
Primitives for Distributed Computinl[I

Barbara Uskov
Laboratory for Computer Science

Massachusetts Inst i tu te of Technololff
Cambridge, Massachusetts

Abstract -- Distributed programs that run on nodes of a network
are now technologically feasible, and are well-suited to the needs of

organizations. However, our knowledge about how to construct
such programs is limited. This paper discusses primitives that
support the construction of distributed programs. Attention is
focussed on primitives in two major areas: modularity and
communication. The issues underlying the selection of the
primit ives are discussed, especially the issue of providing robust
behavior, and various candidates are analyzed. The primitives
wi l l ultimately be provided as part of a programming language
that wil l be used to experiment with construction of distributed
programs.

1. I n t r o d u c t i o n

Formerly, economic considerations favored the sharing of
a single computer among many users, and work in operating
systems was concerned with the support and control of such
sharing. Now, however, there is less of a need to share a single,
expensive resource. Advances in hardware technology have led to
greatly decreased costs for processors and memory. A possible
consequence of the decreased cost is a new way of organizing
software, where subparts of a program reside at and are executed
at different computers connected by a network. We will refer to
such a program as a distributed program.

A primary reason why distributed programs are desirable
is that the organizations that use the programs are distributed.
For example, a business is subdivided into many divisions. Each
divisl0n has different responsibilities, and carries out internal

I. This research was supported in part by the Advanced Research
Projects Agency of the Department of Defense, monitored by the
Office of Naval Research under contract N000H-G-0661, and in
part by the National Science Foundation under grant MC~
74-21892 A01.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed
for direct commercial advantage, the ACM copyright notice
and the title of the publication and its date appear, and notice
is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

© 1979 ACM 0-89791-009-5/79/1200/0033 $00.75

procedures on internal data. However, the divisions provide
services for one another, so some communication among them is
needed. The divisions may be physically close, or they may be
geographically dispersed.

An ideal program structure to support the above
organization consists o{ an independent program unit for each
division (to carry out the internal procedures on the internal data),
together with a communication mechanism that permits data and
requests for services to be exchanged among the units. Such a
structure could be organized on a single centralized computer, but
there are a number of advantages associated with a distributed
organization, among them

!. Reduced contention. I f all units run on a centralized
facility they compete with one another for CPU and
memory cycles. I f each runs on its own computer, this
contention can be eliminated. Contention for the
communication medium is introduced instead, but in
many organizations, communication is Infrequent so this
contention may not be a problem.

2. Speed of access. Each division can have faster
response from its unit, partly because of reduced
contention, but also because the unit can be located
physically close to the division. This advantage is
particularly important i f the organization is
geographically dispersed.

3. Physical control. Each division has physical control
of its unit, and can determine who may use it and what
it does [11

Other important advantages include the potential for better
rel iabil i ty and higher availability, and natural extensibility to
accommodate changing computation needs [21

Thus there are important reasons why a distributed
program is a desirable structure. However, experience in building
such programs is so limited that we must experiment to learn the
proper way of constructing them. This paper describes a set of
primit ives intended to support construction of distributed
programs. The primitives are part of a programming language to
be used in carrying out experiments in distributed program
construction.

33

1.1 Assumptions

In our selection of primitives, we are influenced by some
assumptions about hardware, and about the way in which that
hardware will be used. We assume that distributed programs run
on a collection of computers, called nodes, that are connected by
means of a communications network. Each node consists of one or
more processors, and one or more levels of memory. The nodes are
heterogeneous, e.g., they may contain different processors, come in
many different sizes and provide different capabilities, and be
connected to different external devices.

The nodes may communicate only via the network; there
is no (other) shared memory. We make no assumptions about the
network itself other than that it supports communication between
any pair of nodes. For example, the network may be Ionghaul or
shorthaul, or some combination with gateways in between; these
details are invisible at the programmer level.

We assume that each node has an owner with
considerable authority in determining what that node does (see
Advantage 3 above). For example, the owner may control what
programs can run on that node. Furthermore, i f the node provides
a service to programs running on other nodes, that service may be
available only at certain times (e.g., when the node is not busy
running internal programs) and only to certain users. We refer to
such nodes as autonomous.

The principal consequence of the assumption of autonomy
is that the programmer, not the system, must control where
programs and data reside. The system may not breach the
autonomy of a node by. moving processing to it for purposes of
load sharing. This attitude distinguishes our approach from
multi-processor organizations such as CM, [3] and from high level
approaches such as the Actor system [4], where the mapping of a
program to physical locations is entirely under system control.
Work in the same general area includes [5] and [6], although
autonomy is not explicitly addressed.

1.2 A p p r o a o h

Our approach is to extend an existing sequential language
with primitives to support distributed programs. Our base
language is CLU [7, 8]. Although the primitives are mostly
independent of the base language, CLU is a good choice for two
main reasons. It supports the construction of well-structured
programs through its abstraction mechanisms, especially data
abstractions; it is reasonable to assume that distributed programs
wi l l require such mechanisms to keep their complexity under
control. Secondly, CLU is an object-oriented language, in which
programs are thought of as operating on long-lived objects, such
as data bases and files; this view is well-suited to the applications
of interest, e.g., banking systems, airline reservation systems, office
automation.

Although the research concerns linguistic primitives, the
issues under discussion are systems issues. Indeed, the abstract
machine on which the programs will run bears a strong
resemblance to that provided by an operating system kernel.
There are advantages, however, in orienting the work toward a
programming language:, a more regular structure to the abstract
machine, enforced restrictions on program structure, compile time
checking.

The remainder of this paper discusses primitives for
distributed computing in two key areas, namely, modularity and
communication. Linguistic constructs are proposed; emphasis is on
the semantics of the constructs although some syntax is sketched.
A major concern within both areas is robustness (providing
reliable performance in spite of node and network failures). This
concern is addressed within each area, and its interaction with
proposed constructs is sketched.

Section 2 discusses modularity, and proposes a modular
structure for distributed programs. Section 3 discusses
communication; it examines possible message passing primitives,
and the issues that arise in choosing among them. The example of
an Air l ine Reservations System is used in both sections to illustrate
the constructs. Finally, Section 4 contains a brief review and
discussion.

2 . M o d u l a r i t y

For distributed programs, a modular unit is needed that

I. Can be used to model the tasks and subtasks being
performed in a reasonably natural way.

2. Can be realized efficiently, i.e., gives the programmer
a realistic model of the underlying architecture.

A major issue in point (2) is control of direct sharing of data.
Data that is shared directly (i.e., many entities know its location in
the distributed address space) is a problem for three reasons. It
can be a bottleneck because of the contention for its use. It is a
storage management problem, since to deallocate data while
avoiding dangling references requires detection and invalidation of
all references to the deallocated data. Finally, to coordinate data
sharing correctly can lead to increased program complexity. The
main conclusion that can be drawn from considering these
problems is that a linguistic mechanism that encourages the
programmer to think about controlling the direct sharing of data is
desirable. Note that a synchronization mechanism such as a
monitor [9, 10] helps ~;ith the synchronization problem but not
with the other two, since the monitor itself is a shared datum.

2.1 Guardians

We provide a construct called a guardian to support
modular distributed programs. A guardian consists of objects and
processes. A process is the execution of a sequential program.
Objects contain data; objects are manipulated (accessed and possibly
modified) by processes. Examples of objects are integers, arrays,
queues, documents (in an office automation system), bank accounts
and procedures. Objects are strongly typed: They may be directly
manipulated only by operations of their type. The types may be
either built- in or user-defined.

A computation consists of one or many guardians. Within
each guardian, the actual work is performed by one or many
processes. The processes within a single guardian may share
objects, and communicate with one another via these shared
objects.

34

Processes in different guardians can communicate only by
sending messages (message passing will be discussed in Section 3).
Messages wil l contain the values of objects, e.g., "2" or %176538
11173.72" (the value of a bank account object). An important
restriction ensures that the address space of a guardian remains
local: it is impossible to place the address of an object in a
message. It is possible to send a token for an object in a message; a
token is an external name for the object, which can be returned to
the guardian-that owns the object to request some manipulation of
the object. (A token is a sealed capability [11] that can be unsealed
only by the creating guardian.) The system makes no guarantee
that the object named by the token continues to exist; only the
guardian can provide such a guarantee. Thus a guardian is
entirely in charge of its address space, and storage management
can be done locally for each guardian.

A guardian exists entirely at a single node of the
underlying distributed system: its objects are all stored on the
memory devices of this node and its processes run on the
processors of the node. During the course of a computation, the
population of guardians will vary; new guardians will be created,
and existing guardians may self-destruct. The node at which a
guardian is created is the node where it will exist for its lifetime.
It must have been created by (a process in) a guardian at that
node. Each node comes into existence with a prima/ guardian,
which can (among other things) create guardians at its node in
response to messages arriving from guardians at other nodes. This
restriction on creation of new guardians helps preserve the
autonomy of the physical nodes.

A guardian is an abstraction of a physical node of the
underlying network: it supports one or more processes (abstract
processors) sharing private memory, and communicates with other
guardians (abstract nodes) only by sending messages. In thinking
about a distributed program, a programmer can conceive of it as a
set of abstract nodes, lntra-guardian activity is local and
inexpensive (since it all takes place at a single physical node);,
inter-guardian processing is likely to be more costly, but the
possibility of this added expense is evident in the program
structure, The programmer can control the placement of data and
programs (one of the requirements discussed in Section I) by
creating guardians at appropriate nodes. Furthermore, each
guardian acts as an autonomous unit, guarding its resource and
responding to requests as it sees fit.

2 . 2 Robustness

A major problem in distributed programs is how to
achieve robust execution of atomic operations in spite of failures.
(An atomic operation is either entirely completed or not done at
all.) This is an area where distributed programs are likely to
differ significantly from centralized programs. Not that the need
for robustness is new; rather, the issue has been largely ignored in
centralized systems, with the exception of some work in data base
systems.

One requirement for robustness is permanence of effect.
Permanence means that the effect caused by a completed atomic
operation (e.g., a change in the state of the resource owned by the
guardian that performs the operation) will not be lost due to node
failures.

To achieve permanence requires a finer grain of backup
and recovery than is provided by occasional system dumps and

automatic system restart. We believe that permanence must be
provided by each guardian for the resource it guards. We expect
that backup and recovery will be provided on a per guardian
basis: processes in the guardian save recovery data as needed (by,
e.g., logging it in storage that will survive a node crash), and the
guardian provides a recovery process that is started after a node
crash to interpret the recovery data.

9-.3 Disouss ion and Examples

The guardian construct was invented to satisfy the
modularity criteria given above. The purpose of a guardian is to
provide a service on a resource of a distributed program, but in a
safe manner, i.e., it guards the resource by properly coordinating
accesses to it, by protecting the resource from unauthorized access,
and by providing backup and recovery for the resource in case of
node failures. The resources being so guarded may be data,
devices or computation.

For example, the flight data for an airline might be
guarded by a single guardian that handles reservations for all
flights and also provides a number of administrative functions
such as deleting or archiving information about flights that have
occurred, collecting-statistics about flight usage, etc. It responds to
requests such as "reserve," "cancel," "list passengers," and so on.
For such requests, it checks that the requestor has the right to
request the access (perhaps using some sort of access control list
mechanism [12]). For example, only a manager can request a
passenger list, or a reservation request from some other airline
might not be permitted to reserve the last seat on a flight. The
guardian guarantees that requests are properly coordinated, for
example, performed in an order approximating the externally
observable order in which they were requested. It performs the
reserve and cancel requests as atomic operations, and logs them so
that information wil l not be lost i f the node fails.

Internally, the airline guardian might make use of a
guardian for each flight: The top level guardian simply
dispatches a request to the appropriate flight guardian, which does
the actual work and logs results. A flight guardian might be
organized in several different ways, for example:.

1. A single process handles requests one at a time
(Figure ta).

2. Requests for different dates are permitted to proceed
in parallel. A single process synchronizes requests; it
hands them off to other processes that perform the
actual work (Figure Ib) when the flight data of interest
are available. Such a structure is similar to that
provided by a serializer [13].

3. A single process receives a request and immediately
creates a process to handle it (Figure Ic). The forked
processes synchronize with each other to ensure that
only one process is manipulating the data for a
particular date at a time. The processes synchronize
using shared data, e.g., a monitor [9] providing
operations start_request(date) and end_request(date).

Organizations 2 and 3 can provide concurrent manipulation of the
data base, while organization I cannot.

T h e airline data base discussed above had a single top

35

F igure 1. Possible organizations for e flight guardian.

flight guardian

a. One-at-a-time solution: process p handles requests sequentially.

b. Serializer solution: process p uses synchronization data S to
determine when requests should be performed. It forks processes ql
to do the actual requests.

"ght guardian

flight guardian

/

ql

c. Solution using a monitor: process p forks a process qi upon
receipt of a request. The processes qi synchronize with each other
using monitor M and perform the requests on the data base.

level guardian. Alternatively the data base might be distributed;
for example, it might be divided into partitions for different
geographical regions, each residing at a distinct node, and the
guardian for a flight assigned to the region containing the flight's
destination. Such a structure is shown in Figure 2. Here each
node belonging to the airline has one guardian, Pi, for the region
in which it resides, and one guardian, U i, to provide an interface
to the airline data base for that nocle's users (e.g., reservation clerks
and administrators). A user makes a request to the Uj at his node;,
some checking for access rights would be done here, and then one
or more requests sent to the appropriate Pi" The Pi would

F igu re 2. D is t r ibuted air l ine system example.
There are n front ends (guardians U i to Un) and n regional
managers (only one, guardian Pi is shown) that communicate with
the guardians of flights in its region (guardians Fil Fire).
Process q in U ! is carrying out a transaction for a user. Processes
u t are ready to accept requests from new users.

Ul I . - - t Un

Pi

Ft I . . . / v \ Fl m

dispatch these requests to the flight guardians for its region. The
Pi and Uj would coordinate as needed by means of some protocol
established for that purpose. A possible organization for the Uj
might be to fork a process to handle a transaction consisting o4"
many requests; this process would carry out Uj's end of the
coordination protocol. This process might, for example, interact
with a clerk to make a number of reservations for the same
customer.

In the organization shown in Figure 2, each guardian Uj
guards the entire airline data base and provides transactions that
consist of sequences of requests. Each guardian Pi guards the data
for a geographical region, while each flight guardian guards the
data for a single flight. Thus, access to the entire distributed data
base is provided by a group of guardians, but each guardian in
that group guards a discernable resource.

It iS appealing to imagine a system structure in which
processes do not share any data. Although multi-process guardians
are not necessary for computational power, we permit many
processes in a guardian for two main reasons: concurrency (e.g.,
Figures Ib and lc) and conversational continuity. Concurrency
could be obtained by having guardians that guard very small
resources (e.g., the information about a single flight and date, or a
single record in a data base), but we feel such a structure will often
be unnatural. Conversational continuity is illustrated in Figure 2:
process q carries on a conversation with the user and the "state" of
this conversation (e.g., the identity of the passenger for whom

36

reservations are being made and the reservations made so far) is
captured naturally in the state of process q.

3. Communication

Processes in different guardians can communicate with
each other only by sending and receiving messages. This section
discusses some issues in message communication. Our goal is to
provide a general purpose communication mechanism that can be
used in implementing application protocols. This primitive should
make efficient use of the underlying hardware. It should also
support communication in terms of abstract values meaningful in
the application domain.

The following are communication primitives that might
be considered.

I. The process sending a message waits only until the
message has been composed. We will refer to this as the
no-wait send.

2. The sending process waits until the message has
been received by the target process. We will refer to
this as the s~nc/ironization send. It is the send primitive
described by Hoare [14]. The name is chosen because
the primitive requires the sender and receiver to
synchronize to exchange a message.

3. The sending process waits for a response from the
receiving process that the command has been carried
out. We will refer to this as the remote Invocation send
because of its similarity to invocation. Such a primitive
has been described by Brinch Hansen [5].

In discussing the possible primitives, it is useful to have
some examples of what users might like to accomplish. Various
protocols have been discussed in the literature. For example,
protocols have been described for distributed simultaneous updates
[15, 16, 17], for recoverable atomic transactions [18, 19, 20], and for
establishing secure communication links [21]. When these protocols
are examined, we see that often messages are exchanged in pairs:
one process sends a message to another to request some action, and
later a response message flows in the opposite direction detailing
the result. Such exchanges are like TEmote invocation: the first
message is the invocation, while the second is the return. Thus, we
might be led to believe that remote invocation is the appropriate
choice.

However, not all message exchanges have this form. At
least two other patterns can be identified. In the first, several
messages are sent from one process to another, but only one
response message is expected. In the second, the response comes
from a different process than the original recipient of the request
message. In both cases, there are request messages that have no
corresponding response.

Many existing protocols are concerned with providing
robust atomic operations, Including permanence of effect (see
Section 2.2) and also

I. Ensuring reliable communication between the
requesting process and the process that performs the
atomic operation.

2. Coping with node failures while the operation is
being performed.

The above communication primitives differ primarily in the extent
to which they address these two issues. The no-wait send can
usually ensure message delivery. The synchronization send can
guarantee delivery (if it terminates), but a subsequent node failure
wi l l disrupt communication. Presumably, the remote invocation
masks both node and network failures. However, the variability in
existing approaches to masking node failures is, in our opinion, an
argument against selecting remote invocation at this time.

We believe that at present it is best to be conservative and
select a primit ive that can implement currently known protocols; in
particular, it must provide for the patterns described above.
Distributed computing is in its infancy; there is not yet, as there is
for parallel programs, a set of examples that can be used to test the
sufficiency of a proposed primitive. In such a situation, a flexible
and general low-level primitive is a better choice than a
higher-level one that may preclude desirable solutions.

Our choice is the no-wait send. It is the only primitive of
the three that matches the above patterns, since either of the others
would require additional messages to be exchanged. Furthermore,
it can be used to implement the others, but not vice versa (if extra
message passing is to be avoided). For receiving messages, we will
provide a receive primitive with timeout. Timeout is necessary
because an expected response may not arrive due to software errors
or hardware failures.

The semantics of send and receive will be discussed in
more detail below. First, however, we discuss other aspects of
communication, namely, what messages are like, where they are
sent, and how abstract values are communicated.

3.1 M e s s a g e s

A communication involves the exchange of a message
between two processes. Although a message could be viewed as an
ordinary object that can be manipulated (in accordance with its
type), our approach is to treat messages specially. A message is
created as part of the execution of a send command, analogously
to the creation of an activation record in the execution of an
in vocation.

The similarity between sending messages and invocation
is emphasized by the way we structure messages: a message
consists of a command ldent~er, and zero or more arguments. For
messages sent to request a service, the command identifier
corresponds to the name of an operation to be invoked. An
example is the message sent to a regional guardian (Pi in Figure 2)
to reserve a seat:

reserve (flight_no, passenger.,id, date)

Here flight_no, passenger_id and date are types. An instance of
this message type would be created when a send command was
executed, e.g.,

send reserve (f, p, d) ...

37

Such a command would be legal only i f f were afltgM_no, p were
a passenger_id and d were a date. For messages sent to convey the
result of a request, the command identifier explains the kind of
result obtained. For example, responses to a request to list the
passengers on a flight might include

info (passenger_list), no_such_flight

3 . 2 P o r t s

The next issue is where messages go. Messages could be
sent, for example, to a guardian or to a process. The latter seems
incompatible with our view of processes as anonymous providers of
activity within a guardian. The former is more desirable, but
seems a little ton restricted. For example, in Figure 2, processes u i
and q could both get their messages from the same source, but
since they handle different kinds of messages, some additional
mechanism (e.g., pattern matching as in [14]) would be needed to
keep the messages separated.

Our solution, instead, is to send messages to ports [221 A
port is a one-directional gateway tnto a guardian. There can he
many ports on a single guardian; each port belongs to a guardian,
and only processes withtn that guardian can receive messages from
it.

Ports are the only entities that have global names. When
a guardian is created, it provides one or more ports; the names of
these ports are made known to the creating process. The names of
ports can also be sent in messages; this Implies that messages can
be sent to the same port from many different sources. We assume
that ports provide some buffer space so that messages may be
queued i f necessary.

Ports are described by describing messages that can be
sent to them. For example, a port to one of the regional guardians
Pi shown in Figure 2 might be described as follows.

The effect of executing

q: regional..port := c r e a t e regional_manager ()

is to create a new instance of regional_manager, and assign the
name of the newly provided port to q. For example, the effect of
executing the above c r e a t e statement in process x in Figure 3a is
shown in Figure 3b. Now x can send request messages to 7 via the
new port. Recall that the new guardian will be created on the
same node as its creator, so A must be resident on the appropriate
regional node (e.g., A might be the primal guardian for that node).

Port types and guardian headers enable compile time type
checking of all message passing. Compile time checking is possible
even i f guardian definitions are compiled separately, provided that
compilation is clone in the context of a library containing
descriptions of guardian headers. (CLU already is based on such
a library.)

3.3 Sending Abstract Values

In the example, various abstract values, e.g., flight_no,
date, passenger_list, are shown as being transmitted in messages.
Whi le these values may be of built-in type (e.g., flight_no may be
an integer), they might also be of user-defined type. It is desirable
that the two cases be treated uniformly as far as the send command
itself is concerned.

We start with the assumption that the system can build
and decompose messages consisting of objects of built-in types.
Furthermore, the system is responsible for the low-level protocols
involved in actually .transmitting a message, e.g., breaking a large
message into packets and reassembling the packets, use of
redundant information for error detection and correction. For
example, the sending of a message

C(a, s)

regional_port - por t [reserve (flight_no, passenger_jd, date)
repl ies (ok, full, wait_list, pre..reserved,

no_such_flight),
cancel (flight_no, passenger..jd, date)

rep l ies (cancelled, not_reserved, no,such_flight),
list_passengers (flight_no, date)

rep l ies (info (passenger_list), no_such..flight)]

Note that here each request message is being paired with the
expected response messages. The repl ies part is actually a
description of an additional argument of the message:, a port that
can receive the expected responses. The syntax simply highlights
the request-response relationship. To describe a message with no
expected responses, the repl ies part is omitted.

The header of a guardian definition lists one or more
ports that can be used to communicate with an instance of the
guardian, e.g.,

regional_manager - guardiandef() provides p: regional_port
I~ definition of a sequential program to be run
'Z when an instance of regional_manager is
'Z created, p is a local variable to this

program.
end regional_manager

F igu re 3. Creat ing a guardian.

A

a. Before creating an instance of regtonal..manager.

b. After creating B, an instance of reg~onal..manager; ~ is the newly
created process in B, and p is used in ~ to name the newly created
port, while q is used in x for this purpose.

38

where C is a command identifier, a is an array of integers and s is
a string can be entirely handled by the system.

Since objects of abstract (user-defined) type are ultimately
represented by built-in types, one possible approach is to have the
system build and decompose messages containing abstract objects
by transmitting their representations in the same way as above.
Often, in fact, this is just what is wanted. However, there are a
number of reasons why such a method is not always the proper
one:

I. The system cannot automatically determine the
boundary of an object. For example, consider an
abstract object that is a graph composed of nod~
When a node is being sent in a message, should just the
node be sent, or should the subgraph headed by the
node be sent?

2. It is desirable to permit different representations of
types on different nodes. The system can accomplish
this for built-in types, but not for user-defined types.

3. An object may contain information that is guardian
dependent, e.g., an index into a private table of the
guardian. Such information should not be transmitted
in a message since it would not be meaningful to any
other guardian, but the system cannot distinguish this
class of information from other information.

4. For some types it may be desirable to forbid sending
the abstract values in messages.

For these reasons, the programmer must be permitted
control over the transmission of abstract values. The approach we
are taking is the following. Every transmissible abstract type
(those whose abstract values may be transmitted in messages) has
an associated external rep, which is the representation to be used
in messages. Each implementation of a transmissible type must
provide two operations, encode and decode. Encode performs a
mapping from the internal representation of the implementation to
the external rep, while decode :maps the external rep into the
internal representation. Encode and decode do not construct
messages; they merely bui ld and decompose in-computer objects
suitable for sending in messages. The actual construction of the
message from the external rep objects is done automatically by the
system.

A simple example is complex numbers, where on one node
the representation might be real/imaginary coordinates, while on
another polar coordinates might be used; the external rep might be
the real/imaginary coordinates. As a second example, consider an
associative memory abstract type, which provides lookup of items
in an associative memory on the basis of a key. Operations for
this type include

add_item (am, item, key)

get_item (am, key) returns (item)

adds a key/item pair to
associative memory
retrieves the item
associated with a key

Suppose that on node A the representation makes use of a bash
table, while on node B the representation uses a tree. A possible
external rep might be a sequence of items with associated keys.
Then encode on node A would build a sequence of key-item pairs
from the hash table representation, and decode on node B would
construct a tree representation from such a sequence.

Within a distributed system, the meaning of a type must
be fixed and invariant over all the nodes, even though the
f lexibi l i ty exists to have different implementations at different
nodes. The single external rep is part of this fixed meaning. For
example, the bounds on legal integer values must be defined
system-wide. I f 24 bit integers were the system standard, then all
nodes must support them, and the external rep would probably
contain just 2't bits. However, a byte-oriented machine might use 3
bytes to represent an integer while a 16-bit word machine could use
two words, in the latter case, only 24 bits of the 32 available could
be used for the integer, and results of integer arithmetic must be
checked to ensure they are within bounds. Otherwise it might be
impossible to send an integer value in a message because it was too
big.

8.4 Sending and Reoeiving Messages

In this section we sketch a syntax and semantics for send
and receive primitives. Both syntax and semantics are tentative
and incomplete, and not all issues are addressed.

The form of the send is (approximately):

send C(args) to <port> [r ep l y t o <port>]

The replyto part is optional and is used to convey where to send
a response i f one is required (provided the recipient doesn't already
know where to send the response). As was mentioned earlier, the
reply port is really an extra argument of the message, but it is
singled out in the syntax to clarify the intent of the send. Note
that the reply port could belong to a.different guardian than the
sending process.

A possible semantics of send is as follows:

I. The arguments are encoded from lef~ to right using
the appropriate encode operation for each arg I (the one
belonging to the type of argi). One possibility is that
some encode invocation may raise an exception; in this
case the send command terminates and raises that
exception.

2. The message is actually constructed (made into a
string of bits with appropriate format).

3. The message is sent (at~er being broken into packets
i f necessary). This step may be combined with step 2.

The process executing the 9erld can continue execution as soon as
i t can be guaranteed that future actions of that process cannot
affect the values transmitted (e.g., after step 2). The system will
attempt to deliver the message to the receiving node intact and In
good condition; the delivery is not guaranteed, but will happen
with high probability.

39

When the message is entirely and correctly received at the
receiving node (i.e., all packets have arrived, and the bits of the
message are not in error, as is indicated by the error detection bits),
it is forwarded to the target port. I f there is no room for the
message, or i f the port or guardian doesn't exist, the message is
thrown away. When a discarded message has a rep ly to port, a
failure message is sent by the system to that port (e.g., failure
('target port doesn't exist')). No guarantee about arrival order is
made, i.e., even two messages x and ~ sent by a single process to
the same port are not guaranteed to arrive in the same order they
were sent. I f the order is important, processes must coordinate to
achieve it.

The form of the receive statement is

r e c e i v e on <port list>

w h e n CI (formal arglist) [rep ly to <formal portarg>] : SI

w h e n CN (formal arglist) [rep l y to <formal portarg>] : SN

when Failure (s: string) : Sfailure
when t imeout <expr> : Stimeout
end

The meaning of this statement is as follows: If messages have
already arrived at ports in the port list, one of these messages is
removed. (A way of giving ports priority will be provided.) The
line containing the command identifier of this message is selected
(such a line must exist; this can be checked at compile time). The
objects in the message are decoded le~ to right (using the
appropriate decode operation) and assigned to the formals in the
formal arglist, and the reply port, i f any, is assigned to the formal
portarg. Then the associated statement is executed. I f no messages
are waiting, the receiving process waits for one to arrive, or times
out, whichever happens first.

The message "falture (string)" is automatically and
implicitlyassociated with each port type. Failure messages are
mostly generated by the system and convey such information as
transmission problems, or non-existence of the target port or
guardian.

8.5 Example

We now present a sketch of the airline reservation system
shown in Figure 2, to illustrate the use of send and receive and
some of the reasoning involved in providing robust atomic
operations. Figure 4 provides a sketch of the regional manager
guardian. It simply looks up the guardian of the requested flight
using a map, and forwards the request; the response will go directly
from the flight guardian to the original requesting process,
bypassing the regional manager. We assume that the flight
guardian logs the results of reserve and cancel operations, as
discussed in Section 2.2. (In Figures ,1 and 5, the notation Tllop is
used to refer to operation "op" of type T.)

Figure 5 shows the process that handles a transaction with
a clerk. Recall that the user interface guardians U t create a new
process to handle a transaction consisting of a set of reservations
and cancellations for a single customer. This process accepts
requests one at a time. It does each reserve request and reports the

F igu re 4. The regional f l ight manager guardian.
The data abstraction map provides a mapping from its first to its
second parameter; it is used here to find the guardian of the
desired flight. The actual work is done by the flight guardian;
note that it replies directly to the original request.

regional_port - por t [reserve (flight_no, passenger_id, date)
rep l ies (ok, ...), ...]

flight..port - por t [reserve (passenger.jd, date) repl ies (ok, ...), _]

regional_manager - guardiandef () provides p: regional_port
fmap., map [flight_no, flight, port]
flights: fmap

wh i l e t rue do
r e c e i v e on p

when reserve (fl: flight_no, pa: passenger_id, d: date)
r e p l y t o q: port [ok, full, pre.j-eserved, waitlist, noflight]:

fp: flight_port := fmap|get(flights, tl)
excep t when no_entry: send no_flight to q

continue ~ to next iteration
end ~except

send reserve (pa, d) to fp rep ly to q

end q.receive
end '~loop

end regional_manager

result to the clerk. Cancel requests are not done immediately,
however, t',lt are processed at the time the transaction finishes. To
finish the transaction the clerk indicates "done'. The process keeps
a transaction history; i f the clerk wishes the transaction can be
partially or totally undone. Cancels are saved until the end of the
transaction to permit the customer a late change of mind. An
unwanted reservation can be undone by a cancel, but the reverse is
not true since the seat may have been taken in the meantime.

A failure of the regional node will cause the t imeout line
of the receive statement in Figure 5 to be selected; the expression e
would cause a delay long enough to permit the request to complete
under reasonable circumstances. "Ifthe time out occurs, notAing is
known about the true state of affairs: the request may never be
done, or it might already be done. (This uncertainty always occurs
after a timeout.) In the example, the information is conveyed to
the clerk. One possibility is that he will ask to retry. Although a
retry may result in a reserve or cancel request being made more
than once, no problems result since they are ldem~tent (many
performances are equivalent to one [18]).

Now suppose the node that is running the transaction
process fails. Since there are alternative methods of finishing a
transaction (e.g., the clerk can make a phone call), when the node
comes back up it is possible that the old transactions are obsolete,
and should not be continued. We have chosen, therefore, m forget
transactions rather than to try and finish them after a crash.

When the node crashes in the middle of a transaction, the
clerk knows the result of each request except the one being worked
on. However, this one can simply be redone (since it is
iclempotent). To finish the transaction, the clerk starts a new
transaction, either waiting until the node comes up or using

40

Figure 5. The transal:t ion process.
Procedure do..trans is forked each time a new transaction starts up.
The data abstraction transhistory is used to keep track of the
history of the transaction. Argument c is the port provided by the
guardian that manages the display used by the reservations clerk.

transport - port [reserve (flight.no, string, date), ...]
termport - por t [ok, illegal, full, ...]
directory = map [string, flight..port]
replyport = por t [ok, full, pre_reserved, no_such_flight, waitJist]

dotrans = proc (p: transport, c: termport, dir: directory,
pa: passenger_ld)

t: transhistory := transhistorylcreate()
wh i l e t rue do

r e c e i v e on p
when reserve (fl: flight..no, dest: string, d: date):.

x: flight_port := dirSget (dest)
excep t when no_entry: send illegal to c

continue ¢ wait for next request
end £ except

s: replyport := new port
send reserve (fl, pa, d) to x rep ly to s
r e c e i v e on s

when ok: transhistory|add (t, "reserve', tl, d)
send ok to c

when t imeout e: send failure ('can't communicate') to c
end ~ receive

when done: ~ do all cancels
re turn ¢ this terminates the process

end ¢ receive
end '~ loop

end dotrans

various aspects of message passing, including sending of abstract
values, and compile time type checking.

Of course, program correctness will be a major concern in
distributed systems as it is for centralized systems. We believe that
modularity is the main issue here, and that a program structure
like guardians, where shared data is strictly controlled, is what is
needed. As far as-message communication is concerned,
permanence of effect is crucial for using information about the
result obtained by a message exchange as a basis for future actions.

In this paper, we have concentrated on goals and issues
that influence selection of primitives. Not all needed primitives
have been discussed; for example, a serious omission is the
mechanism for doing recovery. Although we have tried to justify
decisions, some are undoubtedly wrong. Furthermore, the paper
discusses current positions on issues under study; these positions
are likely to change as our understanding increases.

What is chiefly needed at present is more experience with
distributed programs. Our plan is to gain experience by writing a
number of distributed programs. CLU extended with the
primitives will be implemented to run on a network of computers,
and wil l serve as a basis for experiments. We expect our current
work will make it easier to carry out the experiments and to
evaluate the results.

Acknowledgements

The research being described has been done in collaboration with
several others, chiefly Dave Clark and Liba Svobodova. The
author gratefully acknowledges their efforts, and also the efforts of
those who provided criticisms of an earlier version of this paper.

R E F E R E N C E S

alternative means. This new transaction begins with the request
being worked on when the node failed.

4 . Disouss ion

The purpose of this paper has been to discuss issues that
arise in the design of primitives supporting distributed programs.
Two main areas were identified, modularity and communication.
To support modular program construction, a novel construct called
a guardian was proposed. A guardian completely controls access to
the resource it guards and provides permanence of effect for that
resource. It is the abstract analog of a physical node: One or
more processes inside a guardian may share data belonging to the
guardian, but lnterguardian communication is only via message
passing.

In the area of communication, we discussed how well
various message passing primitives support existing protocols. A
major concern was support for robust and reliable programs that
can recover from node and network failures; the most Important
difference between the primitives was the extent to which they
masked failures. We concluded that it was too early to choose a
primit ive that masked node failures, since there is not yet
agreement on how to do this. We chose the no-wait send, since it
provided the best support for experimentation. We then discussed

[i.]

~]

[3]

[,t]

Saltzer, J. H. Research problems of decentralized systems
with largely autonomous nodes. Operating Systems
Rev iew ! 2, ! (January 1978), 43-52).

Scherr, A. L. Distributed data processing. IBM Systems
Journal 1 7, 4 (1978), 324-343.

Fuller, S. H., et al. A Collect ion of Papers on CM*: A
Mul t i -microprocessor Computer System. Department
of Computer Science, Carnegie Mellon University, February
1977.

Hewitt, C. Viewing control structures as patterns of passing
messages. Art i f ic ia l Intel l igence 8, 1977, 323-:364.

Brinch Hansen, Per. Distributed processes: a concurrent
programming concept. Comm. of the ACM 21, I!
(November 1978), 9M-941.

Feldman, J. A. A Programming Methodology for
Dis t r ibu ted Computing, Technical Report 9, Department
of Computer Science, University of Rochester, Rochester, N.
Y., 1977.

41

[s]

[9]

Do]

[Ji)

[12]

D3)

D4]

(]5)

D6]

[17]

(J8)

[19]

[201

Liskov, 13, Snyder, A., Atkinson, R., and Schaffert C.
Abstraction mechanisms in CLU. Comm. of the ACM 20,
8 (August 1977), 564-576.

Liskov, B., Moss, E., Schaffert, C., Scheifler, R., and Snyder,
A. CLU Reference Manual. Computation Structures
Group Memo 161, Laboratory for Computer Science, M.I.T.,
Cambridge, Mass., July 1978.

Hoare, C. A. R. Monitors: an operating system structuring
concept. Comm. of the ACM 1 7, I0 (October 197'}), 549-557.

Brinch Hansen, P. The programming language Concurrent
Pascal. IEEE Trans. on Software Engineering 1, 2 (June
1975), 199-207.

Redell, D. D. Naming and Protection in Extendible
Operating Systems. Technical Report LCSITR-H0,
Laboratory for Computer Science, M.LT., Cambridge, Mass~
November 1974.

Saltzer, J. H., and Schroeder, M. D. The protection of
information in computer systems. Prec. of the IEEE 63, 9
(September 1975), 1278-1308.

Hewitt, C., and Atkinson, R. Specification and proof
techniques for sertalizers. IEEE Trans. on Software
Engineering SE-5, I (January 1979), 10-23.

Hoare, C. A. R. Communicating sequential processes.
Comm. of the ACM 21, 8 (August 1978), 666-677.

Thomas, R. H. A Solution to the Update Problem for
Multiple Copy Data Bases Which Uses Distributed
Control. BaN Report 3340, Bolt Beranek and Newman,
Inc., Cambridge, Mass., July 19/6.

Alsberg, P. A., and Day, J. D. A principle for resilient
sharing of distributed resources. Proc. of the Second
International Conference on Software Engineering,
1976, 562-570.

Rothnie, J. B.,]?,ernstein, P. A., Goodman, N., and
Papadimitriou, C. A. The Redundant Update
Methodology of SDD-I : A System for Distributed
Databases. Technical Report. Computer Corporation of
America, Cambridge, Mass., February 1977.

Lampson, B., and Sturgis, H. Crash Recovery in a
Distributed Data Storage System Xerox Research
Center, Palo Alto, Ca., 1976.

Gray, J. N. Notes on data base operating systems.
Operating Systems: An Advanced Course, Lecture
Notes in Computer Science 60, Springer-Verlag, 1978,
393-481.

Reed, D. P. Naming and Synchronization in a
Decentralized Computer System. Technical Report
TR-205, Laboratory for Computer Science, M.I.T.,
Cambridge, Ma., October 1978.

[20

[22]

Needham, R. M., and Schroeder, M. D. Using encryption
for authentication in large networks of computers. Comm.
of the ACM 21, 12 (December 1978), 993-999.

Balzer, R. M. PORTS -- a method for dynamic
interprogram communication and job control. Prec. of the
AFIPS Conference 39 (19"/I).

42

