
Towards Transparent Hardening of Distributed Systems

Diogo Behrens
Christof Fetzer

TU Dresden
Dresden, Germany

diogo.behrens@tu-dresden.de

christof.fetzer@tu-dresden.de

Flavio P. Junqueira
Microsoft Research

Cambridge, UK
fpj@apache.org

Marco Serafini
Qatar Computing Research Institute

Doha, Qatar
mserafini@qf.org.qa

ABSTRACT

In distributed systems, errors such as data corruption or arbitrary
changes to the flow of programs might cause processes to prop-
agate incorrect state across the system. To prevent error propa-
gation in such systems, an efficient and effective technique is to
harden processes against Arbitrary State Corruption (ASC) faults
through local detection, without replication. For distributed sys-
tems designed from scratch, dealing with state corruption can be
made fully transparent, but requires that developers follow a few
concrete design patterns. In this paper, we discuss the problem of
hardening existing code bases of distributed systems transparently.
Existing systems have not been designed with ASC hardening in
mind, so they do not necessarily follow required design patterns.
For such systems, we focus here on both performance and number
of changes to the existing code base. Using memcached as an ex-
ample, we identify and discuss three areas of improvement: reduc-
ing the memory overhead, improving access to state variables, and
supporting multi-threading. Our initial evaluation of memcached
shows that our ASC-hardened version obtains a throughput that is
roughly 76% of the throughput of stock memcached with 128-byte
and 1k-byte messages.

Categories and Subject Descriptors

D.4.5 [Operating Systems]: Reliability—Fault-tolerance; D.4.7
[Operating Systems]: Distributed systems

General Terms

Algorithms, Reliability, Performance

Keywords

distributed systems, fault-tolerance, data corruption

1. INTRODUCTION
Large-scale distributed systems are at the core of every success-

ful online service on the Web. Operating such systems at scale
comes with a number of challenges related to fault tolerance. Un-
foreseen failure scenarios, failure propagation, and amplification

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HotDep’13 November 03 - 06 2013, Farmington, PA, USA
Copyright 2013 ACM 978-1-4503-2457-1/13/11 ...$15.00.

are not uncommon in such settings. At the same time, identifying
faults in such large systems is really a non-trivial task; there are of-
ten multiple potential sources and even the most sophisticated tools
rarely cover all corners of the system. Often due to lack of data
or time to investigate production issues carefully, such issues are
resolved by replacing hardware, upgrading software, or simply re-
booting. Issues occurring repeatedly are investigated further, but
transient errors may never be spotted again.

When designing distributed systems for large-scale infrastruc-
tures, the fault model typically adopted is the one of crash faults.
Machine and process crashes are commonly observed and from a
practical perspective it is a reasonable fault model to adopt. How-
ever, the likelihood of non-crash faults like data corruption is typi-
cally not negligible in large scale distributed systems. Data corrup-
tion due to faulty hardware is also considered rare because when
it occurs, it can easily be confused with Heisenbugs or simply go
unnoticed. The difficulty of reproducing and pinpointing data cor-
ruption does not imply that they can or should be ignored, quite the
opposite. The Amazon S3 service is a good example of a service
severely affected by such an error. The data corruption of the inter-
nal state of a single machine caused a massive outage in July 20081

as well as other lesser incidents2.
In this work, we argue that it is possible to harden systems against

both crashes and data corruption with an acceptable performance
penalty and a small addition to the development effort. In particu-
lar, we target a technique that enables developers to use existing
crash-tolerant designs, without requiring dedicated and sophisti-
cated protocols for Byzantine fault tolerance [3].

Correia et al. have proposed a technique to harden distributed
systems against Arbitrary State Corruption (ASC) faults in a sys-
tematic way to tolerate data corruption [4]. It assumes that data
corruption manifests as ASC faults: the whole state of a process,
including the program counter, can transition to an arbitrary state.
The goal of ASC hardening is to transform data corruption, mod-
eled as ASC faults, into crash or omission. The ASC-hardening
algorithm of Correia et al. has three attractive properties: it is lo-

cal, so it does not require replica processes; it is generic, since it
provides formal guarantees without knowledge of the application
being hardened; it is untrusted, since faults can occur even during
the execution of the hardening algorithm itself. An ASC hardened
version of Paxos was able to tolerate tens of thousands of injected
faults in the most frequently accessed code and data segments.

1http://status.aws.amazon.com/s3-20080720.
html
2https://forums.aws.amazon.com/thread.jspa?
threadID=22709
https://forums.aws.amazon.com/thread.jspa?
messageID=86214

To assess the difficulties of hardening real systems, we endeav-
ored into ASC-hardening memcached3, an in-memory distributed
cache system. We chose memcached because it is representative
of a large class of systems, including other distributed in-memory
caches, load balancers, Web servers, and applications servers, where
integrity is critical and liveness is not strictly necessary, although
certainly desirable. Processes in these systems need to provide cor-
rect results (safety) but do not need to remain available (liveness)
since they can crash, lose all their state, and be replaced. For this
class of systems, local detection is a much more convenient choice
than fault tolerance since it does not require any replication if ASC
hardening is used.

In this context, we found that PASC has three major limitations
that we need to overcome to make it more appealing to developers
and suitable for production settings:

Memory footprint: PASC essentially doubles the memory foot-
print of the hardened application because it keeps two copies
of the state. For systems like memcached that stores its state
primarily in memory, this limitation constitutes a major one;

Flat state: Hardening using the PASC library requires containing
all application state in a single object, which is unfeasible for
large code bases.

Concurrency: PASC does not allow multiple threads accessing a
shared state, which in a multicore world limits the opportu-
nities for concurrent processing.

In this paper, we discuss our progress towards achieving these
goals. In particular, we discuss the design of an ASC hardening
algorithm that can leverage hardware-level protection across the
memory hierarchy to guarantee data integrity; hardening can then
focus on detecting data corruptions during computation, which are
much harder to detect. Alternatively, the user can use software-
level codes that use less space than full replicas. We also argue that
it is viable to overcome the current limitation of using a single state
object, but dealing with concurrent threads to leverage modern mul-
ticore processors is still a challenge. We finally report our progress
with hardening existing systems, discussing our memcached pro-
totype. Our initial evaluation of memcached shows that our ASC-
hardened version obtains a throughput that is roughly 76% of the
throughput of stock memcached with 128-byte and 1k-byte mes-
sages.

2. OPTIONS FOR HARDENING
Each individual component in a computer is a potential source of

errors. Controllers, processor, main memory, disk, are all prone to
errors. DRAM, commonly used for the main memory of commod-
ity servers, has been identified in various studies as an important
source of errors [7, 11]. Hardware manufacturers have proposed a
number of mechanisms to protect systems against hardware errors.
DRAM often includes ECC codes like SECDED codes or codes in
the chipkill family [5]; the extent of these techniques, however, is
limited to main memory.

Processors also have included error detection and correction at
various levels of the memory hierarchy and interconnects. To our
knowledge, however, commodity processors do not detect general
computation errors nor provide strict end-to-end error detection
guarantees at the application level. Developers have also reported

3http://memcached.org

that computation errors occur in modern processors, sometimes due
to bugs in the manufacturing process or in the design.4

The ASC work of Correia et al. offers an option to make sys-
tems resilient to such corruption errors [4]. Their work includes a
model, a hardening algorithm, and a library to harden code bases
in an automated fashion called PASC. The ASC model is compre-
hensive: it captures the notion of intermittent errors and that when-
ever an error occurs across a computer system, the whole state of
a process can transition to an arbitrary value. The ASC-hardening
algorithm is local (only redundancy inside a single process is used)
and untrusted (it assumes that faults while executing the hardening
code may occur). Finally, the PASC library mitigates the burden
of hardening systems by automating it when applications follow an
assumed structure.

ASC-hardening is not the only software-implemented approach
that has been proposed in the literature and here are a couple of
relevant alternatives:

Hypervisor-based fault tolerance.
Some approaches use multiple local replicas and voting to pre-

vent error propagation, as for example, the work of Bressoud and
Schneider [2]. Preserving fault isolation in the presence of hard-
ware errors using a single server, however, is challenging due to
shared hardware resources. On the other hand, if we assume that a
fault might corrupt multiple local replicas, it is not necessarily the
case that these faults will produce different outputs. ASC hardening
executes redundant computations, but does not need to assume that
one of them is faulty, or that redundant faulty executions produce
different outputs. It does perform output comparisons, but instead
of assuming that the outputs must be different in the presence of a
fault, it guarantees that they are different.

Byzantine fault tolerance.
Given the body of work on Byzantine Fault Tolerance (BFT),

it is natural to consider such a model. The Byzantine model as-
sumes a powerful adversary and consequently a Byzantine-tolerant
system is also able to cope with data corruption. Byzantine pro-
tocols, however, incorporate features orthogonal to data corruption
resilience, such as intrusion or bugs. Intrusion falls into the do-
main of security and for data center applications, security is often
an orthogonal concern (an important one, though). BFT protocols
also tolerate software bugs under the premise that a quorum is not
affected by such a bug; however, if all replicas of the state machine
are identical and deterministic, they will activate the same bugs.

As already mentioned, memcached is just an instance of a large
class of systems in which integrity (safety) in the presence of data
corruption is sufficient, and availability is not strictly necessary. In
the Byzantine model, providing just safety does not significantly
change the cost of protocols, see for example the Nysiad system,
which achieves safety through replication and agreement [6]. The
Thema system also shows the additional complexity of using a
fault-tolerance-only approach in Byzantine-tolerant three-tiered Web
systems [13].

Software-level error detection.
Software-level error detection has been subject of a large body

of research (e.g., SWIFT [14]), but it typically does not provide
end-to-end guarantees in distributed systems. Recent work has pro-
posed using encoded execution to harden distributed systems like

4Data corruption with Opteron CPUs and Nvidia chipsets:
https://bugzilla.kernel.org/show_bug.cgi?id=
7768

PASC runtime

EH1 EH2 EH3

Process
state

PASC checks

User- defined

Transparent

Replica
state

Figure 1: Structure of a PASC-hardened program.

Paxos and provide end-to-end guarantees [1]. Encoded programs
can detect faults not covered by the ASC model, e.g., permanent
faults such as stuck-at bits. Encoding comes, however, with two
main drawbacks. First, it incurs significant overhead, e.g., a 4 to
20 times increased response time. Second, encoding lacks a formal
description. In contrast, ASC hardening has been formally proven
correct and presents moderate overhead.

3. ASC-HARDENING COMPLEX CODE
The PASC library imposes a particular structure to the (Java)

code of hardened processes. A user implementing a PASC-hardened
algorithm must define it in terms of three types of objects: one
or more messages, one or more event handlers, and a single flat
process state object (see Figure 1). PASC provides a generic run-
time that transparently coordinates message processing in an event-
based fashion and executes the necessary checks. The user must
also implement the message passing layer, which feeds the PASC
runtime with messages. When the runtime receives a message, it
forwards it to the correct even handler. Event handlers can only ac-
cess local state and the process state; the latter includes all the state
that persists across the processing of different messages. PASC
transparently replicates the process state and uses the replica state
to verify the correctness of the process state whenever event han-
dlers reads from it.

PASC requires that the hardened algorithm use the process state
object as an access gateway to any object referenced after handling
a message; all reads and writes to any persistent object must take
place by calling a method of the process state. Having one process
state object serves a couple of important purposes. PASC intercepts
calls to process state methods in order to executes state integrity
checks and buffers state modifications.

PASC has been used to harden a crash-tolerant version of Paxos
and make it tolerant to data corruption. Consider the example of
Figure 2, which is a code snippet of the PASC-Paxos implementa-
tion. All the objects constituting the persistent Paxos state, like the
maximum observed ballot number or the log of currently accepted
proposals, must be declared as fields of the PaxosState class,
which inherits from the PASC-internal State class. Except the
constructor, all methods of a state class must be either getters or
setters. The signature of the methods must follow a particular syn-
tax: getters must be of the form getX(param), where the concate-
nation of X and the optional parameter param constitute a unique
name for the variable being accessed. Similarly, setters must be of
the form setX(param, newVal). PASC uses this convention to deter-
mine if the method is reading or writing variables and to uniquely
identify the variables being accessed by each method.

Having a single access gateway to the process state has two im-
portant limitations. First, it flattens the state onto a single object.

public class PaxosState extends State {
long maxBallot;
Proposal [] log;

long getMaxBallot() {
return maxBallot;

}
Proposal getAcceptedProp(long id) {

return log[id];
}
void setAcceptedProp(long id, Proposal p){

log[id] = p;
}

}

Figure 2: Example of PASC process state

In large code bases, the size and complexity of this gateway can
easily become unmanageable. For example, in the PASC-Paxos
implementation by Correia et al., the state class has more than 70
methods.

The second limitation of a single access gateway is that it impairs
modularity. For correctness, modifications to the process state must
occur in the event handlers only. As discussed, the access gateway
can only give basic read/write access to event handlers. This is
not the way large software systems are typically built; modules of-
ten encompass both state and all the necessary logic to process the
state.

Solutions.
The use cases described in [4] were implemented from scratch,

so it was possible (although presumably cumbersome) to design
them according to the strict structure imposed by PASC. However,
retrofitting this structure onto existing code bases was unmanage-
able. We consequently have been seeking more flexible approaches
to apply ASC-hardening without imposing a strict structure.

Different from PASC, we have chosen to use C instead of Java.
In our experience with Java, it is expensive to transparently ma-
nipulate state. Cloning and reflection are techniques that one of-
ten has to resort to when manipulating state, which often induce
a high performance overhead. In Java, to transparently determine
if any application state is being changed, we have needed to inter-
cept method calls (e.g., using aspect-oriented programming). Lan-
guage extensions like AspectJ5 do not allow intercepting calls to
library methods, which limits substantially the applicability of the
approach. Although libraries could be hardened independently, as
of today, we do not have such hardened versions. We had to wrap
function calls with C too, but they were only a handful of low-level
operations. Consequently, given its flexibility and our experience
so far, C is a good option to demonstrate the benefits of our tech-
niques.

The direction we are pursuing provides a special interface to
memory management instead of using an access gateway, and as-
sumes the whole state is stored in the heap. We are considering
two alternative designs. The first is page-level protection. We con-
sider a memory page as the atomic storage unit we protect. The
user accesses the heap through an API that wraps the POSIX mem-
ory management API: for example, it calls a malloc_asc()

function to allocate memory, and this function relies in turn on
malloc() for actually allocating memory. The hardening library
detects modifications to the state by initially setting memory pages
as read-only and intercepting kernel interrupts arising from write

5http://eclipse.org/aspectj/

attempts. Whenever a page is modified, it is cloned and later re-
covered to guarantee that the two executions of the event handler
are identical.

The second alternative is word-level protection. Reducing the
granularity of our memory management mechanism allows reduc-
ing the cost involved in cloning and recovering modified variables.
We use the compiler support (namely, the transactional memory

support of gcc6) to intercept all load and store operations read-
ing or modifying the heap. Event handlers are marked with special
macro functions as in the following example:

__asc_begin();
size_t len = strlen(buf);
process_buffer(buf, len);
__asc_end();

The compiler instruments the code between the markers redirecting
heap access to our hardening library. This approach copies less
data but intercepts calls more often. In Section 7 we evaluate this
approach with memcached.

4. REDUCING MEMORY OVERHEAD
PASC requires a full replica of the persistent state of a hardened

process. When a process receives a message, it executes event han-
dling twice: the first execution reads from the original state (called
S), the second from the replica state (called R). In both executions,
the first access to every variable is preceded by a state integrity

check verifying that the variable is consistent with its replica.

Solutions.
Our new ASC-hardening library also uses state integrity checks,

but instead of using a full replica state R, it leverages error de-
tection codes present in modern hardware. These can be either
hardware-level codes like ECC, with zero memory and CPU over-
head, or user-defined software-level codes, with flexible trade offs
between error coverage, CPU overhead, and memory overhead. It
is worth noting that hardware-level mechanisms alone do not solve
the hardening problem, since they detect data corruption while data
is stored but not during computation. The data could be read, cor-
rupted arbitrarily, and written back. Memory protection mecha-
nisms do not catch such cases.

Using only one full copy of the state implies that the hardening
algorithm must use S for both executions of the event handler. This
change requires modifying the hardening algorithm in a few key as-
pects, e.g., to make sure that errors do not propagate the same way
in both executions. PASC uses software-level replication and as-
sumes that R is under control: variables in R and in S are updated
in different phases. By contrast, if R is handled transparently at
the hardware level, for example in the form of an ECC, this is no
longer possible: every time a variable in S is modified, its corre-
sponding replica variable in R is set to (an encoding of) the same
value. To enable leveraging hardware-level memory protection, our
new hardening algorithm uses exactly this access pattern, updating
the replica of a variable immediately after updating the original
variable. The same pattern is used with software-level codes. This
scheme is correct because we treat the hardware-generated code for
memory words as the copy R of the state. The argument of correct-
ness for our new algorithm consequently builds upon the one for
PASC with this observation.

5. CONCURRENCY
Given the current trend of multicore processors, it is not realistic

to assume or constrain systems to be single-threaded. It is quite

6http://gcc.gnu.org/wiki/TransactionalMemory

critical for performance to enable the use of multiple threads. ASC
hardening, however, works for processes that can be abstracted as
deterministic state machines and the presence of multiple threads
with shared state introduces non-determinism. Determinism is needed
because event handlers are executed twice and both executions are
expected to produce the same results. This is a common assump-
tion in all state machine replication algorithms; nonetheless, exist-
ing distributed systems are rarely designed as state machines.

To illustrate the problem, consider the following execution of
two ASC-hardened threads t1 and t2 that share a variable v. The
execution presents the following interleaving of events. Thread t1
reads v = 10 during the first execution of an event handler, and
computes u = v+1 = 11. Between the first and second execution
of the handler of thread t1, thread t2 sets v to 50. The second
execution of t1 results now in u = 51, a divergence that can be
incorrectly perceived as a data corruption.

The problem of non-determinism and the efficient support of
multi-threading in state machines applies also to state machine repli-
cation and has been discussed in the literature [9, 15]. The ad-
ditional challenge with ASC hardening is that the mechanisms to
handle multi-threading need to be made ASC-tolerant too; for ex-
ample, if locking is used, we must consider that the value of a lock
may be corrupted.

Solutions.
Our current approach with memcached is to run several single-

process instances instead of a single multi-threaded instance. Re-
cent work on Dthreads has shown that implementing the pthread
thread abstraction using multiple processes with no shared state
can match and occasionally exceed the performance of a standard
pthread library implementation [12]. An alternative is to execute
hardened handlers atomically, providing isolation between concur-
rent handler executions. An option to provide atomicity and isola-
tion is to leverage software transactional memory techniques [16].
Such techniques, however, do not provide to date the level of per-
formance overhead we expect. Whether we can enable multi-threading
with a lightweight mechanism, perhaps based on transactional mem-
ory, is an open question.

6. ASC-HARDENING MEMCACHED
Memcached is a popular in-memory key-value cache. It pro-

vides a server that exposes a simple get/set interface and it is
implemented in C. Clients of memcached are implemented sepa-
rately and we have used the memaslap client7 version 1.2. We have
used the version 1.4.15 of the server code. We now describe a few
challenges of ASC-hardening memcached.

Identifying the event handlers.
ASC hardening assumes event handling starts with the receipt of

a message. In practice, the reading of a message from the socket
and its processing are often interleaved, for example, the set com-
mands in memcached. Hence, one challenge when hardening mem-
cached was choosing the right place where to start and finish the
hardened event handlers. We start our handlers before the tokeniza-
tion of the input buffer and before the processing of the payload.

Message integrity.
ASC hardening calculates 32-bit CRCs of messages upon receiv-

ing and sending. Efficient CRC computation was critical in our
implementation to obtain a reasonable performance penalty. Our

7http://libmemcached.org

128 B 1 kB 4 kB

0.00

0.25

0.50

0.75

1.00
re

la
ti

v
e

th
ro

u
g
h
p
u
t

asc asc−c mc−s mc

Figure 3: Throughput for dif-

ferent message sizes

128 B 1 kB 4 kB

0.0

0.5

1.0

1.5

2.0

re
sp

o
n
se

 t
im

e
(m

s)

asc asc−c mc−s mc

Figure 4: Response time for

different message sizes

implementation calculates CRCs using the SSE4.2 hardware ex-
tensions [8] when available, otherwise it falls back to the efficient
slicing-by-8 algorithm [10].

Prototype limitations.
Our prototype computes 32-bit CRCs, but it does not send them

along with the messages. We have not implemented it for conve-
nience, since it reduces our changes to memcached and we expect
the performance impact to be minimal once we add it. We have also
disabled hashtable rebalancing and slab allocation of memcached,
since they require multiple threads and this is not yet supported by
our ASC-hardening approach (Section 5). Finally, memcached pe-
riodically reads the clock and updates the current_time global
variable. Since these updates are non-deterministic, we serialize
the accesses to current_time.

7. PRELIMINARY RESULTS
We present in this section a preliminary evaluation of the over-

head of our ASC-hardened memcached. Memcached runs with a
single worker thread and 1 GB cache size on a 2.66 GHz Intel Xeon
X5650 machine (Linux 3.8 kernel). Memaslap measures achiev-
able throughput and response time. It runs on another machine
with similar configuration; both machines are connected via Giga-
bit Ethernet. Each experiment consists of 60s runs of memaslap
with 64 connections. Memaslap produces a workload of 10% sets
and 90% gets. We experiment with message sizes varying from
128 bytes to 4 k bytes and with the following memcached vari-
ants: mc is the stock memcached; mc-s is a stripped down version
of memcached without slab allocator; asc is memcached instru-
mented and running the new ASC-hardening algorithm with hard-
ware memory protection; and asc-c is asc without CRC calculation.

Figure 3 shows the measured throughput for the memcached vari-
ants relative to mc. With 128 bytes and 1 kB messages asc can pro-
vide 76% of mc’s throughput. Note that the difference between
asc-c and asc is small, since the CRC is efficiently implemented
using SSE4.2 extensions. With large 4 kB messages all variants
are network bound. The remaining CPU resources can be used for
hardening without affecting the throughput.

The response time given by memaslap for the same experiments
is depicted in Figure 4. For smaller messages (128 B and 1 kB mes-
sage), the overhead of asc is more pronounced because the system
is CPU-bound. The response time difference between asc and mc

is less than 200µs. Note that latency is typically the main perfor-
mance factor that memcached applications care about. Throughput
is also important, but typically secondary.

The mc-s variant provides about 85% of mc’s throughput for
128 kB and 1 kB message sizes. Remember that mc-s is a stripped

down version of mc without slab allocation – it contains no hard-
ening. An open question of our experiments is whether the slab
allocation feature, if present, reduces the overhead of asc further.

We added about 50 code lines to memcached, 8 of them event
handler markers, 7 of them CRC related. More than 120 functions
were automatically instrumented.

8. CONCLUSIONS
Although data corruption may seem very unlikely in the every-

day experience of most practitioners, they are a statistical certainty
in large-scale distributed systems. While adequate hardware mem-
ory protection represents a valid protection against errors occurring
in memory, computational errors cannot be as easily detected. The
overall goal of our research is to enhance the fault tolerance of ex-
isting distributed systems in a principled and automated manner,
yet with minimal changes to the existing code base and minimal
performance overhead. This paper considers memcached as use
case and shows promising initial results: transparent and princi-
pled hardening based on the ASC model can be achieved with a
moderate performance overhead and with minimal changes to the
source code. Our current work is on consolidating these results and
on expanding transparent hardening to concurrent systems.

9. ACKNOWLEDGMENTS
This work is partly supported by the German Research Founda-

tion (DFG) within the Cluster of Excellence “Center for Advancing
Electronics Dresden”.

10. REFERENCES
[1] D. Behrens, S. Weigert, and C. Fetzer. Automatically

tolerating arbitrary faults in non-malicious settings. In
Proceedings of the Sixth Latin-American Symposium on

Dependable Computing (LADC), pages 114–123, April
2013.

[2] T. C. Bressoud and F. B. Schneider. Hypervisor-based fault
tolerance. ACM Trans. Comput. Syst., 14:80–107, February
1996.

[3] M. Castro and B. Liskov, Practical Byzantine fault tolerance.
In USENIX Symposium on Operating Systems Design and

Implementation (OSDI), 1999.

[4] M. Correia, D. G. Ferro, F. Junqueira, and M. Serafini.
Practical hardening of crash-tolerant systems. In USENIX

Annual Technical Conference, 2012.

[5] T. J. Dell. A white paper on the benefits of chipkill- correct
ECC for PC server main memory. Technical report, IBM
Microelectronics Division, 1997.

[6] C. Ho, R. van Renesse, M. Bickford, and D. Dolev. Nysiad:
Practical protocol transformation to tolerate byzantine
failures. In USENIX Symposium on Networked Systems

Design and Implementation (NSDI), 2007.

[7] A. A. Hwang, I. Stefanovici, and B. Schroeder. Cosmic rays
don’t strike twice: Understanding the nature of DRAM errors
and the implications for system design. In ASPLOS, 2012.

[8] Intel. Intel SSE4 Programming Reference, 2007.

[9] M. Kapritsos, Y. Wang, V. Quema, A. Clement, L. Alvisi,
and M. Dahlin. All about eve: execute-verify replication for
multi-core servers. In Proceedings of the 10th USENIX

conference on Operating Systems Design and

Implementation, pages 237–250, 2012.

[10] M. E. Kounavis and F. L. Berry. A systematic approach to
building high performance software-based crc generators.

2012 IEEE Symposium on Computers and Communications

(ISCC), 0:855–862, 2005.

[11] X. Li, M. C. Huang, K. Shen, and L. Chu. A realistic
evaluation of memory hardware errors and software system
susceptibility. In Proceedings of the 2010 USENIX

conference on USENIX annual technical conference,
USENIXATC’10, pages 6–16, Berkeley, CA, USA, 2010.
USENIX Association.

[12] T. Liu, C. Curtsinger, and E. D. Berger. Dthreads: efficient
deterministic multithreading. In Proceedings of the

Twenty-Third ACM Symposium on Operating Systems

Principles, pages 327–336. ACM, 2011.

[13] M. G. Merideth, A. Iyengar, T. Mikalsen, S. Tai,
I. Rouvellou, and P. Narasimhan. Thema:
Byzantine-fault-tolerant middleware forweb-service
applications. In Proceedings of the 24th IEEE Symposium on

Reliable Distributed Systems, SRDS ’05, pages 131–142,
Washington, DC, USA, 2005. IEEE Computer Society.

[14] G. Reis, J. Chang, N. Vachharajani, R. Rangan, and
D. August. SWIFT: software implemented fault tolerance. In
Proceedings of the International Symposium on Code

Generation and Optimization, pages 243–254, Mar. 2005.

[15] R. Rodrigues, M. Castro, and B. Liskov. Base: using
abstraction to improve fault tolerance. In SOSP ’01:

Proceedings of the eighteenth ACM symposium on Operating

systems principles, pages 15–28, New York, NY, USA, 2001.
ACM.

[16] N. Shavit and D. Touitou. Software transactional memory. In
Proceedings of the fourteenth annual ACM symposium on

Principles of distributed computing, PODC ’95, pages
204–213, New York, NY, USA, 1995. ACM.

