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Abstract -- Distributed programs that run on nodes of a network 
are now technologically feasible, and are well-suited to the needs of 

organizations. However, our knowledge about how to construct 
such programs is limited. This paper discusses primitives that 
support the construction of distributed programs. Attention is 
focussed on primitives in two major areas: modularity and 
communication. The issues underlying the selection of the 
primit ives are discussed, especially the issue of providing robust 
behavior, and various candidates are analyzed. The primitives 
wi l l  ultimately be provided as part of a programming language 
that wil l  be used to experiment with construction of distributed 
programs. 

1. I n t r o d u c t i o n  

Formerly, economic considerations favored the sharing of 
a single computer among many users, and work in operating 
systems was concerned with the support and control of such 
sharing. Now, however, there is less of a need to share a single, 
expensive resource. Advances in hardware technology have led to 
greatly decreased costs for processors and memory. A possible 
consequence of the decreased cost is a new way of organizing 
software, where subparts of a program reside at and are executed 
at different computers connected by a network. We will refer to 
such a program as a distributed program. 

A primary reason why distributed programs are desirable 
is that the organizations that use the programs are distributed. 
For example, a business is subdivided into many divisions. Each 
divisl0n has different responsibilities, and carries out internal 
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procedures on internal data. However, the divisions provide 
services for one another, so some communication among them is 
needed. The divisions may be physically close, or they may be 
geographically dispersed. 

An ideal program structure to support the above 
organization consists o{ an independent program unit for each 
division (to carry out the internal procedures on the internal data), 
together with a communication mechanism that permits data and 
requests for services to be exchanged among the units. Such a 
structure could be organized on a single centralized computer, but 
there are a number of advantages associated with a distributed 
organization, among them 

!. Reduced contention. I f  all units run on a centralized 
facility they compete with one another for CPU and 
memory cycles. I f  each runs on its own computer, this 
contention can be eliminated. Contention for the 
communication medium is introduced instead, but in 
many organizations, communication is Infrequent so this 
contention may not be a problem. 

2. Speed of access. Each division can have faster 
response from its unit, partly because of reduced 
contention, but also because the unit can be located 
physically close to the division. This advantage is 
particularly important i f  the organization is 
geographically dispersed. 

3. Physical control. Each division has physical control 
of its unit, and can determine who may use it and what 
it does [11 

Other important advantages include the potential for better 
rel iabil i ty and higher availability, and natural extensibility to 
accommodate changing computation needs [21 

Thus there are important reasons why a distributed 
program is a desirable structure. However, experience in building 
such programs is so limited that we must experiment to learn the 
proper way of constructing them. This paper describes a set of 
primit ives intended to support construction of distributed 
programs. The primitives are part of a programming language to 
be used in carrying out experiments in distributed program 
construction. 
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1.1 Assumptions 

In our selection of primitives, we are influenced by some 
assumptions about hardware, and about the way in which that 
hardware will be used. We assume that distributed programs run 
on a collection of computers, called nodes, that are connected by 
means of a communications network. Each node consists of one or 
more processors, and one or more levels of memory. The nodes are 
heterogeneous, e.g., they may contain different processors, come in 
many different sizes and provide different capabilities, and be 
connected to different external devices. 

The nodes may communicate only via the network; there 
is no (other) shared memory. We make no assumptions about the 
network itself other than that it supports communication between 
any pair  of nodes. For example, the network may be Ionghaul or 
shorthaul, or some combination with gateways in between; these 
details are invisible at the programmer level. 

We assume that each node has an owner with 
considerable authority in determining what that node does (see 
Advantage 3 above). For example, the owner may control what 
programs can run on that node. Furthermore, i f  the node provides 
a service to programs running on other nodes, that service may be 
available only at certain times (e.g., when the node is not busy 
running internal programs) and only to certain users. We refer to 
such nodes as autonomous. 

The principal consequence of the assumption of autonomy 
is that the programmer, not the system, must control where 
programs and data reside. The system may not breach the 
autonomy of a node by. moving processing to it for purposes of 
load sharing. This attitude distinguishes our approach from 
multi-processor organizations such as CM, [3] and from high level 
approaches such as the Actor system [4], where the mapping of a 
program to physical locations is entirely under system control. 
Work in the same general area includes [5] and [6], although 
autonomy is not explicitly addressed. 

1.2 A p p r o a o h  

Our approach is to extend an existing sequential language 
with primitives to support distributed programs. Our base 
language is CLU [7, 8]. Although the primitives are mostly 
independent of the base language, CLU is a good choice for two 
main reasons. It supports the construction of well-structured 
programs through its abstraction mechanisms, especially data 
abstractions; it is reasonable to assume that distributed programs 
wi l l  require such mechanisms to keep their complexity under 
control. Secondly, CLU is an object-oriented language, in which 
programs are thought of as operating on long-lived objects, such 
as data bases and files; this view is well-suited to the applications 
of  interest, e.g., banking systems, airline reservation systems, office 
automation. 

Although the research concerns linguistic primitives, the 
issues under discussion are systems issues. Indeed, the abstract 
machine on which the programs will run bears a strong 
resemblance to that provided by an operating system kernel. 
There are advantages, however, in orienting the work toward a 
programming language:, a more regular structure to the abstract 
machine, enforced restrictions on program structure, compile time 
checking. 

The remainder of this paper discusses primitives for 
distributed computing in two key areas, namely, modularity and 
communication. Linguistic constructs are proposed; emphasis is on 
the semantics of the constructs although some syntax is sketched. 
A major concern within both areas is robustness (providing 
reliable performance in spite of node and network failures). This 
concern is addressed within each area, and its interaction with 
proposed constructs is sketched. 

Section 2 discusses modularity, and proposes a modular 
structure for distributed programs. Section 3 discusses 
communication; it examines possible message passing primitives, 
and the issues that arise in choosing among them. The example of 
an Air l ine Reservations System is used in both sections to illustrate 
the constructs. Finally, Section 4 contains a brief review and 
discussion. 

2 .  M o d u l a r i t y  

For distributed programs, a modular unit is needed that 

I. Can be used to model the tasks and subtasks being 
performed in a reasonably natural way. 

2. Can be realized efficiently, i.e., gives the programmer 
a realistic model of the underlying architecture. 

A major issue in point (2) is control of direct sharing of data. 
Data that is shared directly (i.e., many entities know its location in 
the distributed address space) is a problem for three reasons. It 
can be a bottleneck because of the contention for its use. It is a 
storage management problem, since to deallocate data while 
avoiding dangling references requires detection and invalidation of 
all references to the deallocated data. Finally, to coordinate data 
sharing correctly can lead to increased program complexity. The 
main conclusion that can be drawn from considering these 
problems is that a linguistic mechanism that encourages the 
programmer to think about controlling the direct sharing of data is 
desirable. Note that a synchronization mechanism such as a 
monitor [9, 10] helps ~;ith the synchronization problem but not 
with the other two, since the monitor itself is a shared datum. 

2.1 Guardians 

We provide a construct called a guardian to support 
modular distributed programs. A guardian consists of objects and 
processes. A process is the execution of a sequential program. 
Objects contain data; objects are manipulated (accessed and possibly 
modified) by processes. Examples of objects are integers, arrays, 
queues, documents (in an office automation system), bank accounts 
and procedures. Objects are strongly typed: They may be directly 
manipulated only by operations of their type. The types may be 
either built- in or user-defined. 

A computation consists of one or many guardians. Within 
each guardian, the actual work is performed by one or many 
processes. The processes within a single guardian may share 
objects, and communicate with one another via these shared 
objects. 
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Processes in different guardians can communicate only by 
sending messages (message passing will be discussed in Section 3). 
Messages wil l  contain the values of objects, e.g., "2" or %176538 
11173.72" (the value of a bank account object). An important 
restriction ensures that the address space of a guardian remains 
local: it is impossible to place the address of an object in a 
message. It is possible to send a token for an object in a message; a 
token is an external name for the object, which can be returned to 
the guardian-that owns the object to request some manipulation of 
the object. (A token is a sealed capability [11] that can be unsealed 
only by the creating guardian.) The system makes no guarantee 
that the object named by the token continues to exist; only the 
guardian can provide such a guarantee. Thus a guardian is 
entirely in charge of its address space, and storage management 
can be done locally for each guardian. 

A guardian exists entirely at a single node of the 
underlying distributed system: its objects are all stored on the 
memory devices of this node and its processes run on the 
processors of the node. During the course of a computation, the 
population of guardians will vary; new guardians will be created, 
and existing guardians may self-destruct. The node at which a 
guardian is created is the node where it will exist for its lifetime. 
It  must have been created by (a process in) a guardian at that 
node. Each node comes into existence with a prima/ guardian, 
which can (among other things) create guardians at its node in 
response to messages arriving from guardians at other nodes. This 
restriction on creation of new guardians helps preserve the 
autonomy of the physical nodes. 

A guardian is an abstraction of a physical node of the 
underlying network: it supports one or more processes (abstract 
processors) sharing private memory, and communicates with other 
guardians (abstract nodes) only by sending messages. In thinking 
about  a distributed program, a programmer can conceive of it as a 
set of abstract nodes, lntra-guardian activity is local and 
inexpensive (since it all takes place at a single physical node);, 
inter-guardian processing is likely to be more costly, but the 
possibility of this added expense is evident in the program 
structure, The  programmer can control the placement of data and 
programs (one of the requirements discussed in Section I) by 
creating guardians at appropriate nodes. Furthermore, each 
guardian acts as an autonomous unit, guarding its resource and 
responding to requests as it sees fit. 

2 . 2  Robustness  

A major problem in distributed programs is how to 
achieve robust execution of atomic operations in spite of failures. 
(An atomic operation is either entirely completed or not done at 
all.) This is an area where distributed programs are likely to 
differ significantly from centralized programs. Not that the need 
for robustness is new; rather, the issue has been largely ignored in 
centralized systems, with the exception of some work in data base 
systems. 

One requirement for robustness is permanence of effect. 
Permanence means that the effect caused by a completed atomic 
operation (e.g., a change in the state of the resource owned by the 
guardian that performs the operation) will not be lost due to node 
failures. 

To  achieve permanence requires a finer grain of backup 
and recovery than is provided by occasional system dumps and 

automatic system restart. We believe that permanence must be 
provided by each guardian for the resource it guards. We expect 
that backup and recovery will be provided on a per guardian 
basis: processes in the guardian save recovery data as needed (by, 
e.g., logging it in storage that will survive a node crash), and the 
guardian provides a recovery process that is started after a node 
crash to interpret the recovery data. 

9-.3 Disouss ion  and Examples  

The guardian construct was invented to satisfy the 
modularity criteria given above. The purpose of a guardian is to 
provide a service on a resource of a distributed program, but in a 
safe manner, i.e., it guards the resource by properly coordinating 
accesses to it, by protecting the resource from unauthorized access, 
and by providing backup and recovery for the resource in case of 
node failures. The resources being so guarded may be data, 
devices or computation. 

For example, the flight data for an airline might be 
guarded by a single guardian that handles reservations for all 
flights and also provides a number of administrative functions 
such as deleting or archiving information about flights that have 
occurred, collecting-statistics about flight usage, etc. It responds to 
requests such as "reserve," "cancel," "list passengers," and so on. 
For such requests, it checks that the requestor has the right to 
request the access (perhaps using some sort of access control list 
mechanism [12]). For example, only a manager can request a 
passenger list, or a reservation request from some other airline 
might  not be permitted to reserve the last seat on a flight. The 
guardian guarantees that requests are properly coordinated, for 
example, performed in an order approximating the externally 
observable order in which they were requested. It performs the 
reserve and cancel requests as atomic operations, and logs them so 
that information wil l  not be lost i f  the node fails. 

Internally, the airline guardian might make use of a 
guardian for each flight: The top level guardian simply 
dispatches a request to the appropriate flight guardian, which does 
the actual work and logs results. A flight guardian might be 
organized in several different ways, for example:. 

1. A single process handles requests one at a time 
(Figure ta). 

2. Requests for different dates are permitted to proceed 
in parallel. A single process synchronizes requests; it 
hands them off to other processes that perform the 
actual work (Figure Ib) when the flight data of interest 
are available. Such a structure is similar to that 
provided by a serializer [13]. 

3. A single process receives a request and immediately 
creates a process to handle it (Figure Ic). The forked 
processes synchronize with each other to ensure that 
only one process is manipulating the data for a 
particular date at a time. The processes synchronize 
using shared data, e.g., a monitor [9] providing 
operations start_request(date) and end_request(date). 

Organizations 2 and 3 can provide concurrent manipulation of the 
data base, while organization I cannot. 

T h e  airline data base discussed above had a single top 
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F igure  1. Possible organizations for e flight guardian. 

flight guardian 

a. One-at-a-time solution: process p handles requests sequentially. 

b. Serializer solution: process p uses synchronization data S to 
determine when requests should be performed. It forks processes ql 
to do the actual requests. 

"ght guardian 

flight guardian 

/ 

ql 

c. Solution using a monitor: process p forks a process qi upon 
receipt of a request. The processes qi synchronize with each other 
using monitor M and perform the requests on the data base. 

level guardian. Alternatively the data base might be distributed; 
for example, it might be divided into partitions for different 
geographical regions, each residing at a distinct node, and the 
guardian for a flight assigned to the region containing the flight's 
destination. Such a structure is shown in Figure 2. Here each 
node belonging to the airline has one guardian, Pi, for the region 
in which it resides, and one guardian, U i, to provide an interface 
to the airline data base for that nocle's users (e.g., reservation clerks 
and administrators). A user makes a request to the Uj at his node;, 
some checking for access rights would be done here, and then one 
or more requests sent to the appropriate Pi" The Pi would 

F igu re  2. D is t r ibuted air l ine system example. 
There are n front ends (guardians U i to Un) and n regional 
managers (only one, guardian Pi is shown) that communicate with 
the guardians of flights in its region (guardians Fil ..... Fire). 
Process q in U ! is carrying out a transaction for a user. Processes 
u t are ready to accept requests from new users. 

Ul I . - - t  Un 

Pi 

Ft I . . .  / v \ Fl m 

dispatch these requests to the flight guardians for its region. The 
Pi and Uj would coordinate as needed by means of some protocol 
established for that purpose. A possible organization for the Uj 
might be to fork a process to handle a transaction consisting o4" 
many requests; this process would carry out Uj's end of the 
coordination protocol. This process might, for example, interact 
with a clerk to make a number of reservations for the same 
customer. 

In the organization shown in Figure 2, each guardian Uj 
guards the entire airline data base and provides transactions that 
consist of sequences of requests. Each guardian Pi guards the data 
for a geographical region, while each flight guardian guards the 
data for a single flight. Thus, access to the entire distributed data 
base is provided by a group of guardians, but each guardian in 
that group guards a discernable resource. 

It iS appealing to imagine a system structure in which 
processes do not share any data. Although multi-process guardians 
are not necessary for computational power, we permit many 
processes in a guardian for two main reasons: concurrency (e.g., 
Figures Ib and lc) and conversational continuity. Concurrency 
could be obtained by having guardians that guard very small 
resources (e.g., the information about a single flight and date, or a 
single record in a data base), but we feel such a structure will often 
be unnatural. Conversational continuity is illustrated in Figure 2: 
process q carries on a conversation with the user and the "state" of 
this conversation (e.g., the identity of the passenger for whom 
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reservations are being made and the reservations made so far) is 
captured naturally in the state of process q. 

3. Communication 

Processes in different guardians can communicate with 
each other only by sending and receiving messages. This section 
discusses some issues in message communication. Our goal is to 
provide a general purpose communication mechanism that can be 
used in implementing application protocols. This primitive should 
make efficient use of the underlying hardware. It should also 
support communication in terms of abstract values meaningful in 
the application domain. 

The  following are communication primitives that might 
be considered. 

I. The process sending a message waits only until the 
message has been composed. We will refer to this as the 
no-wait send. 

2. The sending process waits until the message has 
been received by the target process. We will refer to 
this as the s~nc/ironization send. It is the send primitive 
described by Hoare [14]. The name is chosen because 
the primitive requires the sender and receiver to 
synchronize to exchange a message. 

3. The sending process waits for a response from the 
receiving process that the command has been carried 
out. We will refer to this as the remote Invocation send 
because of its similarity to invocation. Such a primitive 
has been described by Brinch Hansen [5]. 

In discussing the possible primitives, it is useful to have 
some examples of what users might like to accomplish. Various 
protocols have been discussed in the literature. For example, 
protocols have been described for distributed simultaneous updates 
[15, 16, 17], for recoverable atomic transactions [18, 19, 20], and for 
establishing secure communication links [21]. When these protocols 
are examined, we see that often messages are exchanged in pairs: 
one process sends a message to another to request some action, and 
later a response message flows in the opposite direction detailing 
the result. Such exchanges are like TEmote invocation: the first 
message is the invocation, while the second is the return. Thus, we 
might  be led to believe that remote invocation is the appropriate 
choice. 

However, not all message exchanges have this form. At 
least two other patterns can be identified. In the first, several 
messages are sent from one process to another, but only one 
response message is expected. In the second, the response comes 
from a different process than the original recipient of the request 
message. In both cases, there are request messages that have no 
corresponding response. 

Many existing protocols are concerned with providing 
robust atomic operations, Including permanence of effect (see 
Section 2.2) and also 

I. Ensuring reliable communication between the 
requesting process and the process that performs the 
atomic operation. 

2. Coping with node failures while the operation is 
being performed. 

The above communication primitives differ primarily in the extent 
to which they address these two issues. The no-wait send can 
usually ensure message delivery. The synchronization send can 
guarantee delivery (if it terminates), but a subsequent node failure 
wi l l  disrupt communication. Presumably, the remote invocation 
masks both node and network failures. However, the variability in 
existing approaches to masking node failures is, in our opinion, an 
argument against selecting remote invocation at this time. 

We believe that at present it is best to be conservative and 
select a primit ive that can implement currently known protocols; in 
particular, it must provide for the patterns described above. 
Distributed computing is in its infancy; there is not yet, as there is 
for parallel programs, a set of examples that can be used to test the 
sufficiency of a proposed primitive. In such a situation, a flexible 
and general low-level primitive is a better choice than a 
higher-level one that may preclude desirable solutions. 

Our  choice is the no-wait send. It is the only primitive of 
the three that matches the above patterns, since either of the others 
would require additional messages to be exchanged. Furthermore, 
it can be used to implement the others, but not vice versa (if extra 
message passing is to be avoided). For receiving messages, we will 
provide a receive primitive with timeout. Timeout is necessary 
because an expected response may not arrive due to software errors 
or hardware failures. 

The semantics of send and receive will be discussed in 
more detail below. First, however, we discuss other aspects of 
communication, namely, what messages are like, where they are 
sent, and how abstract values are communicated. 

3.1 M e s s a g e s  

A communication involves the exchange of a message 
between two processes. Although a message could be viewed as an 
ordinary object that can be manipulated (in accordance with its 
type), our approach is to treat messages specially. A message is 
created as part of the execution of a send  command, analogously 
to the creation of an activation record in the execution of an 
in vocation. 

The similarity between sending messages and invocation 
is emphasized by the way we structure messages: a message 
consists of a command ldent~er, and zero or more arguments. For 
messages sent to request a service, the command identifier 
corresponds to the name of an operation to be invoked. An 
example is the message sent to a regional guardian (Pi in Figure 2) 
to reserve a seat: 

reserve (flight_no, passenger.,id, date) 

Here flight_no, passenger_id and date are types. An instance of 
this message type would be created when a send command was 
executed, e.g., 

send reserve (f, p, d) ... 
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Such a command would be legal only i f f  were afltgM_no, p were 
a passenger_id and d were a date. For messages sent to convey the 
result of a request, the command identifier explains the kind of 
result obtained. For example, responses to a request to list the 
passengers on a flight might include 

info (passenger_list), no_such_flight 

3 . 2  P o r t s  

The next issue is where messages go. Messages could be 
sent, for example, to a guardian or to a process. The latter seems 
incompatible with our view of processes as anonymous providers of 
activity within a guardian. The former is more desirable, but 
seems a little ton restricted. For example, in Figure 2, processes u i 
and q could both get their messages from the same source, but 
since they handle different kinds of messages, some additional 
mechanism (e.g., pattern matching as in [14]) would be needed to 
keep the messages separated. 

Our solution, instead, is to send messages to ports [221 A 
port is a one-directional gateway tnto a guardian. There can he 
many ports on a single guardian; each port belongs to a guardian, 
and only processes withtn that guardian can receive messages from 
it. 

Ports are the only entities that have global names. When 
a guardian is created, it provides one or more ports; the names of 
these ports are made known to the creating process. The names of 
ports can also be sent in messages; this Implies that messages can 
be sent to the same port from many different sources. We assume 
that ports provide some buffer space so that messages may be 
queued i f  necessary. 

Ports are described by describing messages that can be 
sent to them. For example, a port to one of the regional guardians 
Pi shown in Figure 2 might be described as follows. 

The  effect of executing 

q: regional..port := c r e a t e  regional_manager ( ) 

is to create a new instance of regional_manager, and assign the 
name of the newly provided port to q. For example, the effect of 
executing the above c r e a t e  statement in process x in Figure 3a is 
shown in Figure 3b. Now x can send request messages to 7 via the 
new port. Recall that the new guardian will be created on the 
same node as its creator, so A must be resident on the appropriate 
regional node (e.g., A might be the primal guardian for that node). 

Port types and guardian headers enable compile time type 
checking of all message passing. Compile time checking is possible 
even i f  guardian definitions are compiled separately, provided that 
compilation is clone in the context of a library containing 
descriptions of guardian headers. (CLU already is based on such 
a library.) 

3.3 Sending Abstract Values 

In the example, various abstract values, e.g., flight_no, 
date, passenger_list, are shown as being transmitted in messages. 
Whi le these values may be of built-in type (e.g., flight_no may be 
an integer), they might also be of user-defined type. It is desirable 
that the two cases be treated uniformly as far as the send command 
itself is concerned. 

We start with the assumption that the system can build 
and decompose messages consisting of objects of built-in types. 
Furthermore, the system is responsible for the low-level protocols 
involved in actually .transmitting a message, e.g., breaking a large 
message into packets and reassembling the packets, use of 
redundant  information for error detection and correction. For 
example, the sending of a message 

C(a, s) 

regional_port - por t  [reserve (flight_no, passenger_jd, date) 
repl ies (ok, full, wait_list, pre..reserved, 

no_such_flight), 
cancel (flight_no, passenger..jd, date) 

rep l ies (cancelled, not_reserved, no,such_flight), 
list_passengers (flight_no, date) 

rep l ies (info (passenger_list), no_such..flight)] 

Note that here each request message is being paired with the 
expected response messages. The repl ies part is actually a 
description of an additional argument of the message:, a port that 
can receive the expected responses. The syntax simply highlights 
the request-response relationship. To describe a message with no 
expected responses, the repl ies part is omitted. 

The header of a guardian definition lists one or more 
ports that can be used to communicate with an instance of the 
guardian, e.g., 

regional_manager - guardiandef( ) provides p: regional_port 
I~ definition of a sequential program to be run 
'Z when an instance of regional_manager is 
'Z created, p is a local variable to this 

program. 
end regional_manager 

F igu re  3. Creat ing a guardian. 

A 

a. Before creating an instance of regtonal..manager. 

b. After creating B, an instance of reg~onal..manager; ~ is the newly 
created process in B, and p is used in ~ to name the newly created 
port, while q is used in x for this purpose. 
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where C is a command identifier, a is an array of integers and s is 
a string can be entirely handled by the system. 

Since objects of abstract (user-defined) type are ultimately 
represented by built-in types, one possible approach is to have the 
system build and decompose messages containing abstract objects 
by transmitting their representations in the same way as above. 
Often, in fact, this is just what is wanted. However, there are a 
number of reasons why such a method is not always the proper 
one: 

I. The system cannot automatically determine the 
boundary of an object. For example, consider an 
abstract object that is a graph composed of nod~ 
When a node is being sent in a message, should just the 
node be sent, or should the subgraph headed by the 
node be sent? 

2. It is desirable to permit different representations of 
types on different nodes. The system can accomplish 
this for built-in types, but not for user-defined types. 

3. An object may contain information that is guardian 
dependent, e.g., an index into a private table of the 
guardian. Such information should not be transmitted 
in a message since it would not be meaningful to any 
other guardian, but the system cannot distinguish this 
class of information from other information. 

4. For some types it may be desirable to forbid sending 
the abstract values in messages. 

For these reasons, the programmer must be permitted 
control over the transmission of abstract values. The approach we 
are taking is the following. Every transmissible abstract type 
(those whose abstract values may be transmitted in messages) has 
an associated external rep, which is the representation to be used 
in  messages. Each implementation of a transmissible type must 
provide two operations, encode and decode. Encode performs a 
mapping from the internal representation of the implementation to 
the external rep, while decode :maps the external rep into the 
internal representation. Encode and decode do not construct 
messages; they merely bui ld and decompose in-computer objects 
suitable for sending in messages. The actual construction of the 
message from the external rep objects is done automatically by the 
system. 

A simple example is complex numbers, where on one node 
the representation might be real/imaginary coordinates, while on 
another polar coordinates might be used; the external rep might be 
the real/imaginary coordinates. As a second example, consider an 
associative memory abstract type, which provides lookup of items 
in an associative memory on the basis of a key. Operations for 
this type include 

add_item (am, item, key) 

get_item (am, key) returns (item) 

adds a key/item pair to 
associative memory 
retrieves the item 
associated with a key 

Suppose that on node A the representation makes use of a bash 
table, while on node B the representation uses a tree. A possible 
external rep might be a sequence of items with associated keys. 
Then encode on node A would build a sequence of key-item pairs 
from the hash table representation, and decode on node B would 
construct a tree representation from such a sequence. 

Within a distributed system, the meaning of a type must 
be fixed and invariant over all the nodes, even though the 
f lexibi l i ty exists to have different implementations at different 
nodes. The single external rep is part of this fixed meaning. For 
example, the bounds on legal integer values must be defined 
system-wide. I f  24 bit integers were the system standard, then all 
nodes must support them, and the external rep would probably 
contain just 2't bits. However, a byte-oriented machine might use 3 
bytes to represent an integer while a 16-bit word machine could use 
two words, in the latter case, only 24 bits of the 32 available could 
be used for the integer, and results of integer arithmetic must be 
checked to ensure they are within bounds. Otherwise it might be 
impossible to send an integer value in a message because it was too 
big. 

8.4 Sending and Reoeiving Messages 

In this section we sketch a syntax and semantics for send 
and receive primitives. Both syntax and semantics are tentative 
and incomplete, and not all issues are addressed. 

The form of the send is (approximately): 

send C(args) to  <port> [ r ep l y t o  <port>] 

The replyto part is optional and is used to convey where to send 
a response i f  one is required (provided the recipient doesn't already 
know where to send the response). As was mentioned earlier, the 
reply port is really an extra argument of the message, but it is 
singled out in the syntax to clarify the intent of the send. Note 
that the reply port could belong to a.different guardian than the 
sending process. 

A possible semantics of send is as follows: 

I. The arguments are encoded from lef~ to right using 
the appropriate encode operation for each arg I (the one 
belonging to the type of argi). One possibility is that 
some encode invocation may raise an exception; in this 
case the send command terminates and raises that 
exception. 

2. The message is actually constructed (made into a 
string of bits with appropriate format). 

3. The message is sent (at~er being broken into packets 
i f  necessary). This step may be combined with step 2. 

The process executing the 9erld can continue execution as soon as 
i t  can be guaranteed that future actions of that process cannot 
affect the values transmitted (e.g., after step 2). The system will 
attempt to deliver the message to the receiving node intact and In 
good condition; the delivery is not guaranteed, but will happen 
with high probability. 
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When the message is entirely and correctly received at the 
receiving node (i.e., all packets have arrived, and the bits of the 
message are not in error, as is indicated by the error detection bits), 
it is forwarded to the target port. I f  there is no room for the 
message, or i f  the port or guardian doesn't exist, the message is 
thrown away. When a discarded message has a rep ly to  port, a 
failure message is sent by the system to that port (e.g., failure 
('target port doesn't exist')). No guarantee about arrival order is 
made, i.e., even two messages x and ~ sent by a single process to 
the same port are not guaranteed to arrive in the same order they 
were sent. I f  the order is important, processes must coordinate to 
achieve it. 

The form of the receive statement is 

r e c e i v e  on <port list> 

w h e n  CI (formal arglist) [ rep ly to  <formal portarg>] : SI 

w h e n  CN (formal arglist) [ rep l y to  <formal portarg>] : SN 

when  Failure (s: string) : Sfailure 
when  t imeout  <expr> : Stimeout 
end 

The meaning of this statement is as follows: If messages have 
already arrived at ports in the port list, one of these messages is 
removed. (A way of giving ports priority will be provided.) The 
line containing the command identifier of this message is selected 
(such a line must exist; this can be checked at compile time). The 
objects in the message are decoded le~ to right (using the 
appropriate decode operation) and assigned to the formals in the 
formal arglist, and the reply port, i f  any, is assigned to the formal 
portarg. Then the associated statement is executed. I f  no messages 
are waiting, the receiving process waits for one to arrive, or times 
out, whichever happens first. 

The message "falture (string)" is automatically and 
implicitlyassociated with each port type. Failure messages are 
mostly generated by the system and convey such information as 
transmission problems, or non-existence of the target port or 
guardian. 

8.5 Example 

We now present a sketch of the airline reservation system 
shown in Figure 2, to illustrate the use of send and receive and 
some of the reasoning involved in providing robust atomic 
operations. Figure 4 provides a sketch of the regional manager 
guardian. It simply looks up the guardian of the requested flight 
using a map, and forwards the request; the response will go directly 
from the flight guardian to the original requesting process, 
bypassing the regional manager. We assume that the flight 
guardian logs the results of reserve and cancel operations, as 
discussed in Section 2.2. (In Figures ,1 and 5, the notation Tllop is 
used to refer to operation "op" of type T.) 

Figure 5 shows the process that handles a transaction with 
a clerk. Recall that the user interface guardians U t create a new 
process to handle a transaction consisting of a set of reservations 
and cancellations for a single customer. This process accepts 
requests one at a time. It does each reserve request and reports the 

F igu re  4. The regional f l ight manager guardian. 
The data abstraction map provides a mapping from its first to its 
second parameter; it is used here to find the guardian of the 
desired flight. The actual work is done by the flight guardian; 
note that it replies directly to the original request. 

regional_port - por t  [reserve (flight_no, passenger_id, date) 
rep l ies (ok, ...), ...] 

flight..port - por t  [reserve (passenger.jd, date) repl ies (ok, ...), _] 

regional_manager - guardiandef ( ) provides p: regional_port 
fmap.,  map [flight_no, flight, port] 
flights: fmap 

wh i l e  t rue  do 
r e c e i v e  on p 

when  reserve (fl: flight_no, pa: passenger_id, d: date) 
r e p l y t o  q: port  [ok, full, pre.j-eserved, waitlist, noflight]: 

fp: flight_port := fmap|get(flights, tl) 
excep t  when no_entry: send no_flight to q 

continue ~ to next iteration 
end ~except 

send reserve (pa, d) to  fp rep ly to  q 

end q.receive 
end '~loop 

end regional_manager 

result to the clerk. Cancel requests are not done immediately, 
however, t',lt are processed at the time the transaction finishes. To 
finish the transaction the clerk indicates "done'. The process keeps 
a transaction history; i f  the clerk wishes the transaction can be 
partially or totally undone. Cancels are saved until the end of the 
transaction to permit the customer a late change of mind. An 
unwanted reservation can be undone by a cancel, but the reverse is 
not true since the seat may have been taken in the meantime. 

A failure of the regional node will cause the t imeout line 
of the receive statement in Figure 5 to be selected; the expression e 
would cause a delay long enough to permit the request to complete 
under reasonable circumstances. "Ifthe time out occurs, notAing is 
known about the true state of affairs: the request may never be 
done, or it might already be done. (This uncertainty always occurs 
after a timeout.) In the example, the information is conveyed to 
the clerk. One possibility is that he will ask to retry. Although a 
retry may result in a reserve or cancel request being made more 
than once, no problems result since they are ldem~tent (many 
performances are equivalent to one [18]). 

Now suppose the node that is running the transaction 
process fails. Since there are alternative methods of finishing a 
transaction (e.g., the clerk can make a phone call), when the node 
comes back up it is possible that the old transactions are obsolete, 
and should not be continued. We have chosen, therefore, m forget 
transactions rather than to try and finish them after a crash. 

When the node crashes in the middle of a transaction, the 
clerk knows the result of each request except the one being worked 
on. However, this one can simply be redone (since it is 
iclempotent). To finish the transaction, the clerk starts a new 
transaction, either waiting until the node comes up or using 
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Figure  5. The transal:t ion process. 
Procedure do..trans is forked each time a new transaction starts up. 
The data abstraction transhistory is used to keep track of the 
history of the transaction. Argument c is the port provided by the 
guardian that manages the display used by the reservations clerk. 

transport - port  [reserve (flight.no, string, date), ... ] 
termport - por t  [ok, illegal, full, ... ] 
directory = map [string, flight..port] 
replyport = por t  [ok, full, pre_reserved, no_such_flight, waitJist] 

dotrans = proc (p: transport, c: termport, dir: directory, 
pa: passenger_ld) 

t: transhistory := transhistorylcreate( ) 
wh i l e  t rue  do 

r e c e i v e  on p 
when  reserve (fl: flight..no, dest: string, d: date):. 

x: flight_port := dirSget (dest) 
excep t  when no_entry: send illegal to c 

continue ¢ wait for next request 
end £ except 

s: replyport := new port 
send reserve (fl, pa, d) to x rep ly to  s 
r e c e i v e  on s 

when  ok: transhistory|add (t, "reserve', tl, d) 
send ok to c 

when t imeout e: send failure ('can't communicate') to  c 
end ~ receive 

when  done: ~ do all cancels 
re turn  ¢ this terminates the process 

end ¢ receive 
end '~ loop 

end dotrans 

various aspects of message passing, including sending of abstract 
values, and compile time type checking. 

Of  course, program correctness will be a major concern in 
distributed systems as it is for centralized systems. We believe that 
modularity is the main issue here, and that a program structure 
like guardians, where shared data is strictly controlled, is what is 
needed. As far as-message communication is concerned, 
permanence of effect is crucial for using information about the 
result obtained by a message exchange as a basis for future actions. 

In this paper, we have concentrated on goals and issues 
that influence selection of primitives. Not all needed primitives 
have been discussed; for example, a serious omission is the 
mechanism for doing recovery. Although we have tried to justify 
decisions, some are undoubtedly wrong. Furthermore, the paper 
discusses current positions on issues under study; these positions 
are likely to change as our understanding increases. 

What is chiefly needed at present is more experience with 
distributed programs. Our plan is to gain experience by writing a 
number of distributed programs. CLU extended with the 
primitives will be implemented to run on a network of computers, 
and wil l serve as a basis for experiments. We expect our current 
work will make it easier to carry out the experiments and to 
evaluate the results. 
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R E F E R E N C E S  

alternative means. This new transaction begins with the request 
being worked on when the node failed. 

4 .  Disouss ion  

The purpose of this paper has been to discuss issues that 
arise in the design of primitives supporting distributed programs. 
Two main areas were identified, modularity and communication. 
To  support modular program construction, a novel construct called 
a guardian was proposed. A guardian completely controls access to 
the resource it guards and provides permanence of effect for that 
resource. It is the abstract analog of a physical node: One or 
more processes inside a guardian may share data belonging to the 
guardian, but lnterguardian communication is only via message 
passing. 

In the area of communication, we discussed how well 
various message passing primitives support existing protocols. A 
major concern was support for robust and reliable programs that 
can recover from node and network failures; the most Important 
difference between the primitives was the extent to which they 
masked failures. We concluded that it was too early to choose a 
primit ive that masked node failures, since there is not yet 
agreement on how to do this. We chose the no-wait send, since it 
provided the best support for experimentation. We then discussed 

[i.] 

~ ]  

[3] 

[,t] 

Saltzer, J. H. Research problems of decentralized systems 
with largely autonomous nodes. Operating Systems 
Rev iew  ! 2, ! (January 1978), 43-52). 

Scherr, A. L. Distributed data processing. IBM Systems 
Journal  1 7, 4 (1978), 324-343. 

Fuller, S. H., et al. A Collect ion of Papers on CM*: A 
Mul t i -microprocessor  Computer System. Department 
of Computer Science, Carnegie Mellon University, February 
1977. 

Hewitt, C. Viewing control structures as patterns of passing 
messages. Art i f ic ia l  Intel l igence 8, 1977, 323-:364. 

Brinch Hansen, Per. Distributed processes: a concurrent 
programming concept. Comm. of the ACM 21, I! 
(November 1978), 9M-941. 

Feldman, J. A. A Programming Methodology for 
Dis t r ibu ted  Computing, Technical Report 9, Department 
of Computer Science, University of Rochester, Rochester, N. 
Y., 1977. 

41 



[s] 

[9] 

Do] 

[Ji) 

[12] 

D3) 

D4] 

(]5) 

D6] 

[17] 

(J8) 

[19] 

[201 

Liskov, 13, Snyder, A., Atkinson, R., and Schaffert C. 
Abstraction mechanisms in CLU. Comm. of the ACM 20, 
8 (August 1977), 564-576. 

Liskov, B., Moss, E., Schaffert, C., Scheifler, R., and Snyder, 
A. CLU Reference Manual. Computation Structures 
Group Memo 161, Laboratory for Computer Science, M.I.T., 
Cambridge, Mass., July 1978. 

Hoare, C. A. R. Monitors: an operating system structuring 
concept. Comm. of the ACM 1 7, I0 (October 197'}), 549-557. 

Brinch Hansen, P. The programming language Concurrent 
Pascal. IEEE Trans. on Software Engineering 1, 2 (June 
1975), 199-207. 

Redell, D. D. Naming and Protection in Extendible 
Operating Systems. Technical Report LCSITR-H0, 
Laboratory for Computer Science, M.LT., Cambridge, Mass~ 
November 1974. 

Saltzer, J. H., and Schroeder, M. D. The protection of 
information in computer systems. Prec. of the IEEE 63, 9 
(September 1975), 1278-1308. 

Hewitt, C., and Atkinson, R. Specification and proof 
techniques for sertalizers. IEEE Trans. on Software 
Engineering SE-5, I (January 1979), 10-23. 

Hoare, C. A. R. Communicating sequential processes. 
Comm. of the ACM 21, 8 (August 1978), 666-677. 

Thomas, R. H. A Solution to the Update Problem for 
Multiple Copy Data Bases Which Uses Distributed 
Control. BaN Report 3340, Bolt Beranek and Newman, 
Inc., Cambridge, Mass., July 19/6. 

Alsberg, P. A., and Day, J. D. A principle for resilient 
sharing of distributed resources. Proc. of the Second 
International Conference on Software Engineering, 
1976, 562-570. 

Rothnie, J. B., ]?,ernstein, P. A., Goodman, N., and 
Papadimitriou, C. A. The Redundant Update 
Methodology of SDD-I :  A System for Distributed 
Databases. Technical Report. Computer Corporation of 
America, Cambridge, Mass., February 1977. 

Lampson, B., and Sturgis, H. Crash Recovery in a 
Distributed Data Storage System Xerox Research 
Center, Palo Alto, Ca., 1976. 

Gray, J. N. Notes on data base operating systems. 
Operating Systems: An Advanced Course, Lecture 
Notes in Computer Science 60, Springer-Verlag, 1978, 
393-481. 

Reed, D. P. Naming and Synchronization in a 
Decentralized Computer System. Technical Report 
TR-205, Laboratory for Computer Science, M.I.T., 
Cambridge, Ma., October 1978. 

[20 

[22] 

Needham, R. M., and Schroeder, M. D. Using encryption 
for authentication in large networks of computers. Comm. 
of the ACM 21, 12 (December 1978), 993-999. 

Balzer, R. M. PORTS -- a method for dynamic 
interprogram communication and job control. Prec. of the 
AFIPS Conference 39 (19"/I). 

42 


