has two aspects: (a) a
command language program should in general be
associated only with the command environment for
which it is intended, e.g. it should not be
possible inadvertently to execute an EDIT command
language program (which will attempt to issue edit
commands) from the SYSTEM command environment; (b)
a command language program, once invoked, should
be able to issue commands only to the command
environment from which it has been invoked: so
that anything which can be done by typing in
commands to a command environment can also be done
by issuing commands from a command language
program; and, conversely, anything which cannot be
done by typing in commands cannot be done from a
command language program.

A possible resolution to the naming problem
makes use of 'primary' and 'secondary' file names,
as in CTSS (continued in CMS as 'filename' and
'filetype'). Each command language program could
have a secondary name (or 'filetype') which
associates it with one command environment, both
for its invocation and for the invocations from
within it.

5.3 Repercussions on the Design of
Command Environments

i. In the foregoing, we have assumed the
feasibility (a) of going outside the program
supporting a command environment to find a command
language program on file, and (b) of issuing
commands from a command language program back to
the command environment. In fact, the ability to
do these things requires cognizance by the program
supporting the command environment that command
language programs may exist, and mechanisms for
passing control, receiving control for the
execution of a single command, and giving return
codes. These unfortunately require some extra
complexity in every program which sets up a
command environment and is to permit the
facilities to be used.

134

2. In the scheme which has been proposed here,
there are facilities for passing data, via
parameter lists, from a command language program
to the associated command environment. The
facilities for extracting data from the command
environment to a command language program are
however much weaker: the only datum which comes
automatically is the return code. One way of
transferring data in this direction, which has
been used extensively in some experimental command
language programming, and which has been
illustrated in the examples of Section 4.2, Note
ii, is to stack them in the console input buffer,
so that they can then be read into variables of
the command language program. It is therefore
useful to include in every command language
primitives which will stack any data from the
command environment. In fact, if a command
environment provides basic functions for adding,
modifying, deleting and stacking arbitrary data at
arbitrary locations in its data areas, then it is
possible in principle to define all other
functions in terms of these, and therefore to
implement all but the most basic commands in the
form of command language programs.

3. The existence of command language programs
lends still more weight to the advantages of
modular command environments (as described in
Section 2.2), compared with the other extreme in
which all commands are directly accessible at the
same time. For, given a modular structure,
existing command language programs are not
affected by the addition of new interactive
programs to the system; and the removal of an old
program will have repercussions which are fairly
easily delimited.

5.4 Final Remarks

i. Since the command programming language is
itself an interactive programming language, it can
be used to write programs which support their own
command environments. In fact, the word-handling
features of the language proposed in Section 4
make it in some ways particularly convenient for
this. We may then go on to ask whether we could
write command language programs for such a command
environment; and here we find that there is a
needed function missing from the language. This
is the ability to receive control (from a
descendent command language program) for the
execution of a single primitive command of the
environment, and to give back a return code. This
could be dealt with by adding the keyword
statement:

&ENTRY statement (set re-entry action)

and by using '&EXIT' (in addition to its existing
function) to return control, with a code,
following re-entry.

2. In this paper we have made use of a console
input buffer which acts as a stack. For some
purposes it would be more convenient if it acted
instead as a queue, so that a sequence of lines
could be deposited in the same order as they were
later to be read. Unfortunately this can produce
incorrect results if the buffer is not empty
before the lines are deposited. A possible

strategem to deal with this would be to allow the
creation of multiple buffers, each permitting
lines to be deposited on either end (for
collection FIFO or LIFO). Each new buffer would
be created by command, and 'stacked' on the
existing ones; and a buffer would be automatically
'unstacked' when it was exhausted.

3. Given command language programming, as
outlined here, any task which can be done
interactively can also be programmed to run
non-interactively. Each conversation can be
replaced by a programmed sequence of commands; and
the first command to a new command environment
(which invokes the program of commands) can be
stacked in the input buffer before the command
environment is activated. This method has been
used with success to run CMS in 'batch' mode. The
system was modified simply (a) to read the initial
commands from the card reader (instead of from the
console) and deposit them in the console input
buffer, and (b) to terminate a 'job' when there is
an attempt to read a line from the console and the
input buffer is empty.

4. It can often happen that a command language
program wishes to suppress printing generated by
commands issued from it. In the case of a
question-answer conversation, for example, there
is no sense in the questions being printed if the
answers are supplied from a program. This can be
accomplished by means of a command which sets or
resets a flag in the console output routine, to
suppress or resume subsequent printing. A variant
of this could divert console output to the input
buffer, so that the command language program could
read it and examine it. (This is effectively the
technique used by Grant (1970).)

5. We have not here addressed the handling of
interrupts from the user. None of the ideas
treated in this paper seems to have any particular
relevance to them. For completeness, however, we
may note that there is no special difficulty in
directin 8 named interrupts to any program which is
resident in the system, in order (say) to modify
its behaviour. (See Dolotta and Irvine, 1968.)
Obtaining the desired results from the interrupt
is more difficult. In general, either the system
(hardware or software) must support multiple
levels of interrupt control, so that the program
which is to be affected does not receive the
interrupt until it has indicated that it is ready
to do so; or the immediate effect of the interrupt
must be confined to the setting or resetting of a
flag which is then polled by the program. Either
way, consistent results will in general be
obtained only if the program chooses an
appropriate point in its execution to effect the
modification, and (in some cases) does the correct
cleaning up.

6. In this paper we have restricted ourselves to
interactive command environments. It would,
however, be possible to declare other well-defined
input streams, such as the input to a compiler, as
command environments, and then use the command
language programming facilities for writing source
language macros. (See Leavenworth, 1966.) This
would appear to be viable for the class of macros
which require only a single pass, e.g. do not
involve the building of a common symbol table.

135

REFERENCES

Leavenworth, B. M., Syntax Macros and Extended
Translation, CACM, 9, 790 (1966).

Wilkes, M. V., Computers Then and Now, JACM, 15,
i (1968).

Dolotta, T. A. and Irvine, C. A., Proposal for a
Time Sharing Command Structure, IFIP

• Congress, 1968, C14~ j - -

/Grant, C. A., An Interactive Command Generating
Facility, CACM, 13, 403 (1970).

IBM, PL/I Language Specifications, GY33-6003-2
(1970) .

Barron, D. W. and Jackson, I. R., The Evolution of
Job Control Languages, Software, 2, 143
(1972).

IBM, VM/370: Command Language User's Guide,
GC20-1804-0 (1972).

Kelley, R. A., APLGOL, An Experimental Structured
Programming Language, IBM J. of Research and
Development, 17, 69 (1973).

136

