
Proceedings of Sixth ACM Symposium on Operating Systems Principles (November 1977) 1-10.

The Cambridge CAP Computer and its protection system

R.M.Needham and R.D.H.Walker
Computer Laboratory, University of Cambridge

This paper gives an outl ine of the architecture of the

CAP computer as it concerns capabili ty-based protection and

then gives an account of how protected procedures are used

in the construction of an operating system.

Outline of architecture

The architecture of the CAP, implemented partly by

hard logic and partly by microprogram, is designed to

support a very f ine-grained system of memory protection.

The intention is that each module of program which is

executed on the CAP shall have access to exactly and only

that data which are required for correct funct ioning of the

program. Access to a particular area of memory should never

imply access to any other. This requirement has led to the

design of a non-hierarchic protection architecture, in which

emphasis has been placed on the representation of very

detailed protection environments, and on the possibility of

rapid switching from one environment to another. The CAP

also supports a hierarchical structure of processes, of such a

nature that the position of a process in the hierarchy

determines the resources available to it.

Capabilities and segments

In this paper the term segment will be used to refer to a

segment of memory consisting of a contiguous set of

memory locations defined by a base and a limit. Access to

the contents of a segment may only be obtained by the use

of a capability for that segment. A capability may be

evaluated to obtain the base and limit of the segment to

which it refers together with an access status. The access

status in a capability consists of five bits of which three

refer to data access, namely 'read data', 'write data', and

'execute' and two refer to capability access, namely 'read

capability' and 'write capability'. A data-type capability has

one or more of the data access bits. and a capability-type

capability has one or both of the capability access bits. No

capability may have both data and capability access bits,

though it is possible for both types of capability to exist for

the same physical segment.

Capabilities are stored in segments with capabil i ty-type

access and are evaluated by the microprogram as and when

required. At any moment in the life of a process, the

resources accessible to it are defined by the capabilities

which it is able to use. We shall now describe the way in

which addresses as issued by a program select capabilities,

the way in which accessible sets of capabilities change as a

process moves from one domain of protection to another,

and then the structure, strongly related to the hierarchic

structure of processes, of the informat ion used during the

evaluation of capabilities.

Addressing

The hardware allows a process to have immediate access

to the capabilities contained in up to 16 capability segments,

though in the case of the CAP operating system 6 have been

found sufficient. One could imagine that there were 16

registers in CAP which contained capabilities for the 16

capability segments; this is the effect although there are no

such physical registers. The address of a word in memory

must thus specify the identity of the capability segment

containing the capability for the segment concerned, the

offset of the slot there containing it, and finally the offset in

the segment of the word required. Thus an instruction to

add into the accumulator word 26 of a segment defined by a

capability standing in capability segment 4 at offset 3 could

be written

XADDS 4 /3 /26 .

The number o f the capabi l i ty segment and thc offset in i t -

4 /3 in this instance - are referred to as the capability

specifier. Evaluation of the absolute address is performed at

run- t ime by the capability unit (not by the microprogram)

in a manner described later.

Tile capabilities o f a single process

Associated with each process there is a fundamental

segment called the Process Resource List (PRL), which

specifies at any time the total resources which could be

available to any protected procedure in which the process

could run. The manner of this specification will be

described later. The capabilities in capability segments each

contain a pointer to an entry in the PRL, so that the

collection of capability segments consti tuting a protected

procedure specify a selection from the total resources of the

process. Provided that the access statuses involved are

suitable, a capability may be copied from one capabili ty

segment to another belonging to the same process; this is

done particularly when capabilities are passed as arguments

from one protected procedure to another. Notice that

copying a capability f rom a capabili ty segment belonging to

one process into a capability segment belonging to another

cannot be allowed, since the pointer in it would be

interpreted in the wrong context.

In addit ion to the PRL pointer, segment capabilit ies contain

a relative base, a limit, and an access status. These permit

capabilities to be refined as they are copied, so that it is

possible to pass a capability for a part only of an accessible

segment, or with a reduced access status, for example f rom

RW to R only. These facilities are provided by the REFINE

instruction, which takes as its arguments a source capability,

a destination, a relative base, a refined limit, and an access

reduction. (Fig. 1)

A process is fundamental ly represented by its Process

Resource List. Two of the entries in it (Fig. 2) must refer

to segments which are used by the microprogram in the

management of the process and in handling records of

nested protection environments:

a) the process base, which is used to preserve the values of

the processor registers and the description of the current

protection envi ronment when the process is not in

execution, and which also is used to keep various other

pieces of state information.

b) The C-stack, the funct ion of which will be described

shortly.

The PRL also contains an entry corresponding to itself;

the architecture does not require this but the operating

system does. Any PRL entry corresponding to a segment

capability contains informat ion which permits the

calculation of the appropriate base, limit, and access status

for adjustment using the values found in the capabili ty

segment, as above.

Changes to the protection environment

As indicated above, the protection envi ronment of a

process at any time is represented by the set of capabili ty

segments which are available for use. Accordingly the

env i ronment is changed by changing that set, which is done

by the ENTER and RETURN instrnctions, making use of enter

capabilities. The execution of an ENTER causes the values of

f ive of the sixteen capability segments to change. Three of

them (Nos. 4, 5, and 6) change so as to select new capabili ty

segments specified by the enter capability itself; operat ing

system conventions have been established for their use and

will be described later. It is these three capability segments

which def ine the protected procedure specified by the enter

capability, containing capabilities for its code, static data,

and workspace. Capabili ty segments nos. 2 and 3 are used

in connection with the passage of capabilities as argnments

and their delivery as results; in the course of an ENTER

instruction the old capability segment 2 becomes inaccessible,

the old capability segment 3 becomes the new segment 2, and

the new capability segment 3 is initially undefined. An

instruction is provided for creating a new capability segment

no. 3 if required. Capabilit ies are passed as arguments by

copying them to segment 3 with MOVECAP or REFINE, and

capability results are found in segment 3 after the status quo

is restored by a RETURN instruction. The RETURN instruction

makes use of informat ion preserved by ENTER Oil the Cstack

ment ioned earlier; that segment is also used to provide space

for capability segments 2 & 3 themselves, by a mechanism

which will be descibed below. The PRL entry corresponding

to an enter capability specifies the offsets in the PRL of the

entries corresponding to capability segments 4, 5, and 6 in

the protected procedure associated with the enter capability.

(Figure 3) An enter capability also has access bits, which appear in a

machine register for inspection if desired in the new environment.

The process hierarchy

It is now possible to describe the process hierarchy and

at last to complete the interpretation of PRL entries.

At the root of the hierarchy, called level 1, there is a

single process. Its Process Resource List, called the Master

Resource List, (MRL), is interpreted physically. Segment

entries in it include an absolute base, and an over-r id ing

l imi t and access status. The program in which this process

runs is responsible for the creation and management of level

2 processes, and is called the Master Coordinator, (MC).

The PRL of an level 2 process is an ordinary data

segment of the MC. A special instruction ENTER SUB-

PROCESS (ESP) takes as argument a capability for a segment

to be used as the process resource list of a jun ior process to

be entered forthwith; the appropriate parts of segment-type

entries in it will be interpreted as capability specifiers in tile

addressing envi ronment of the coordinator at the t ime of

execution of the ESP instruction. Other parts of segment-type

entries will be interpreted as relative bases, limits, and access

statuses. The microprogram, when loading a capability in

the junior process will, as indicated above, read the

capability in the capability segment, interpret it relative to

the process resource list, and then continue the cycle of

relative interpretation via the coordinator 's capability

segments and the coordinator 's resource list until absolute or

physical informat ion is reached. (Fig 4) Since all process

resource list entries for a junior process are interpreted

relative to the coordinator 's address space at the t ime of

execution of the ESP instruction, no breach of security is

possible as a result of using this instruction. It is

accordingly not in any way privileged, and a level 2 process

may use it to create and enter a level 3 process, and so on

until physical l imitations of the equipment are reached.

In order that the coordinator may in due course be

resumed, the ESP instruction f irst preserves in the

coordinator 's process base the current register values and a

description of its current protection environment. The

corresponding values and description are then picked up

from the junior 's process base and loaded into the

appropriate machine registers.

Resumption of execution of the coordinator occurs as a

result of any of:

1. the execution in the junior process of an ENTER

COORDINATOR (EC) instruction

2. the occurrence of a trap detected by the microprogram

during the execution of the junior process

3. the occurrence of an external interrupt, which always

causes resumption of the Master Coordinator.

An additional argument to the ESP instruction specifies

a register which, on resumption of the coordinator at the

instruction next following the ESP, contains an indication of

the cause of resumption, as above,

The structure for a particular process, consisting of the

process resource list and capability segments as described

above, is iterated in a manner corresponding to the depth in

the process hierarchy to form the complete data structure

employed ira the evaluation of a segment capability. It

should be emphasised that, at any particular time, the

structure only exists for current processes, i.e. the process in

execution and any others which are coordinators of current

processes. It is not possible to write a program to exhibi t the

'complete capability data structure for the system', since

there is, at the level of the architecture, no such thing. Only

those parts are identifiable which have been activated by an

ESP instruction and not subsequently deactivated by

resumption of the relevant coordinator. The microprogram

could thus by no means load a capability belonging to a

non-cur ren t process.

The Capability Unit

The capability unit contains the bases, limits, and access

statuses of segments, computed by the microprogram from

capabilities and ready for use. It includes a slave memory

which can retain up to 64 such eva lua ted capabil i t ies , in

order to avoid intolerable repetition of the evaluation cycle.

The slave memory works not on a pure associative principle,

but by a combinat ion of four-way parallel search and

hardware hashing. The capability unit as a whole works

autonomously of the microprogram processor, which is only

responsible for setting up its contents.

The primary key to the search of the capability memory

is the capability specifier part of a program-supplied

address. The capability unit has logic addit ional to that

associated with the search operations, the purpose of which

is to allow an optimisation connected with the ENTER and

RETURN instructions. When one of these instructions is

executed, there is a switch to a new set of current capability

segments. However it is arranged that any evaluated

capabilities for the former set of capability segments, and

for any other segments defined by means of them, may be

left in the slave memory in such a manner that they will

never be found by the associative search. Should any such

capabilities still be present in the slave memory when the

domain of protection to which they belong is reactivated,

they are atttomatically re-enabled. The techniques used to

effect this optimisation also permit evaluated capabilities

belonging to several processes to be present in the slave

memory at the same time,

When capabilities in capability segments are overwritten

in the course of the REFINE instruction, or when a whole

capability segment is destroyed, as in the case of the old

capability segment no.3 in a RETURN instruction, the

microprogram takes care that any obsolete evaluated

capabilities are disabled. This extends also to any

capabilities which are, because of the process hierarchy,

descendants of that which was destroyed. The slave

capability memory contains some information in relation to

the immediate genesis of an evaluated capability in order to

make this a practicable task for the microprogram. The

aggregate of this informat ion is, in fact, the physical

representation of the current state of the process hierarchy.

As was mentioned earlier, it is possible for there to exist

data-type capabilities for the same memory area as there are

capability type capabilities. This facility is only made

available to a very small number of in t imate system

procedures, which are relied upon to use a FLUSH instruction

when necessary to keep the slave store up to date. This

instruction would also be used if programs altered the

content of segment-type entries in the PRL, but no

procedures in fact have occasion to do so. FLUSH is selective

and if properly used does not clear out more than necessary.

As part of the CAP's initial load procedure, capabilities

for the Master Resource List, its associated process base and

capability segments, are evaluated and loaded into the slave

memory. The overwriting rules for the slave memory are

implemented by microprogram and ensure that the evahmted

capabilities for the following are never overwritten:

the Master Resource List and the associated

process base;

the process resource list and process base for

the current process; and

capability segments f rom which evaluated

segment capabilities are currently in the slave

memory.

Otherwise overwriting is optimally arranged with regard to

the hardware hash algorithm, except that capabilities for

segments in the current domain of protection are preserved

as long as possible.

Input and output

The remaining principal area of the architecture

concerns input and output. All input and output memory

accesses make use of the capability unit in the ordinary way,

so that there is no necessity for special action, for example

to ensure that computed absolute addresses remain valid

throughout a transfer. Peripheral transfers are all mediated

by a small peripheral computer, to the memory of which the

CAP microprogram has direct access. The CAP process

responsible for a certain device is activated when material is

available in the peripheral computer 's memory, and the

actual transfer f rom one memory to the other takes place at

maximum speed in the addressing envi ronment of the device

process. There is no autonomous channel (which would

either need to work with absolute addresses, or would need to

have a capability unit of its own), and there is no need for

one since if the transfers happen at all they take place at

maximum speed, fully occupying all equipment.

Interface between the architecture and the operating system

The commitment to protection facilities and the way the

process hierarchy is defined do not commit the designer to

any particular operating system structure. Great care has

been taken in the implementat ion to ensure that the correct

action of the microprogram does not depend on the

correctness of any system data structures. Operating system

errors naturally cause the machine to behave in a manner

other than that desired, but they cannot, for example, cause

the microprogram to go into a loop or behave unpredictably.

This clearly desirable requirement has in fact had

considerable effects on the design of the microprogram,

making it both larger and slower that it would have been if

system data structures had been relied upon; it has also

affected the way in which some parts of the operating system

are actuated. This section describes the way in which the

interface between architecture and operating system has been

set up and used.

Processes

Only two levels of process are used. At level 1 runs a

single process, the Master Coordinator mentioned earlier. It

is responsible for scheduling and dispatching level 2

processes. The level 2 processes include some which perform

major funct ions of the operating system and also some

belonging to users. A user could write a sub-system

consisting of level 3 processes, his level 2 process func t ion ing

as their coordinator. It is a consequence, and a merit, of the

particular capabili ty-based system of protection used, that

exactly the same facilities for safeguarding the integrity of

his system are available to the writer of the sub-operat ing

system working at levels 2 and 3 as were available to the

designers of the main operating system working at levels 1

and 2. The main operating system takes no note, however, of

the possibility of proliferation of levels since there is no way

it can know that a level 2 - 3 system even exists.

The Master Coordinator has various funct ions

additional to scheduling and dispatching. It is responsible

for noting external interrupts, as described earlier, and for

certain operations on capabilities which are required by the

swapping funct ion of the virtual memory. It is also

responsible for the provision of synchronisat ion primitives,

for some aspecls of the creation of message channels between

level 2 processes, and for some aspects of faul t handling.

Virtual Memory Interface

To discuss the way in which the virtual memory system

is connected with the architecture, we first recall the chain

of references which is used when evaluating a capabili ty on

behalf of a level 2 process. (Fig.4) The microprogram reads

from, in order, the level 2 capability segment; the level 2

PRL; a level 1 capability segment and finally the MRL or

level 1 PRL. (Sec fig. 5) It is arranged that all level 2 PRL

entries for a particular segment are defined in term of tile

same level 1 capability. It is called the leading capabili ty for

the segment. Tile leading capabili ty selects a refined version

of the memory area specified by an MRL entry, in the usual

manner. A small number of MRL entries span the whole of

the memory available for non-res ident material. If a

segment is to be swapped out or overwritten then the

coordinator is caused to damage the leading capability so

that the capability evaluation cycle will fail. The

microprogram takes care of any evaluated capabilities which

may need expunging f rom the slave store. If an at tempt is

made to evaluate a capability for a segment which is not in

memory the microprogrmn finds that the evaluation cannot

be completed and causes the coordinator to be entered. As

it does so it passes three words of informat ion describing

what has happened. It should be noted that the

microprogram does not know that what has happened was an

attempt to touch a segment which was not in memory; it is

up to the operating system designer to choose exactly which

type of loading failure be will use to indicate that

contingency. There is a con.siderable latitude for the

designer in his choice and he has a similar freedom about

any other system function which is to be activated as the

result of a trap. The coordinator does not know how to

interpret the information passed to it by the microprogram;

on receipt of this kind of entry its action is to cause a

particular protected procedure, which is always resident, to

be entered in in the level 2 process. This procedure is ca l l ed

FAULTPROC; and its task is to analyse the informat ion

words, and to make use of other informat ion it can glean, to

decide whether what has happened is to be interpreted as an

attempt to touch a segment which is not in memory, or as

indicating a need for some other system action, or as a plain

blunder by tile user, such as at tempting to use an enter

capability as a store capability. In the first case a message is

sent to the Real Store Manager to do the needful; fur ther

details do not concern the architectural interface. It may be

remarked that FAULTPROC is an example of a procedure in

a level 2 process which is provided with a capability for the

process's PRL - in this case a data-type capability with read-

only access.

Another use of FAULTPROC is to cause new instances

of protected procedures to be made when required. The

mechanism is outlined in a later section.

U s e o f P r o t e c t e d P r o c e d u r e s in t h e O p e r a t i n g
S y s t e m

The CAP operating system is implemented entirely in

terms of sets of protected procedures, which are used by user

processes or by dedicated processes of the system. In this

section we discuss with examples the different ways in which

the facilities provided by protected procedures are used.

First of all we indicate the conventions which have been set

up for the use of the various capabilityCs.

Conventions for capability segments

It was explained earlier how c~pability segments no.2 to no.6

are treated specially in the execution of ENTER and RETURN

instructions, and how nos 4, 5, and 6 constitute the

representation of a protected procedure They are used in

system practice in the following ways:

No.4 is called the P (Program) capability segment. Here

reside all capabilities which are present by virtue of the

identity of the protected procedure, irrespective of by

which process the procedure is used. Capabilit ies for the

program segments of the procedure are P-.capabilities.

No.5 is called the / (Interface) capability segment. It

contains all capabilities which are present by virtue of the

identities both of the process and of the procedure. I-

capabilities represent the workspace of the protected

procedure associated with the process that called it.

No.6 is called the R (Resource) capability segment. This

is used in the implementat ion of protected objects. R-

capabilities are specific to the object implemented by an

enter capability and constitute its protected

representation.

No.2 is called the ,4 (Argument) capability segment. A-

capabilities are those passed as arguments to a protected

procedure from the protected procedure that called it.

No.3 is called the N (New argument) capability segment.

N-capabil i t ies are those which have been prepared for

passage as arguments to a protected procedure about to be

called, or which contain capability results as a product of

that call.

Types of service provided by system protected procedures

The services provided by operating system protected

procedures may be roughly classified into four varieties,

which will be discussed in turn: gate-keeping, operating

system intervention, protected objects, and trivial services.

Since the mechanism is the same in all cases, the several uses

of it differ in emphasis and purpose rather than in kind.

Gatekeeping

The majority of operating system calls fall into this

category. It frequently happens that the criteria for

accessibility or use of some service is more complex that that

which could be encoded in a simple access status of a few

bits. The approach adopted in the CAP operating system in

cases of this sort is to place the capabilities required for the

service in a protected procedure, to which the user has an

enter capability. The protected procedure may validate the
call in an arbitrari ly complicated way. In the course of this

checking, the procedure may take into account software

capabilities presented by tile caller as evidence of his right to

some service. Accordingly, provision has been made for the

reading of parts of capabilities as data - this does not

constitute a security breach.

The foregoing indicates one kind of gatekeeping; there

is another which has a very similar implementat ion and is

not always distinguished. This is where there is no doubt as

to the caller's right to request some service, but there is

doubt about its trustworthiness to go through the detail

required. Here the code of the protected procedure acting as

gatekeeper is not validation code, it is detailed execution

code. (Compare the office machine so ill-designed that only trained

secretaries can be let use it.) We now give some examples of calls

to protected procedures as gatekeepers.

1. Coordinator calls

Critical sections of code which must not be interrupted,

such as process scheduling, are executed in the master

coordinator and not in any subordinate process of the

system. The ENTER COORDINATOR (EC) instruction is not

privileged, i.e. one does not need any particular capability to

use it, and may be executed by a user program at any time.

The EC takes an integer argument to describe the service

required. It turned out that only one of the coordinator

services was straightforwardly available to any piece of

code - 'wait event' and that all the others were privileged in

some way, either because of the delicacy of the operat ion or

because of its drastic character. Privilege is frequently

indicated by the possession of a suitable software capability.

To place the validation code in the coordinator itself would

be very bad, since it not merely reqnires that interrupts be

held off, which ought to be minimised, but also is made

awkward because the checks should be interpreted in the

addressing envi ronment of the junior.

Accordingly the validation and sequencing routines were

all moved into a protected procedure called ECPROC

running within the caller's process. All requests for

privileged coordinator services are programmed as calls to

ECPROC, using standard argument passing mechanisms. All

actual calls on the coordinator for critical sections of code

are made by ECPROC, and the only check the coordinator

has to do is to verify that the call really is f rom ECPROC.

This is readily done by checking the identity of the P-

capability segment, which is a constant for the process. The

technique described has resulted in the removal of a great

deal of complexity f rom a very sensitive program (the

coordinator) at the cost of slightly greater overhead in some

cases.

The interprocess message system shows the usage of

ECPROC. The message system is implemented in terms of

channels, and users are issued with software capabilities

which represent the 'send" and 'receive' ends of the channels.

Message sending and reception are carried out by calls to

ECPROC which take as arguments the (software) capabilities

for the message channels. ECPROC performs any transfer

of data or capabilities which may be required, and then

makes a call to the coordinator if any scheduling action is

required.

2. Calls to other processes

Some operating system services are provided in

dedicated system processes rather than as protected

procedures in the user's process. This is done sometimes to

give a simple serialisation of the operations, and sometimes

to let the User's work proceed in parallel. Demands for

system services provided in other processes are transmitted

by the message system, but the message channel capabilities

are held by a protected procedure rather than being directly

available to the user. There are three reasons for this:

- The same Enter interface may be used for these calls as

for other system calls;

- entry validation may be done in the calling process; this

is especially important in cases

where the system process supplies more services than

every customer is entitled to;

- the fo rmat of messages does not have to be published,

with advantages to the systems people and to the

simplici ty-seeking user.

An example of this kind of call is furnished by the

Interactive Stream Protected Procedure (ISPP) which

provides input and output access to serial peripherals. Each

peripheral has a dedicated process which looks after, in a

manner suited to the quirks of the device, such things as

multiple, buffering, Iookahead, code translation, or local line

editing. Other processes wishing to use serial peripherals are

given enter capabilities for ISPP's which validate calls and do

the message handl ing in a reasonably optimal manner. They

also provide the same programming interface as the Spooled

Stream Protected Procedure (SSPP) which does stream

transfers to and from files. It is thus made easy for

programs to be unaware of the difference between the two

types of stream.

3. Operations on system data structures

Some system-wide data structures are shared between all

processes. The integrity of each such structure is entrusted

to a specially-written protected procedure which has

exclusive custody of the capabilities for the data structure.

All operations on the data structure are handled by calling

on the procedure responsible for it. The continued integrity

of the data structure is thus a matter of ensuring that the

single procedure which operates on it is righl. It is worth

remarking that we distinguish this case form the somewhat

similar one of protected objects because the system-wide data

structures are usually unique and specially generated, not

exemplars of a class which may have many members.

The case of the message system and ECPROC has been

discussed already; ECPROC is the procedure, available to all

processes, responsible for the message segment, a system-

wide structure of channels and messages Jn transit. Another

case is the System Internal Name Directory

(S1NDIRECTORY) which, amongst other things, maintains

reference counts for capabilities preserved in the fi l ing

system. The SINDIRECTORY is only operated on by the

SINMAN procedure.

Operating Systern Intervention

There are times when a process must enter the operating

system invohmtarily, particularly after a fault or a non-

deterministic event such as a virtual memory trap. In order

to preserve the principle that the operating system should

have as little access to user capabilities as possible, the entry

takes the form of simulating the cffect of an ENTER at the

point of the fault or trap into a special protected procedure

which inspects the fault and decides what is to be done. The

only example of this type of procedure is FAULTPROC,

into which a process is diverted whenever the hardware or

microprogram detects a trap. The coordinator preserves the

state of the process and causes the FAULTPROC entry by

editing the dumped copy of the protection state of the

process. The use made of this facility was described earlier.

Protected Objects

A file directory is an example of a protected object. A

user is interested in a file directory only in so far as he is

able to use it to preserve capabilities in and to retrieve

capabilties from. The internal organisation of the directory

is of no interest to him. He does however require to be able

to pass a capability for the directory to other protected

procedures in order that these procedures may use his

preserved capabilities by name.

In the CAP operating system, protected objects are

implemented by protected procedures. Possession of an enter

capability for the procedure implementing a protected object

is the basic qualification for access to the object itself; the

degree of access available may be refined by the use of access

bits in the enter capability itself or by restrictions encoded

in the procedure. For instance, if one has a capability for a

directory with access status sufficient to preserve, retrieve,

and remove capabilities, the REFtNE instruction may be used

to mask out some access bits, so producing a new capabili ty

for the directory which may only be used for, for example,

retrieve operations. The new capability may then be passed

as argument to some protected procedure in the confidence

that no damage can be done to the contents of the directory.

A protected object has two components:

- tile program embedded in the protected

procedure

the representation of the object.

The program is the same for all instances of protected

objects of the same type, whereas the representation is

unique to an instance. As indicated earlier, the R-capabil i ty

segment is used to contain capabilities which belong to the

representation of a particular object.

For example, all directories in the system are protected

procedures with identical P-capabili ty segments (containing

the capabilities for the DIRMAN program), with R-

capabilities describing the representation of a particular

directory. It has been arranged that all directory procedures

of a particular process have the same l-capabili ty segment,

containing capabilities for shor t - term workspace. If

capabilities for directories are themselves preserved in other

directories, only the representational part needs to be

retained, together of course with a notation that the type of

the retained object is 'directory'. On retrieval of such an

object, a new protected procedure is made with R-

capabilities for the representation part and standard P and I

capability segments. The resulting enter capability is

reattmed to the caller as the directory capability requested. It

is usually the case that, as here, only the R-capabil i ty

segment needs to be created when creating a protected object.

Trivial Services

It was planned that the operating system would be built

up out of protected procedures, with protection needs as the

basis for procedural subdivision; in practice the protected

procedure has become the natural nnit of modularity in

programming for the CAP whether or not there is a

protection need in any particular case. This modularity is

encouraged by the use of high..level language systems which

bave become geared up to the production of protected

proced u res.

Some examples of trivial services, available as protected

procedures although there is really nothing to protect are:

- a program for performing elementary syntax analysis and

parameter decoding on the

string provided as argument to many user progralns;

- a program which, when given an operating system fault

number, returns a string describing the fault, suitable for

exhibit ing to a user.

Creation of Enter Capabilities

A process's stock of enter capabilities varies f rom time

to time according to its requirements. Some protected

objects, in particular, have short l ifetimes and enter

capabilities for them are created and destroyed frquently. A

process may obtain an enter capability either by dynamic

creation of the capability or by retrieval of the capability

f rom the fi l ing system. In both cases, the creation of a new

PRL entry is involved.

Dynamic creation of enter capabilities

Any user in the system may request that an enter

capability be created if he is able to supply capabilities for

two (P & I) or three (P, I, & R) capability segments. A

system protected procedure called MAKEENTER is supplied

for this purpose. It takes as arguments the two or three

capabilities for capability segments and returns as a result an

enter capability selecting a newly made PRL entry containing

pointer fields for the two (P,I) or three (P,I,R) capability

segnlents supplied by the user.

Internally, MAKEENTER has a software capability

permit t ing it to make capability interrogation and creation

calls to ECPROC. MAKEENTER calls ECPROC once for

each argument capability in order to ascertain the PRL

offsets of the relevant PRL entries. MAKEENTER is then

able to put together the two words of the PRL entry

required, and pass them to ECPROC to allocate and fill in

the PRL. ECPROC returns an enter capability, referring to

the newly created PRL entry, which is simply passed back to

the user.

Inside ECPROC, the capability and interrogation calls

are implemented by means of the privilege of having data-

type capabilities for current capability segments and the

PRL. ECPROC is thus very highly privileged indeed.

Assuming that MAKEENTER and ECPROC are correct,

the process has in no way extended its privileges by
encapsulating previously owned capabilit ies in a new

protected procedure. Tbc most frequent application of

MAKEENTER is in the mantffacture of protected objects.

Enter capabilities retrieved from the filing system

A protected procedure is represented in the f i l ing

system by a segment containing a prescription for the

construction of an enter capability. Such a segment is

known as a Procedure Control Block (PCB). The

informat ion in a PCB specifies the required size and content

of the capability segments, either two or three in number,

which have to be constructed to produce an appropriate PRL

entry for the enter capability (Fig. 3). Retrieval of enter

capabilit ies takes place in two stages. When a directory

manager is caused to retrieve an enter capability, the

immediate restdt is a capabili ty of enter type, selecting a

PRL entry of segment type, which specifies the PCB segment.

This configurat ion is called an unlinked enter. An ENTER

instruction causes a trap when an unlinked enter is used,

since an enter- type capability in a capability segment is not

allowed to select a segment-type PRL entry. The effect of

the trap is to cause FAULTPROC to be entered in just the

same way as for virtual memory traps. When FAULTPROC

has determined the cause of the trap, it makes use of special

capabilities to construct a proper segment-type capability for

the PCB. This it passes in the ordinary way to a

comparatively unprivileged protected procedure called

LINKER, whose task is to interpret the PCB and return as

results capabilit ies for the capability segments needed to

complete the enter capability. FAULTPROC completes the

PRL entry in the manner of MAKEENTER, except that it is

altering an existing PRL entry rather than making a new one.

Finally FAULTPROC executes a RETtJnN instruction, and the

original ENTEn is retried. Any other tmlinked enter

capabili t ies held by the process which refer to the same PRL

entry will have been completed by this operation.

Some of the capabilities specified in a PCB may

themselves be enter capabilities. The two-stage method of

retrieval of such capabilities avoids long and complex

recursion in LINKER, and also ensures that enter

capabili t ies are only completed if they are actually used,

which avoids potential waste of effort.

PCB's are made by an operation converse to that of the

LINKER and consti tute a system type, known to the f i l ing

system in the same way as are file directories. A system

protected procedure called MAKEPACK is given the

privilege of handl ing PCB's as segments (achieved by giving it a

particular kind of enter capability for the System Internal Name

Manager). Anyone may obtain an empty PCB and pass it to

MAKEPACK; MAKEPACK obtains access to it as a

segment, and then accepts capabili t ies passed to it with

statements of what is to be done with them. For example,

"First argument capabili ty to be used for capabili ty P0 of

the new procedure". The effect of this is to ensure that until

the PCB is destroyed the object specified by the offered

capabili ty cannot be deleted, and will be retrieved when the

PCB is linked. Facilities are also provided for specifying an

object by textual fi le name; doing so does not guarantee the

cont inued existence of the object. Software capabilit ies may

be passed to MAKEPACK like any others; it is also possible,

by making a request such as "Capabili ty 13 workspace l k

read/wri te", to specify that a particular capabili ty should be

for a scratch segment to be generated at l ink time.

MAKEPACK is a powerful procedure since it is

responsible for the integrity of many system procedures with

a variety of privileges. However it has no other privileges

itself than the one mentioned, and cannot perform any other

non-pub l i c system operations.

An enter capabili ty for MAKEPACK is globally

available, since the input data are thoroughly checked and in

no way sensitive. A second protected procedure called

MAKEPCB is provided to furn ish a convenient interface to

a terminal user for the creation and editing of PCBs.

MAKEPCB is entirely unprivileged and exists because of a

desire to separate programs responsible for the user interface,

which one may wish to alter as tastes change, f rom privileged

programs which should only be altered if found to be wrong.

Acknowledgements

The CAP project is supported by tile Science Research

Council. We have received constant encouragement and

advice from M.V.Wilkes; D.J.Wheeler carried out the

engineering design with great energy and skill; the staff of

the Laboratory's workshops, in particular N.W.Unwin,

V.Claydon, and D.B.Prince, have constructed a very reliable

and attractive piece of equipment. We are obliged to Butler

Lampson for many helpful comments on the exposition.

Fig. 1 Two capabil i ty segments and the PRL

PRL

Prl ptr =P I base = b
I

access=a I limit = I J

o I s~t'l I I I I I I /"\Oaoa ,,ty oo mont
/ copying w~h b',l',a'

as r e f i n e r s

Capability s e ~ " ~

/ S I accesasm: a P & a' } bali~lits~

Capabil i ty 5/1 is refined to capabil i ty 3 /4 , using the same PRL entry

although size and/or access may be reduced

Fig. 2 Part Of the structure of a process

PRL ~ I ~ l i d e n h t y of current capseg
I 4 stored in the rorocess base I

- > - '-I ("slack

. Current Capabihty Seqme6t 4 I

/
i \ [Current Segment 4/0

: " is the PRL entry f o r "

' > '- : "Points to by PRL olfset"

Other capability segments are pointed at similarly

Fig 3

PRL

selects selects selects J
/ ~ / . c a p seg 4 cap seg 5 cap seg 6 I

12..~p ~ y 4 I°°~ seg s I I PnL eo,,~ Ica~ seg 61

o 07,=.ogmo., I I I
In the example, the third entry of Ihe current capability segment is an enter capability
The PRL entry, expanded for clarity, selecls the three capability segments
of the protected procedure defined by the enter capability .

Fig 4

Master Resource List

f Coo, dh~ator's capability segment

I PR~ pointet ~"nemonts I

1"
I

ke 2 capability segment

Fig 6

~ M a k e P C B

-traps - - F a u l t p r o ~

\

MakeEnte~

Dirman

Makepack" - - /

/ ~ k e r

Sinman

RealStoreManager - - Disc Driver

The relationships between the main programs used as examples in the paper;

all procedures call ECPROC but with varying privileges conveyed by

software capabilities

The chain of re ferences for loading a capabi l i ty for a level 2 p rocess

Fi(I 5

" - - - LeJdlng

Tile lending capability is on the e,JalLJ;tt~on route for all instances of capabilities

for a p;,rt~cular segme~t.]he MqL entry simply selects a core region ou; ol which

the secment was allocated.

10

